
The code of the package nicematrix∗

F. Pantigny
fpantigny@wanadoo.fr

February 1, 2026

Abstract

This document is the documented code of the LaTeX package nicematrix. It is not its user’s
guide. The guide of utilisation is the document nicematrix.pdf (with a French translation:
nicematrix-french.pdf).

The development of the extension nicematrix is done on the following GitHub depot:
https://github.com/fpantigny/nicematrix

1 Declaration of the package and packages loaded

The prefix nicematrix has been registered for this package.
See: http://mirrors.ctan.org/macros/latex/contrib/l3kernel/l3prefixes.pdf
<@@=nicematrix>

First, we load pgfcore and the module shapes. We do so because it’s not possible to use \usepgfmodule
in \ExplSyntaxOn.

1 \RequirePackage{pgfcore}
2 \usepgfmodule{shapes}

We give the traditional declaration of a package written with the L3 programming layer.
3 \ProvidesExplPackage
4 {nicematrix}
5 {\myfiledate}
6 {\myfileversion}
7 {Enhanced arrays with the help of PGF/TikZ}

8 \msg_new:nnn { nicematrix } { latex-too-old }
9 {

10 Your~LaTeX~release~is~too~old. \\
11 You~need~at~least~the~version~of~2025-06-01. \\
12 If~you~use~Overleaf,~you~need~at~least~"TeXLive~2025".\\
13 The~package~'nicematrix'~won't~be~loaded.
14 }

15 \providecommand { \IfFormatAtLeastTF } { \@ifl@t@r \fmtversion }
16 \IfFormatAtLeastTF
17 { 2025-06-01 }
18 { }
19 { \msg_critical:nn { nicematrix } { latex-too-old } }

∗This document corresponds to the version 7.6 of nicematrix, at the date of 2026/02/01.

1

The command for the treatment of the options of \usepackage is at the end of this package for
technical reasons.

20 \RequirePackage { amsmath }

21 \RequirePackage{array}[=2025/06/08] % v2.6j

22 \cs_new_protected:Npn \@@_error:n { \msg_error:nn { nicematrix } }
23 \cs_new_protected:Npn \@@_warning:n { \msg_warning:nn { nicematrix } }
24 \cs_new_protected:Npn \@@_error:nn { \msg_error:nnn { nicematrix } }
25 \cs_generate_variant:Nn \@@_error:nn { n e }
26 \cs_new_protected:Npn \@@_error:nnn { \msg_error:nnnn { nicematrix } }
27 \cs_new_protected:Npn \@@_fatal:n { \msg_fatal:nn { nicematrix } }
28 \cs_new_protected:Npn \@@_fatal:nn { \msg_fatal:nnn { nicematrix } }
29 \cs_new_protected:Npn \@@_msg_new:nn { \msg_new:nnn { nicematrix } }

With Overleaf (and also in TeXPage), by default, a document is compiled in non-stop mode. When
there is an error, there is no way to the user to use the key H in order to have more information.
That’s why we decide to put that piece of information (for the messages with such information) in
the main part of the message when the key messages-for-Overleaf is used (at load-time).

30 \cs_new_protected:Npn \@@_msg_new:nnn #1 #2 #3
31 {
32 \bool_if:NTF \g_@@_messages_for_Overleaf_bool
33 { \msg_new:nnn { nicematrix } { #1 } { #2 \\ #3 } }
34 { \msg_new:nnnn { nicematrix } { #1 } { #2 } { #3 } }
35 }

We also create a command which will generate usually an error but only a warning on Overleaf. The
argument is given by curryfication.

36 \cs_new_protected:Npn \@@_error_or_warning:n
37 {
38 \bool_if:NTF \g_@@_messages_for_Overleaf_bool
39 { \@@_warning:n }
40 { \@@_error:n }
41 }

We try to detect whether the compilation is done on Overleaf. We use \c_sys_jobname_str because,
with Overleaf, the value of \c_sys_jobname_str is always “output”.

42 \bool_new:N \g_@@_messages_for_Overleaf_bool
43 \bool_gset:Nn \g_@@_messages_for_Overleaf_bool
44 {
45 \str_if_eq_p:on \c_sys_jobname_str { _region_ } % for Emacs
46 || \str_if_eq_p:ee \c_sys_jobname_str { output } % for Overleaf
47 }

48 \@@_msg_new:nn { mdwtab~loaded }
49 {
50 The~packages~'mdwtab'~and~'nicematrix'~are~incompatible.~
51 This~error~is~fatal.
52 }

53 \hook_gput_code:nnn { begindocument / end } { . }
54 { \IfPackageLoadedT { mdwtab } { \@@_fatal:n { mdwtab~loaded } } }

2

2 Collecting options

The following technique allows to create user commands with the ability to put an arbitrary number
of [list of (key=val)] after the name of the command.

Example :
\@@_collect_options:n { \F } [x=a,y=b] [z=c,t=d] { arg }
will be transformed in : \F{x=a,y=b,z=c,t=d}{arg}
Therefore, by writing : \def\G{\@@_collect_options:n{\F}},
the command \G takes in an arbitrary number of optional arguments between square brackets.
Be careful: that command is not “fully expandable” (because of \peek_meaning:NTF).

55 \cs_new_protected:Npn \@@_collect_options:n #1
56 {
57 \peek_meaning:NTF [
58 { \@@_collect_options:nw { #1 } }
59 { #1 { } }
60 }

We use \NewDocumentCommand in order to be able to allow nested brackets within the argument
between [and].

61 \NewDocumentCommand \@@_collect_options:nw { m r[] }
62 { \@@_collect_options:nn { #1 } { #2 } }
63

64 \cs_new_protected:Npn \@@_collect_options:nn #1 #2
65 {
66 \peek_meaning:NTF [
67 { \@@_collect_options:nnw { #1 } { #2 } }
68 { #1 { #2 } }
69 }
70

71 \cs_new_protected:Npn \@@_collect_options:nnw #1#2[#3]
72 { \@@_collect_options:nn { #1 } { #2 , #3 } }

3 Technical definitions

The following constants are defined only for efficiency in the tests.
73 \tl_const:Nn \c_@@_c_tl { c }
74 \tl_const:Nn \c_@@_l_tl { l }
75 \tl_const:Nn \c_@@_r_tl { r }
76 \tl_const:Nn \c_@@_all_tl { all }
77 \tl_const:Nn \c_@@_dot_tl { . }
78 \str_const:Nn \c_@@_r_str { r }
79 \str_const:Nn \c_@@_c_str { c }
80 \str_const:Nn \c_@@_l_str { l }

81 \tl_const:Nn \c_@@_brace_tl { nicematrix/brace }
82 \tl_const:Nn \c_@@_mirrored_brace_tl { nicematrix/mirrored-brace }

The following token list will be used for definitions of user commands (with \NewDocumentCommand)
with an embellishment using an underscore (there may be problems because of the catcode of the
underscore).

83 \tl_new:N \l_@@_argspec_tl

3

84 \cs_generate_variant:Nn \seq_set_split:Nnn { N o }
85 \cs_generate_variant:Nn \str_set:Nn { N o }
86 \cs_generate_variant:Nn \tl_build_put_right:Nn { N o }
87 \prg_generate_conditional_variant:Nnn \clist_if_in:Nn { N e } { T , F, TF }
88 \prg_generate_conditional_variant:Nnn \tl_if_empty:n { e } { T }
89 \prg_generate_conditional_variant:Nnn \tl_if_head_eq_meaning:nN { o N } { TF }
90 \cs_generate_variant:Nn \dim_min:nn { v }
91 \cs_generate_variant:Nn \dim_max:nn { v }

92 \hook_gput_code:nnn { begindocument } { . }
93 {
94 \IfPackageLoadedTF { tikz }
95 {

In some constructions, we will have to use a {pgfpicture} which must be replaced by a
{tikzpicture} if TikZ is loaded. However, this switch between {pgfpicture} and {tikzpicture}
can’t be done dynamically with a conditional because, when the TikZ library external is loaded by
the user, the pair \tikzpicture-\endtikpicture (or \begin{tikzpicture}-\end{tikzpicture})
must be statically “visible” (even when externalization is not activated).
That’s why we create \c_@@_pgfortikzpicture_tl and \c_@@_endpgfortikzpicture_tl which will
be used to construct in a \hook_gput_code:nnn { begindocument } { . } the correct version of
some commands. The tokens \exp_not:N are mandatory.

96 \tl_const:Nn \c_@@_pgfortikzpicture_tl { \exp_not:N \tikzpicture }
97 \tl_const:Nn \c_@@_endpgfortikzpicture_tl { \exp_not:N \endtikzpicture }
98 }
99 {

100 \tl_const:Nn \c_@@_pgfortikzpicture_tl { \exp_not:N \pgfpicture }
101 \tl_const:Nn \c_@@_endpgfortikzpicture_tl { \exp_not:N \endpgfpicture }
102 }
103 }

We test whether the current class is revtex4-1 (deprecated) or revtex4-2 because these classes redefines
\array (of array) in a way incompatible with our programmation. At the date April 2025, the current
version revtex4-2 is 4.2f (compatible with booktabs).

104 \IfClassLoadedTF { revtex4-1 }
105 { \bool_const:Nn \c_@@_revtex_bool { \c_true_bool } }
106 {
107 \IfClassLoadedTF { revtex4-2 }
108 { \bool_const:Nn \c_@@_revtex_bool { \c_true_bool } }
109 {

Maybe one of the previous classes will be loaded inside another class... We try to detect that situation.
110 \cs_if_exist:NT \rvtx@ifformat@geq
111 { \bool_const:Nn \c_@@_revtex_bool { \c_true_bool } }
112 { \bool_const:Nn \c_@@_revtex_bool { \c_false_bool } }
113 }
114 }

If the final user uses nicematrix, PGF/TikZ will write instruction \pgfsyspdfmark in the aux file.
If he changes its mind and no longer loads nicematrix, an error may occur at the next compilation
because of remanent instructions \pgfsyspdfmark in the aux file. With the following code, we try
to avoid that situation.

115 \cs_new_protected:Npn \@@_provide_pgfsyspdfmark:
116 {
117 \iow_now:Nn \@mainaux
118 {
119 \ExplSyntaxOn
120 \cs_if_free:NT \pgfsyspdfmark
121 { \cs_set_eq:NN \pgfsyspdfmark \@gobblethree }
122 \ExplSyntaxOff
123 }
124 \cs_gset_eq:NN \@@_provide_pgfsyspdfmark: \prg_do_nothing:
125 }

4

We define a command \iddots similar to \ddots (
. . .) but with dots going forward (. . .). We use

\ProvideDocumentCommand and so, if the command \iddots has already been defined (for example
by the package mathdots), we don’t define it again.

126 \ProvideDocumentCommand \iddots { }
127 {
128 \mathinner
129 {
130 \mkern 1 mu
131 \box_move_up:nn { 1 pt } { \hbox { . } }
132 \mkern 2 mu
133 \box_move_up:nn { 4 pt } { \hbox { . } }
134 \mkern 2 mu
135 \box_move_up:nn { 7 pt }
136 { \vbox:n { \kern 7 pt \hbox { . } } }
137 \mkern 1 mu
138 }
139 }

This definition is a variant of the standard definition of \ddots.

In the aux file, we will have the references of the PGF/TikZ nodes created by nicematrix. However,
when booktabs is used, some nodes (more precisely, some row nodes) will be defined twice because
their position will be modified. In order to avoid an error message in this case, we will redefine
\pgfutil@check@rerun in the aux file.

140 \hook_gput_code:nnn { begindocument } { . }
141 {
142 \IfPackageLoadedT { booktabs }
143 { \iow_now:Nn \@mainaux { \nicematrix@redefine@check@rerun } }
144 }
145 \cs_set_protected:Npn \nicematrix@redefine@check@rerun
146 {
147 \let \@@_old_pgfutil@check@rerun \pgfutil@check@rerun

The new version of \pgfutil@check@rerun will not check the PGF nodes whose names start with
nm- (which is the prefix for the nodes created by nicematrix).

148 \cs_set_protected:Npn \pgfutil@check@rerun ##1 ##2
149 {

\str_if_eq:ee(TF) is slightly faster than \str_if_eq:nn(TF).
150 \str_if_eq:eeF { nm- } { \tl_range:nnn { ##1 } { 1 } { 3 } }
151 { \@@_old_pgfutil@check@rerun { ##1 } { ##2 } }
152 }
153 }

We have to know whether colortbl is loaded in particular for the redefinition of \everycr. The
command \@@_everycr: will be used only in \@@_some_initialization:, itself in \ar@ialign.

154 \hook_gput_code:nnn { begindocument } { . }
155 {
156 \cs_set_protected:Npe \@@_everycr:
157 {
158 \IfPackageLoadedTF { colortbl } { \CT@everycr } { \everycr }
159 { \noalign { \@@_in_everycr: } }
160 }
161 \IfPackageLoadedTF { colortbl }
162 {
163 \cs_new_eq:NN \@@_old_cellcolor: \cellcolor
164 \cs_new_eq:NN \@@_old_rowcolor: \rowcolor
165 \cs_new_protected:Npn \@@_revert_colortbl:
166 {
167 \hook_gput_code:nnn { env / tabular / begin } { nicematrix }
168 {
169 \cs_set_eq:NN \cellcolor \@@_old_cellcolor:

5

170 \cs_set_eq:NN \rowcolor \@@_old_rowcolor:
171 }
172 }

When colortbl is used, we have to catch the tokens \columncolor in the preamble because, otherwise,
colortbl will catch them and the colored panels won’t be drawn by nicematrix but by colortbl (with an
output which is not perfect).

173 \cs_new_protected:Npn \@@_replace_columncolor:
174 {
175 \tl_replace_all:Nnn \g_@@_array_preamble_tl
176 { \columncolor }
177 { \@@_columncolor_preamble }

\@@_column_preamble, despite its name, will be defined with \NewDocumentCommand because it takes
in an optional argument between square brackets in first position for the colorimetric space.

178 }
179 }
180 {
181 \cs_new_protected:Npn \@@_revert_colortbl: { }
182 \cs_new_protected:Npn \@@_replace_columncolor:
183 { \cs_set_eq:NN \columncolor \@@_columncolor_preamble }

The command \CT@arc@ is a command of colortbl which sets the color of the rules in the array. We
will use it to store the instruction of color for the rules even if colortbl is not loaded.

184 \def \CT@arc@ { }
185 \def \arrayrulecolor #1 # { \CT@arc { #1 } }
186 \def \CT@arc #1 #2
187 {
188 \dim_compare:nNnT { \baselineskip } = { \c_zero_dim } { \noalign }
189 { \cs_gset_nopar:Npn \CT@arc@ { \color #1 { #2 } } }
190 }

Idem for \CT@drs@.
191 \def \doublerulesepcolor #1 # { \CT@drs { #1 } }
192 \def \CT@drs #1 #2
193 {
194 \dim_compare:nNnT { \baselineskip } = { \c_zero_dim } { \noalign }
195 { \cs_gset:Npn \CT@drsc@ { \color #1 { #2 } } }
196 }
197 \def \hline
198 {
199 \noalign { \ifnum 0 = `} \fi
200 \cs_set_eq:NN \hskip \vskip
201 \cs_set_eq:NN \vrule \hrule
202 \cs_set_eq:NN \@width \@height
203 { \CT@arc@ \vline }
204 \futurelet \reserved@a
205 \@xhline
206 }
207 }
208 }

We have to redefine \cline for several reasons. The command \@@_cline: will be linked to \cline
in the beginning of {NiceArrayWithDelims}. The following commands must not be protected.

209 \cs_set_nopar:Npn \@@_standard_cline: #1 { \@@_standard_cline:w #1 \q_stop }
210 \cs_set_nopar:Npn \@@_standard_cline:w #1-#2 \q_stop
211 {
212 \int_if_zero:nT { \l_@@_first_col_int } { \omit & }
213 \int_compare:nNnT { #1 } > { \c_one_int }
214 { \multispan { \int_eval:n { #1 - 1 } } & }
215 \multispan { \int_eval:n { #2 - #1 + 1 } }
216 {
217 \CT@arc@
218 \leaders \hrule \@height \arrayrulewidth \hfill

6

The following \skip_horizontal:N \c_zero_dim is to prevent a potential \unskip to delete the
\leaders1

219 \skip_horizontal:N \c_zero_dim
220 }

Our \everycr has been modified. In particular, the creation of the row node is in the \everycr
(maybe we should put it with the incrementation of \c@iRow). Since the following \cr correspond
to a “false row”, we have to nullify \everycr.

221 \everycr { }
222 \cr
223 \noalign { \skip_vertical:n { - \arrayrulewidth } }
224 }

The following version of \cline spreads the array of a quantity equal to \arrayrulewidth as does
\hline. It will be loaded excepted if the key standard-cline has been used.

225 \cs_set:Npn \@@_cline:

We have to act in a fully expandable way since there may be \noalign (in the \multispan) to detect.
That’s why we use \@@_cline_i:en.

226 { \@@_cline_i:en { \l_@@_first_col_int } }

The command \cline_i:nn has two arguments. The first is the number of the current column (it
must be used in that column). The second is a standard argument of \cline of the form i-j or the
form i.

227 \cs_set:Npn \@@_cline_i:nn #1 #2 { \@@_cline_i:w #1|#2- \q_stop }
228 \cs_generate_variant:Nn \@@_cline_i:nn { e }
229 \cs_set:Npn \@@_cline_i:w #1|#2-#3 \q_stop
230 {
231 \tl_if_empty:nTF { #3 }
232 { \@@_cline_iii:w #1|#2-#2 \q_stop }
233 { \@@_cline_ii:w #1|#2-#3 \q_stop }
234 }
235 \cs_set:Npn \@@_cline_ii:w #1|#2-#3- \q_stop
236 { \@@_cline_iii:w #1|#2-#3 \q_stop }
237 \cs_set:Npn \@@_cline_iii:w #1|#2-#3 \q_stop
238 {

Now, #1 is the number of the current column and we have to draw a line from the column #2 to the
column #3 (both included).

239 \int_compare:nNnT { #1 } < { #2 }
240 { \multispan { \int_eval:n { #2 - #1 } } & }
241 \multispan { \int_eval:n { #3 - #2 + 1 } }
242 {
243 \CT@arc@
244 \leaders \hrule \@height \arrayrulewidth \hfill
245 \skip_horizontal:N \c_zero_dim
246 }

You look whether there is another \cline to draw (the final user may put several \cline).
247 \peek_meaning_remove_ignore_spaces:NTF \cline
248 { & \@@_cline_i:en { \int_eval:n { #3 + 1 } } }
249 { \everycr { } \cr }
250 }

The following command will be nullified in the environment {NiceTabular}, {NiceTabular*} and
{NiceTabularX}.

251 \cs_set:Nn \@@_math_toggle: { $ } % $

1See question 99041 on TeX StackExchange.

7

252 \cs_new_protected:Npn \@@_set_CTarc:n #1
253 {
254 \tl_if_blank:nF { #1 }
255 {
256 \tl_if_head_eq_meaning:nNTF { #1 } [
257 { \def \CT@arc@ { \color #1 } }
258 { \def \CT@arc@ { \color { #1 } } }
259 }
260 }
261 \cs_generate_variant:Nn \@@_set_CTarc:n { o }

262 \cs_new_protected:Npn \@@_set_CTdrsc:n #1
263 {
264 \tl_if_head_eq_meaning:nNTF { #1 } [
265 { \def \CT@drsc@ { \color #1 } }
266 { \def \CT@drsc@ { \color { #1 } } }
267 }

The following command must not be protected since it will be used to write instructions in the
\g_@@_pre_code_before_tl.

268 \cs_new:Npn \@@_exp_color_arg:Nn #1 #2
269 {
270 \tl_if_head_eq_meaning:nNTF { #2 } [
271 { #1 #2 }
272 { #1 { #2 } }
273 }
274 \cs_generate_variant:Nn \@@_exp_color_arg:Nn { N o }

The following command must be protected because of its use of the command \color.
275 \cs_new_protected:Npn \@@_color:n #1
276 { \tl_if_blank:nF { #1 } { \@@_exp_color_arg:Nn \color { #1 } } }
277 \cs_generate_variant:Nn \@@_color:n { o }

278 \cs_new_protected:Npn \@@_rescan_for_spanish:N #1
279 {
280 \tl_set_rescan:Nno
281 #1
282 {
283 \char_set_catcode_other:N >
284 \char_set_catcode_other:N <
285 }
286 #1
287 }

The L3 programming layer provides scratch dimensions \l_tmpa_dim and \l_tmpb_dim. We create
several more in the same spirit.

288 \dim_new:N \l_@@_tmpc_dim
289 \dim_new:N \l_@@_tmpd_dim

290 \tl_new:N \l_@@_tmpc_tl
291 \tl_new:N \l_@@_tmpd_tl

292 \int_new:N \l_@@_tmpc_int

8

4 Parameters

The following counter will count the environments {NiceArray}. The value of this counter will be
used to prefix the names of the TikZ nodes created in the array.

293 \int_new:N \g_@@_env_int

The following command is only a syntaxic shortcut. It must not be protected (it will be used in
names of pgf nodes).

294 \cs_new:Npn \@@_env: { nm - \int_use:N \g_@@_env_int }

The command \NiceMatrixLastEnv is not used by the package nicematrix. It’s only a facility given
to the final user. It gives the number of the last environment (in fact the number of the current
environment but it’s meant to be used after the environment in order to refer to that environment
— and its nodes — without having to give it a name). This command must be expandable since it
will be used in pgf nodes.

295 \NewExpandableDocumentCommand \NiceMatrixLastEnv { } { \int_use:N \g_@@_env_int }

The array will be composed in a box (named \l_@@_the_array_box) because we have to do manip-
ulations concerning the potential exterior rows.

296 \box_new:N \l_@@_the_array_box

The following command is only a syntaxic shortcut. The q in qpoint means quick.
297 \cs_new_protected:Npn \@@_qpoint:n #1
298 { \pgfpointanchor { \@@_env: - #1 } { center } }

If the user uses {NiceTabular}, {NiceTabular*} or {NiceTabularX}, we will raise the following
flag.

299 \bool_new:N \l_@@_tabular_bool

\g_@@_delims_bool will be true for the environments with delimiters (ex. : {pNiceMatrix},
{pNiceArray}, \pAutoNiceMatrix, etc.).

300 \bool_new:N \g_@@_delims_bool
301 \bool_gset_true:N \g_@@_delims_bool

In fact, if there is delimiters in the preamble of {NiceArray} (eg: [cccc]), this boolean will be set
to false.

The following boolean will be equal to true in the environments which have a preamble (provided
by the final user): {NiceTabular}, {NiceArray}, {pNiceArray}, etc.

302 \bool_new:N \l_@@_preamble_bool
303 \bool_set_true:N \l_@@_preamble_bool

We need a special treatment for {NiceMatrix} when vlines is not used, in order to retrieve
\arraycolsep on both sides.

304 \bool_new:N \l_@@_NiceMatrix_without_vlines_bool

The following counter will count the environments {NiceMatrixBlock}.
305 \int_new:N \g_@@_NiceMatrixBlock_int

It’s possible to put tabular notes (with \tabularnote) in the caption if that caption is composed
above the tabular. In such case, we will count in \g_@@_notes_caption_int the number of uses of
the command \tabularnote without optional argument in that caption.

306 \int_new:N \g_@@_notes_caption_int

9

The dimension \l_@@_columns_width_dim will be used when the options specify that all the columns
must have the same width (but, if the key columns-width is used with the special value auto, the
boolean \l_@@_auto_columns_width_bool also will be raised).

307 \dim_new:N \l_@@_columns_width_dim

The dimension \l_@@_col_width_dim will be available in each cell which belongs to a column of
fixed width: w{...}{...}, W{...}{...}, p{...}, m{...}, b{...} but also X (when the actual width
of that column is known, that is to say after the first compilation). It’s the width of that column. It
will be used by some commands \Block. A non positive value means that the column has no fixed
width (it’s a column of type c, r, l, etc.).

308 \dim_new:N \l_@@_col_width_dim
309 \dim_set:Nn \l_@@_col_width_dim { -1 cm }

The following counters will be used to count the numbers of rows and columns of the array.
310 \int_new:N \g_@@_row_total_int
311 \int_new:N \g_@@_col_total_int

The following parameter will be used by \@@_create_row_node: to avoid to create the same row-node
twice (at the end of the array).

312 \int_new:N \g_@@_last_row_node_int

The following counter corresponds to the key nb-rows of the command \RowStyle.
313 \int_new:N \l_@@_key_nb_rows_int

The following token list will contain the type of horizontal alignment of the current cell as provided by
the corresponding column. The possible values are r, l, c and j. For example, a column p[l]{3cm}
will provide the value l for all the cells of the column.

314 \tl_new:N \l_@@_hpos_cell_tl
315 \tl_set_eq:NN \l_@@_hpos_cell_tl \c_@@_c_tl

When there is a mono-column block (created by the command \Block), we want to take into account
the width of that block for the width of the column. That’s why we compute the width of that block
in the \g_@@_blocks_wd_dim and, after the construction of the box \l_@@_cell_box, we change the
width of that box to take into account the length \g_@@_blocks_wd_dim.

316 \dim_new:N \g_@@_blocks_wd_dim

Idem for the mono-row blocks.
317 \dim_new:N \g_@@_blocks_ht_dim
318 \dim_new:N \g_@@_blocks_dp_dim

The following dimension correspond to the key width (which may be fixed in \NiceMatrixOptions
but also in an environment {NiceTabular}).

319 \dim_new:N \l_@@_width_dim

The clist \g_@@_names_clist will be the list of all the names of environments used (via the option
name) in the document: two environments must not have the same name. However, it’s possible to
use the option allow-duplicate-names.

320 \clist_new:N \g_@@_names_clist

We want to know whether we are in an environment of nicematrix because we will raise an error if
the user tries to use nested environments.

321 \bool_new:N \l_@@_in_env_bool

The following key corresponds to the key notes/detect_duplicates.
322 \bool_new:N \l_@@_notes_detect_duplicates_bool
323 \bool_set_true:N \l_@@_notes_detect_duplicates_bool

10

324 \bool_new:N \l_@@_initial_open_bool
325 \bool_new:N \l_@@_final_open_bool
326 \bool_new:N \l_@@_Vbrace_bool

If the user uses {NiceTabular*}, the width of the tabular (in the first argument of the environment
{NiceTabular*}) will be stored in the following dimension.

327 \dim_new:N \l_@@_tabular_width_dim

The following dimension will be used for the total width of composite rules (total means that the
spaces on both sides are included).

328 \dim_new:N \l_@@_rule_width_dim

The key color in a command of rule such as \Hline (or the specifier “|” in the preamble of an
environment).

329 \tl_new:N \l_@@_rule_color_tl

The following boolean will be raised when the command \rotate is used.
330 \bool_new:N \g_@@_rotate_bool

The following boolean will be raise then the command \rotate is used with the key c.
331 \bool_new:N \g_@@_rotate_c_bool

In a cell, it will be possible to know whether we are in a cell of a column of type X thanks to that flag
(the X columns of nicematrix are inspired by those of tabularx). You will use that flag for the blocks.

332 \bool_new:N \l_@@_X_bool

\l_@@_V_of_X_bool during the construction of the preamble when a column of type X uses the key
V (whose name is inspired by the columns V of the extension varwidth).

333 \bool_new:N \l_@@_V_of_X_bool

The flag g_@@_V_of_X_bool will be raised when there is at least in the tabular a column of type X
using the key V.

334 \bool_new:N \g_@@_V_of_X_bool

335 \bool_new:N \g_@@_caption_finished_bool

The following boolean will be raised when the key no-cell-nodes is used.
336 \bool_new:N \l_@@_no_cell_nodes_bool

We will write in \g_@@_aux_tl all the instructions that we have to write on the aux file for the
current environment. The contain of that token list will be written on the aux file at the end of the
environment (in an instruction \tl_gset:cn { g_@@_ \int_use:N \g_@@_env_int _ tl }).

337 \tl_new:N \g_@@_aux_tl

During the second run, if information concerning the current environment has been found in the aux
file, the following flag will be raised. It will be used, for instance to disable several constructions
(continuous dotted lines, and colored backgrounds) during the first compilation (in order to speed up
it).

338 \bool_new:N \g_@@_aux_found_bool

In particuler, in that aux file, there will be, for each environment of nicematrix, an affectation for the
the following sequence that will contain information about the size of the array.

339 \seq_new:N \g_@@_size_seq

340 \tl_new:N \g_@@_left_delim_tl
341 \tl_new:N \g_@@_right_delim_tl

11

The token list \g_@@_user_preamble_tl will contain the preamble provided by the the final user of
nicematrix (eg the preamble of an environment {NiceTabular}).

342 \tl_new:N \g_@@_user_preamble_tl

The token list \g_@@_array_preamble_tl will contain the preamble constructed by nicematrix for
the environment {array} (of array).

343 \tl_new:N \g_@@_array_preamble_tl

For \multicolumn.
344 \tl_new:N \g_@@_preamble_tl

The following parameter corresponds to the key columns-type of the environments {NiceMatrix},
{pNiceMatrix}, etc. and also the key matrix / columns-type of \NiceMatrixOptions.

345 \tl_new:N \l_@@_columns_type_tl
346 \str_set:Nn \l_@@_columns_type_tl { c }

The following parameters correspond to the keys down, up and middle of a command such as \Cdots.
Usually, the final user doesn’t use that keys directly because he uses the syntax with the embellish-
ments _, ^ and :.

347 \tl_new:N \l_@@_xdots_down_tl
348 \tl_new:N \l_@@_xdots_up_tl
349 \tl_new:N \l_@@_xdots_middle_tl

We will store in the following sequence information provided by the instructions \rowlistcolors in
the main array (not in the \CodeBefore).

350 \seq_new:N \g_@@_rowlistcolors_seq

351 \cs_new_protected:Npn \@@_test_if_math_mode:
352 {
353 \if_mode_math: \else:
354 \@@_fatal:n { Outside~math~mode }
355 \fi:
356 }

The list of the columns where vertical lines in sub-matrices (vlism) must be drawn. Of course, the
actual value of this sequence will be known after the analysis of the preamble of the array.

357 \seq_new:N \g_@@_cols_vlism_seq

The following colors will be used to memorize the color of the potential “first col” and the potential
“first row”.

358 \colorlet { nicematrix-last-col } { . }
359 \colorlet { nicematrix-last-row } { . }

The following string is the name of the current environment or the current command of nicematrix
(despite its name which contains env).

360 \str_new:N \g_@@_name_env_str

The following string will contain the word command or environment whether we are in a command
of nicematrix or in an environment of nicematrix. The default value is environment.

361 \str_new:N \g_@@_com_or_env_str
362 \str_gset:Nn \g_@@_com_or_env_str { environment }

363 \bool_new:N \l_@@_bold_row_style_bool

364 \clist_new:N \g_@@_cbic_clist

12

The following command will be able to reconstruct the full name of the current command or envi-
ronment (despite its name which contains env). This command must not be protected since it will
be used in error messages and we have to use \str_if_eq:eeTF and not \tl_if_eq:eeTF because
we need to be fully expandable). \str_if_eq:ee(TF) is faster than \str_if_eq:nn(TF).

365 \cs_new:Npn \@@_full_name_env:
366 {
367 \str_if_eq:eeTF { \g_@@_com_or_env_str } { command }
368 { command \space \c_backslash_str \g_@@_name_env_str }
369 { environment \space \{ \g_@@_name_env_str \} }
370 }

371 \tl_new:N \g_@@_cell_after_hook_tl % 2025/03/22

For the key code of the command \SubMatrix (itself in the main \CodeAfter), we will use the
following token list.

372 \tl_new:N \l_@@_code_tl

For the key pgf-node-code. That code will be used when the nodes of the cells (that is to say the
nodes of the form i-j) will be created.

373 \tl_new:N \l_@@_pgf_node_code_tl

The so-called \CodeBefore is split in two parts because we want to control the order of execution of
some instructions.

374 \tl_new:N \g_@@_pre_code_before_tl
375 \tl_new:N \g_nicematrix_code_before_tl

The value of the key code-before will be added to the left of \g_@@_pre_code_before_tl. Idem
for the code between \CodeBefore and \Body.

The so-called \CodeAfter is split in two parts because we want to control the order of execution of
some instructions.

376 \tl_new:N \g_@@_pre_code_after_tl
377 \tl_new:N \g_nicematrix_code_after_tl

The \CodeAfter provided by the final user (with the key code-after or the keyword \CodeAfter)
will be stored in the second token list.

378 \bool_new:N \l_@@_in_code_after_bool

The following parameter will be raised when a block contains an ampersand (&) in its content (=label).
379 \bool_new:N \l_@@_ampersand_bool

The counters \l_@@_old_iRow_int and \l_@@_old_jCol_int will be used to save the values of the
potential LaTeX counters iRow and jCol. These LaTeX counters will be restored at the end of the
environment.

380 \int_new:N \l_@@_old_iRow_int
381 \int_new:N \l_@@_old_jCol_int

The TeX counters \c@iRow and \c@jCol will be created in the beginning of {NiceArrayWithDelims}
(if they don’t exist previously).

The following sequence will contain the names (without backslash) of the commands created by
custom-line by the key command or ccommand (commands used by the final user in order to draw
horizontal rules).

382 \seq_new:N \l_@@_custom_line_commands_seq

The following token list corresponds to the key rules/color available in the environments.
383 \tl_new:N \l_@@_rules_color_tl

13

The sum of the weights of all the X-columns in the preamble.
384 \fp_new:N \g_@@_total_X_weight_fp

If there is at least one X-column in the preamble of the array, the following flag will be raised via the
aux file. The length l_@@_x_columns_dim will be the width of X-columns of weight 1.0 (the width
of a column of weight x will be that dimension multiplied by x). That value is computed after the
construction of the array during the first compilation in order to be used in the following run.

385 \bool_new:N \l_@@_X_columns_aux_bool
386 \dim_new:N \l_@@_X_columns_dim

387 \dim_new:N \l_@@_brace_shift_dim

This boolean will be used only to detect in an expandable way whether we are at the beginning of
the (potential) column zero, in order to raise an error if \Hdotsfor is used in that column.

388 \bool_new:N \g_@@_after_col_zero_bool

A kind of false row will be inserted at the end of the array for the construction of the col nodes
(and also to fix the width of the columns when columns-width is used). When this special row will
be created, we will raise the flag \g_@@_row_of_col_done_bool in order to avoid some actions set
in the redefinition of \everycr when the last \cr of the \halign will occur (after that row of col
nodes).

389 \bool_new:N \g_@@_row_of_col_done_bool

It’s possible to use the command \NotEmpty to specify explicitly that a cell must be considered as
non empty by nicematrix (the TikZ nodes are constructed only in the non empty cells).

390 \bool_new:N \g_@@_not_empty_cell_bool

391 \tl_new:N \l_@@_code_before_tl
392 \bool_new:N \l_@@_code_before_bool

The following token list will contain the code inserted in each cell of the current row (this token list
will be cleared at the beginning of each row).

393 \tl_new:N \g_@@_row_style_tl

The following dimensions will be used when drawing the dotted lines.
394 \dim_new:N \l_@@_x_initial_dim
395 \dim_new:N \l_@@_y_initial_dim
396 \dim_new:N \l_@@_x_final_dim
397 \dim_new:N \l_@@_y_final_dim

398 \dim_new:N \g_@@_dp_row_zero_dim
399 \dim_new:N \g_@@_ht_row_zero_dim
400 \dim_new:N \g_@@_ht_row_one_dim
401 \dim_new:N \g_@@_dp_ante_last_row_dim
402 \dim_new:N \g_@@_ht_last_row_dim
403 \dim_new:N \g_@@_dp_last_row_dim

Some cells will be declared as “empty” (for example a cell with an instruction \Cdots).
404 \bool_new:N \g_@@_empty_cell_bool

The following dimensions will be used internally to compute the width of the potential “first column”
and “last column”.

405 \dim_new:N \g_@@_width_last_col_dim
406 \dim_new:N \g_@@_width_first_col_dim

14

The following sequence will contain the characteristics of the blocks of the array, specified by the
command \Block. Each block is represented by 6 components surrounded by curly braces:
{imin}{jmin}{imax}{jmax}{options}{contents}.
The variable is global because it will be modified in the cells of the array.

407 \seq_new:N \g_@@_blocks_seq

We also manage a sequence of the positions of the blocks. In that sequence, each block is represented
by only five components: {imin}{jmin}{imax}{jmax}{ name}. A block with the key hvlines won’t
appear in that sequence (otherwise, the lines in that block would not be drawn!).

408 \seq_new:N \g_@@_pos_of_blocks_seq

In fact, this sequence will also contain the positions of the cells with a \diagbox. The sequence
\g_@@_pos_of_blocks_seq will be used when we will draw the rules (which respect the blocks).

In the \CodeBefore, the value of \g_@@_pos_of_blocks_seq will be the value read in the aux file
from a previous run. However, in the \CodeBefore, the commands \EmptyColumn and \EmptyRow
will write virtual positions of blocks in the following sequence.

409 \seq_new:N \g_@@_future_pos_of_blocks_seq

They will be added to \g_@@_pos_of_blocks_seq after the computation of the “empty corners”.

We will also manage a sequence for the positions of the dotted lines. These dotted lines are created in
the array by \Cdots, \Vdots, \Ddots, etc. However, their positions, that is to say, their extremities,
will be determined only after the construction of the array. In this sequence, each item contains five
components: {imin}{jmin}{imax}{jmax}{ name}.

410 \seq_new:N \g_@@_pos_of_xdots_seq

The sequence \g_@@_pos_of_xdots_seq will be used when we will draw the rules required by the
key hvlines (these rules won’t be drawn within the virtual blocks corresponding to the dotted lines).

The final user may decide to “stroke” a block (using, for example, the key draw=red!15 when using
the command \Block). In that case, the rules specified, for instance, by hvlines must not be drawn
around the block. That’s why we keep the information of all that stroken blocks in the following
sequence.

411 \seq_new:N \g_@@_pos_of_stroken_blocks_seq

If the user has used the key corners, all the cells which are in an (empty) corner will be stored in
the following list. We use a clist instead of a seq because we will frequently search in that list (and
searching in a clist is faster than searching in a seq).

412 \clist_new:N \l_@@_corners_cells_clist

The list of the names of the potential \SubMatrix in the \CodeAfter of an environment. Unfor-
tunately, that list has to be global (we have to use it inside the group for the options of a given
\SubMatrix).

413 \seq_new:N \g_@@_submatrix_names_seq

The following flag will be raised if the key width is used in an environment {NiceTabular} (not in a
command \NiceMatrixOptions). You use it to raise an error when this key is used while no column
X is used.

414 \bool_new:N \l_@@_width_used_bool

The sequence \g_@@_multicolumn_cells_seq will contain the list of the cells of the array where a
command \multicolumn{n}{...}{...} with n > 1 is issued. In \g_@@_multicolumn_sizes_seq,
the “sizes” (that is to say the values of n) correspondent will be stored. These lists will be used for
the creation of the “medium nodes” (if they are created).

415 \seq_new:N \g_@@_multicolumn_cells_seq
416 \seq_new:N \g_@@_multicolumn_sizes_seq

15

By default, the diagonal lines will be parallelized2. There are two types of diagonals lines: the
\Ddots diagonals and the \Iddots diagonals. We have to count both types in order to know whether
a diagonal is the first of its type in the current {NiceArray} environment.

417 \int_new:N \g_@@_ddots_int
418 \int_new:N \g_@@_iddots_int

The dimensions \g_@@_delta_x_one_dim and \g_@@_delta_y_one_dim will contain the ∆x and ∆y

of the first \Ddots diagonal. We have to store these values in order to draw the others \Ddots
diagonals parallel to the first one. Similarly \g_@@_delta_x_two_dim and \g_@@_delta_y_two_dim
are the ∆x and ∆y of the first \Iddots diagonal.

419 \dim_new:N \g_@@_delta_x_one_dim
420 \dim_new:N \g_@@_delta_y_one_dim
421 \dim_new:N \g_@@_delta_x_two_dim
422 \dim_new:N \g_@@_delta_y_two_dim

The following counters will be used when searching the extremities of a dotted line (we need these
counters because of the potential “open” lines in the \SubMatrix—the \SubMatrix in the code-
before).

423 \int_new:N \l_@@_row_min_int
424 \int_new:N \l_@@_row_max_int
425 \int_new:N \l_@@_col_min_int
426 \int_new:N \l_@@_col_max_int

427 \int_new:N \l_@@_initial_i_int
428 \int_new:N \l_@@_initial_j_int
429 \int_new:N \l_@@_final_i_int
430 \int_new:N \l_@@_final_j_int

The following counters will be used when drawing the rules.
431 \int_new:N \l_@@_start_int
432 \int_set_eq:NN \l_@@_start_int \c_one_int
433 \int_new:N \l_@@_end_int
434 \int_new:N \l_@@_local_start_int
435 \int_new:N \l_@@_local_end_int

The following sequence will be used when the command \SubMatrix is used in the \CodeBefore
(and not in the \CodeAfter). It will contain the position of all the sub-matrices specified in the
\CodeBefore. Each sub-matrix is represented by an “object” of the form {i}{j}{k}{l} where i and
j are the number of row and column of the upper-left cell and k and l the number of row and column
of the lower-right cell.

436 \seq_new:N \g_@@_submatrix_seq

We are able to determine the number of columns specified in the preamble (for the environments with
explicit preamble of course and without the potential exterior columns).

437 \int_new:N \g_@@_static_num_of_col_int

The following parameters correspond to the keys fill, opacity, draw, tikz, borders, and rounded-
corners of the command \Block.

438 \tl_new:N \l_@@_fill_tl
439 \tl_new:N \l_@@_opacity_tl
440 \tl_new:N \l_@@_draw_tl
441 \seq_new:N \l_@@_tikz_seq
442 \clist_new:N \l_@@_borders_clist
443 \dim_new:N \l_@@_rounded_corners_dim

2It’s possible to use the option parallelize-diags to disable this parallelization.

16

The last parameter has no direct link with the [empty] corners of the array (which are computed and
taken into account by nicematrix when the key corners is used).

The following dimension corresponds to the key rounded-corners available in an individual envi-
ronment {NiceTabular}. When that key is used, a clipping is applied in the \CodeBefore of the
environment in order to have rounded corners for the potential colored panels.

444 \dim_new:N \l_@@_tab_rounded_corners_dim

The following token list correspond to the key color of the command \Block and also the key color
of the command \RowStyle.

445 \tl_new:N \l_@@_color_tl

In the key tikz of a command \Block or in the argument of a command \TikzEveryCell, the final
user puts a list of tikz keys. But, you have added another key, named offset (which means that an
offset will be used for the frame of the block or the cell). The following parameter corresponds to
that key.

446 \dim_new:N \l_@@_offset_dim

Here is the dimension for the width of the rule when a block (created by \Block) is stroked or when
the key hvlines is used.

447 \dim_new:N \l_@@_line_width_dim

The parameters of the horizontal position of the label of a block. If the user uses the key c or C, the
value is c. If the user uses the key l or L, the value is l. If the user uses the key r or R, the value is
r. If the user has used a capital letter, the boolean \l_@@_hpos_of_block_cap_bool will be raised
(in the second pass of the analyze of the keys of the command \Block).

448 \str_new:N \l_@@_hpos_block_str
449 \str_set:Nn \l_@@_hpos_block_str { c }
450 \bool_new:N \l_@@_hpos_of_block_cap_bool
451 \bool_new:N \l_@@_p_block_bool

If the final user has used the special color “nocolor”, the following flag will be raised.
452 \bool_new:N \l_@@_nocolor_used_bool

For the vertical position, the possible values are c, t, b, T and B (but \l_@@_vpos_block_str will
remain empty if the user doesn’t use a key for the vertical position).

453 \str_new:N \l_@@_vpos_block_str

Used when the key draw-first is used for \Ddots or \Iddots.
454 \bool_new:N \l_@@_draw_first_bool

The following flag corresponds to the keys vlines and hlines of the command \Block (the key
hvlines is the conjunction of both).

455 \bool_new:N \l_@@_vlines_block_bool
456 \bool_new:N \l_@@_hlines_block_bool

The blocks which use the key - will store their content in a box. These boxes are numbered with the
following counter.

457 \int_new:N \g_@@_block_box_int

458 \dim_new:N \l_@@_submatrix_extra_height_dim
459 \dim_new:N \l_@@_submatrix_left_xshift_dim
460 \dim_new:N \l_@@_submatrix_right_xshift_dim
461 \clist_new:N \l_@@_hlines_clist
462 \clist_new:N \l_@@_vlines_clist
463 \clist_new:N \l_@@_submatrix_hlines_clist
464 \clist_new:N \l_@@_submatrix_vlines_clist

The following key is set when the keys hvlines and hvlines-except-borders are used. It’s used
only to change slightly the clipping path set by the key rounded-corners (for a {tabular}).

465 \bool_new:N \l_@@_hvlines_bool

17

The following flag will be used by (for instance) \@@_vline_ii:. When \l_@@_dotted_bool is true,
a dotted line (with our system) will be drawn.

466 \bool_new:N \l_@@_dotted_bool

The following flag will be set to true during the composition of a caption specified (by the key
caption).

467 \bool_new:N \l_@@_in_caption_bool

Variables for the exterior rows and columns

The keys for the exterior rows and columns are first-row, first-col, last-row and last-col.
However, internally, these keys are not coded in a similar way.

• First row
The integer \l_@@_first_row_int is the number of the first row of the array. The default
value is 1, but, if the option first-row is used, the value will be 0.

468 \int_new:N \l_@@_first_row_int
469 \int_set_eq:NN \l_@@_first_row_int \c_one_int

• First column
The integer \l_@@_first_col_int is the number of the first column of the array. The default
value is 1, but, if the option first-col is used, the value will be 0.

470 \int_new:N \l_@@_first_col_int
471 \int_set_eq:NN \l_@@_first_col_int \c_one_int

• Last row
The counter \l_@@_last_row_int is the number of the potential “last row”, as specified by
the key last-row. A value of −2 means that there is no “last row”. A value of −1 means that
there is a “last row” but we don’t know the number of that row (the key last-row has been
used without value and the actual value has not still been read in the aux file).

472 \int_new:N \l_@@_last_row_int
473 \int_set:Nn \l_@@_last_row_int { -2 }

If, in an environment like {pNiceArray}, the option last-row is used without value, we will
globally raise the following flag. It will be used to know if we have, after the construction of
the array, to write in the aux file the number of the “last row”.3

474 \bool_new:N \l_@@_last_row_without_value_bool

Idem for \l_@@_last_col_without_value_bool

475 \bool_new:N \l_@@_last_col_without_value_bool

3We can’t use \l_@@_last_row_int for this usage because, if nicematrix has read its value from the aux file, the value
of the counter won’t be −1 any longer.

18

• Last column
For the potential “last column”, we use an integer. A value of −2 means that there is no
last column. A value of −1 means that we are in an environment without preamble (e.g.
{bNiceMatrix}) and there is a last column but we don’t know its value because the user has
used the option last-col without value. A value of 0 means that the option last-col has been
used in an environment with preamble (like {pNiceArray}): in this case, the key was necessary
without argument. The command \NiceMatrixOptions also sets \l_@@_last_col_int to 0.

476 \int_new:N \l_@@_last_col_int
477 \int_set:Nn \l_@@_last_col_int { -2 }

However, we have also a boolean. Consider the following code:

\begin{pNiceArray}{cc}[last-col]
1 & 2 \\
3 & 4
\end{pNiceArray}

In such a code, the “last column” specified by the key last-col is not used. We want to be
able to detect such a situation and we create a boolean for that job.

478 \bool_new:N \g_@@_last_col_found_bool

This boolean is set to false at the end of \@@_pre_array_after_CodeBefore:.

In the last column, we will raise the following flag (it will be used by \OnlyMainNiceMatrix).

479 \bool_new:N \l_@@_in_last_col_bool

Some utilities

480 \cs_new_protected:Npn \@@_cut_on_hyphen:w #1-#2 \q_stop
481 {

Here, we use \def instead of \tl_set:Nn for efficiency only.
482 \def \l_tmpa_tl { #1 }
483 \def \l_tmpb_tl { #2 }
484 }

The following takes as argument the name of a clist and which should be a list of intervals of
integers. It expands that list, that is to say, it replaces (by a sort of mapcan or flat_map) the interval
by the explicit list of the integers. The second argument is \c@iRow or \c@jCol.

485 \cs_new_protected:Npn \@@_expand_clist_hvlines:NN #1 #2
486 {
487 \clist_if_in:NnF #1 { all }
488 {
489 \clist_clear:N \l_tmpa_clist
490 \clist_map_inline:Nn #1
491 {
492 \tl_if_head_eq_meaning:nNTF { ##1 } -
493 {

If we have yet the number of columns or the number of columns (because they have been computed
during a previous run and written on the aux file), we can compute the actual position of the rule
with a negative position.

494 \int_if_zero:nF { #2 }
495 {
496 \clist_put_right:Ne \l_tmpa_clist
497 { \int_eval:n { #2 + (##1) + 1 } }
498 }
499 }
500 {

19

We recall than \tl_if_in:nnTF is slightly faster than \str_if_in:nnTF.
501 \tl_if_in:nnTF { ##1 } { - }
502 { \@@_cut_on_hyphen:w ##1 \q_stop }
503 {

Here, we use \def instead of \tl_set:Nn for efficiency only.
504 \def \l_tmpa_tl { ##1 }
505 \def \l_tmpb_tl { ##1 }
506 }
507 \int_step_inline:nnn { \l_tmpa_tl } { \l_tmpb_tl }
508 { \clist_put_right:Nn \l_tmpa_clist { ####1 } }
509 }
510 }
511 \tl_set_eq:NN #1 \l_tmpa_clist
512 }
513 }

The following internal parameters are for:

• \Ldots with both extremities open (and hence also \Hdotsfor in an exterior row;

• when the special character “:” is used in order to put the label of a so-called “dotted line” on
the line, a margin of \c_@@_innersep_middle_dim will be added around the label.

514 \hook_gput_code:nnn { begindocument } { . }
515 {
516 \dim_const:Nn \c_@@_shift_Ldots_last_row_dim { 0.5 em }
517 \dim_const:Nn \c_@@_innersep_middle_dim { 0.17 em }
518 }

5 The command \tabularnote

Of course, it’s possible to use \tabularnote in the main tabular. But there is also the possibility to
use that command in the caption of the tabular. And the caption may be specified by two means:

• The caption may of course be provided by the command \caption in a floating environment.
Of course, a command \tabularnote in that \caption makes sens only if the \caption is
before the {tabular}.

• It’s also possible to use \tabularnote in the value of the key caption of the {NiceTabular}
when the key caption-above is in force. However, in that case, one must remind that the
caption is composed after the composition of the box which contains the main tabular (that’s
mandatory since that caption must be wrapped with a line width equal to the width of the
tabular). However, we want the labels of the successive tabular notes in the logical order.
That’s why:

– The number of tabular notes present in the caption will be written on the aux file and
available in \g_@@_notes_caption_int.4

– During the composition of the main tabular, the tabular notes will be numbered from
\g_@@_notes_caption_int+1 and the notes will be stored in \g_@@_notes_seq. Each
component of \g_@@_notes_seq will be a kind of couple of the form : {label}{text
of the tabularnote}. The first component is the optional argument (between square
brackets) of the command \tabularnote (if the optional argument is not used, the value
will be the special marker expressed by \NoValue).

4More precisely, it’s the number of tabular notes which do not use the optional argument of \tabularnote.

20

– During the composition of the caption (value of \l_@@_caption_tl), the tabular notes will
be numbered from 1 to \g_@@_notes_caption_int and the notes themselves will be stored
in \g_@@_notes_in_caption_seq. The structure of the components of that sequence will
be the same as for \g_@@_notes_seq.

– After the composition of the main tabular and after the composition of the caption, the
sequences \g_@@_notes_in_caption_seq and \g_@@_notes_seq will be merged (in that
order) and the notes will be composed.

The LaTeX counter tabularnote will be used to count the tabular notes during the construction of
the array (this counter won’t be used during the composition of the notes at the end of the array).
You use a LaTeX counter because we will use \refstepcounter in order to have the tabular notes
referenceable.

519 \newcounter { tabularnote }

We want to avoid error messages for duplicate labels when the package hyperref is used. That’s why
we will count all the tabular notes of the whole document with \g_@@_tabularnote_int.

520 \int_new:N \g_@@_tabularnote_int
521 \cs_set:Npn \theHtabularnote { \int_use:N \g_@@_tabularnote_int }

522 \seq_new:N \g_@@_notes_seq
523 \seq_new:N \g_@@_notes_in_caption_seq

Before the actual tabular notes, it’s possible to put a text specified by the key tabularnote of the
environment. The token list \g_@@_tabularnote_tl corresponds to the value of that key.

524 \tl_new:N \g_@@_tabularnote_tl

We prepare the tools for the formatting of the references of the footnotes (in the tabular itself). There
may have several references of footnote at the same point and we have to take into account that point.

525 \seq_new:N \l_@@_notes_labels_seq
526 \newcounter { nicematrix_draft }
527 \cs_new_protected:Npn \@@_notes_format:n #1
528 {
529 \setcounter { nicematrix_draft } { #1 }
530 \@@_notes_style:n { nicematrix_draft }
531 }

The following function can be redefined by using the key notes/style.
532 \cs_new:Npn \@@_notes_style:n #1 { \textit { \alph { #1 } } }

The following function can be redefined by using the key notes/label-in-tabular.
533 \cs_new:Npn \@@_notes_label_in_tabular:n #1 { \textsuperscript { #1 } }

The following function can be redefined by using the key notes/label-in-list.
534 \cs_new:Npn \@@_notes_label_in_list:n #1 { \textsuperscript { #1 } }

We define \thetabularnote because it will be used by LaTeX if the user want to reference a tabular
which has been marked by a \label. The TeX group is for the case where the user has put an
instruction such as \color{red} in \@@_notes_style:n.

535 \cs_set:Npn \thetabularnote { { \@@_notes_style:n { tabularnote } } }

The tabular notes will be available for the final user only when enumitem is loaded. Indeed, the
tabular notes will be composed at the end of the array with a list customized by enumitem (a list
tabularnotes in the general case and a list tabularnotes* if the key para is in force). However,
we can test whether enumitem has been loaded only at the beginning of the document (we want to
allow the user to load enumitem after nicematrix).

536 \hook_gput_code:nnn { begindocument } { . }
537 {
538 \IfPackageLoadedTF { enumitem }
539 {

21

The type of list tabularnotes will be used to format the tabular notes at the end of the array in the
general case and tabularnotes* will be used if the key para is in force.

540 \newlist { tabularnotes } { enumerate } { 1 }
541 \setlist [tabularnotes]
542 {
543 topsep = \c_zero_dim ,
544 noitemsep ,
545 leftmargin = * ,
546 align = left ,
547 labelsep = \c_zero_dim ,
548 label =
549 \@@_notes_label_in_list:n { \@@_notes_style:n { tabularnotesi } } ,
550 }
551 \newlist { tabularnotes* } { enumerate* } { 1 }
552 \setlist [tabularnotes*]
553 {
554 afterlabel = \nobreak ,
555 itemjoin = \quad ,
556 label =
557 \@@_notes_label_in_list:n { \@@_notes_style:n { tabularnotes*i } }
558 }

One must remind that we have allowed a \tabular in the caption and that caption may also be found
in the list of tables (\listoftables). We want the command \tabularnote be no-op during the
composition of that list. That’s why we program \tabularnote to be no-op excepted in a floating
environment or in an environment of nicematrix.

559 \NewDocumentCommand \tabularnote { o m }
560 {
561 \bool_lazy_or:nnT { \cs_if_exist_p:N \@captype } { \l_@@_in_env_bool }
562 {
563 \bool_lazy_and:nnTF { ! \l_@@_tabular_bool } { \l_@@_in_env_bool }
564 { \@@_error:n { tabularnote~forbidden } }
565 {
566 \bool_if:NTF \l_@@_in_caption_bool
567 \@@_tabularnote_caption:nn
568 \@@_tabularnote:nn
569 { #1 } { #2 }
570 }
571 }
572 }
573 }
574 {
575 \NewDocumentCommand \tabularnote { o m }
576 { \@@_err_enumitem_not_loaded: }
577 }
578 }

579 \cs_new_protected:Npn \@@_err_enumitem_not_loaded:
580 {
581 \@@_error_or_warning:n { enumitem~not~loaded }
582 \cs_gset:Npn \@@_err_enumitem_not_loaded: { }
583 }

584 \cs_new_protected:Npn \@@_test_first_novalue:nnn #1 #2 #3
585 { \tl_if_novalue:nT { #1 } { #3 } }

For the version in normal conditions, that is to say not in the caption. #1 is the optional argument of
\tabularnote (maybe equal to the special marker expressed by \NoValue) and #2 is the mandatory
argument of \tabularnote.

586 \cs_new_protected:Npn \@@_tabularnote:nn #1 #2
587 {

22

You have to see whether the argument of \tabularnote has yet been used as argument of another
\tabularnote in the same tabular. In that case, there will be only one note (for both commands
\tabularnote) at the end of the tabular. We search the argument of our command \tabularnote
in \g_@@_notes_seq. The position in the sequence will be stored in \l_tmpa_int (0 if the text is
not in the sequence yet).

588 \int_zero:N \l_tmpa_int
589 \bool_if:NT \l_@@_notes_detect_duplicates_bool
590 {

We recall that each component of \g_@@_notes_seq is a kind of couple of the form

{label}{text of the tabularnote}.

If the user have used \tabularnote without the optional argument, the label will be the special
marker expressed by \NoValue.
When we will go through the sequence \g_@@_notes_seq, we will count in \l_tmpb_int the notes
without explicit label in order to have the “current” value of the counter \c@tabularnote.

591 \int_zero:N \l_tmpb_int
592 \seq_map_indexed_inline:Nn \g_@@_notes_seq
593 {
594 \@@_test_first_novalue:nnn ##2 { \int_incr:N \l_tmpb_int }
595 \tl_if_eq:nnT { { #1 } { #2 } } { ##2 }
596 {
597 \tl_if_novalue:nTF { #1 }
598 { \int_set_eq:NN \l_tmpa_int \l_tmpb_int }
599 { \int_set:Nn \l_tmpa_int { ##1 } }
600 \seq_map_break:
601 }
602 }
603 \int_if_zero:nF { \l_tmpa_int }
604 { \int_add:Nn \l_tmpa_int { \g_@@_notes_caption_int } }
605 }
606 \int_if_zero:nT { \l_tmpa_int }
607 {
608 \seq_gput_right:Nn \g_@@_notes_seq { { #1 } { #2 } }
609 \tl_if_novalue:nT { #1 } { \int_gincr:N \c@tabularnote }
610 }
611 \seq_put_right:Ne \l_@@_notes_labels_seq
612 {
613 \tl_if_novalue:nTF { #1 }
614 {
615 \@@_notes_format:n
616 {
617 \int_eval:n
618 {
619 \int_if_zero:nTF { \l_tmpa_int }
620 { \c@tabularnote }
621 { \l_tmpa_int }
622 }
623 }
624 }
625 { #1 }
626 }
627 \peek_meaning:NF \tabularnote
628 {

If the following token is not a \tabularnote, we have finished the sequence of successive commands
\tabularnote and we have to format the labels of these tabular notes (in the array). We compose
those labels in a box \l_tmpa_box because we will do a special construction in order to have this box
in an overlapping position if we are at the end of a cell when \l_@@_hpos_cell_tl is equal to c or r.

629 \hbox_set:Nn \l_tmpa_box
630 {

23

We remind that it is the command \@@_notes_label_in_tabular:n that will put the labels in a
\textsuperscript.

631 \@@_notes_label_in_tabular:n
632 { \seq_use:Nn \l_@@_notes_labels_seq { , } }
633 }

We want the (last) tabular note referenceable (with the standard command \label).
634 \int_gdecr:N \c@tabularnote
635 \int_set_eq:NN \l_tmpa_int \c@tabularnote

The following line is only to avoid error messages for multipy defined labels when the package hyperref
is used.

636 \int_gincr:N \g_@@_tabularnote_int
637 \refstepcounter { tabularnote }
638 \int_compare:nNnT { \l_tmpa_int } = { \c@tabularnote }
639 { \int_gincr:N \c@tabularnote }
640 \seq_clear:N \l_@@_notes_labels_seq
641 \bool_lazy_or:nnTF
642 { \str_if_eq_p:ee \l_@@_hpos_cell_tl { c } }
643 { \str_if_eq_p:ee \l_@@_hpos_cell_tl { r } }
644 {
645 \hbox_overlap_right:n { \box_use:N \l_tmpa_box }

If the command \tabularnote is used exactly at the end of the cell, the \unskip (inserted by array?)
will delete the skip we insert now and the label of the footnote will be composed in an overlapping
position (by design).

646 \skip_horizontal:n { \box_wd:N \l_tmpa_box }
647 }
648 { \box_use:N \l_tmpa_box }
649 }
650 }

Now the version when the command is used in the key caption. The main difficulty is that the
argument of the command \caption is composed several times. In order to know the number of
commands \tabularnote in the caption, we will consider that there should not be the same tabular
note twice in the caption (in the main tabular, it’s possible). Once we have found a tabular note
which has yet been encountered, we consider that you are in a new composition of the argument of
\caption.

651 \cs_new_protected:Npn \@@_tabularnote_caption:nn #1 #2
652 {
653 \bool_if:NTF \g_@@_caption_finished_bool
654 {
655 \int_compare:nNnT { \c@tabularnote } = { \g_@@_notes_caption_int }
656 { \int_gzero:N \c@tabularnote }

Now, we try to detect duplicate notes in the caption. Be careful! We must put \tl_if_in:NnF and
not \tl_if_in:NnT!

657 \seq_if_in:NnF \g_@@_notes_in_caption_seq { { #1 } { #2 } }
658 { \@@_error:n { Identical~notes~in~caption } }
659 }
660 {

In the following code, we are in the first composition of the caption or at the first \tabularnote of
the second composition.

661 \seq_if_in:NnTF \g_@@_notes_in_caption_seq { { #1 } { #2 } }
662 {

Now, we know that are in the second composition of the caption since we are reading a tabular note
which has yet been read. Now, the value of \g_@@_notes_caption_int won’t change anymore: it’s
the number of uses without optional argument of the command \tabularnote in the caption.

663 \bool_gset_true:N \g_@@_caption_finished_bool
664 \int_gset_eq:NN \g_@@_notes_caption_int \c@tabularnote
665 \int_gzero:N \c@tabularnote
666 }

24

667 { \seq_gput_right:Nn \g_@@_notes_in_caption_seq { { #1 } { #2 } } }
668 }

Now, we will compose the label of the footnote (in the caption). Even if we are not in the first
composition, we have to compose that label!

669 \tl_if_novalue:nT { #1 } { \int_gincr:N \c@tabularnote }
670 \seq_put_right:Ne \l_@@_notes_labels_seq
671 {
672 \tl_if_novalue:nTF { #1 }
673 { \@@_notes_format:n { \int_use:N \c@tabularnote } }
674 { #1 }
675 }
676 \peek_meaning:NF \tabularnote
677 {
678 \@@_notes_label_in_tabular:n { \seq_use:Nn \l_@@_notes_labels_seq { , } }
679 \seq_clear:N \l_@@_notes_labels_seq
680 }
681 }

682 \cs_new_protected:Npn \@@_count_novalue_first:nn #1 #2
683 { \tl_if_novalue:nT { #1 } { \int_gincr:N \g_@@_notes_caption_int } }

6 Command for creation of rectangle nodes

The following command should be used in a {pgfpicture}. It creates a rectangle (empty but with
a name).
#1 is the name of the node which will be created; #2 and #3 are the coordinates of one of the corner
of the rectangle; #4 and #5 are the coordinates of the opposite corner.

684 \cs_new_protected:Npn \@@_pgf_rect_node:nnnnn #1 #2 #3 #4 #5
685 {
686 \begin { pgfscope }
687 \pgfset
688 {
689 inner~sep = \c_zero_dim ,
690 minimum~size = \c_zero_dim
691 }
692 \pgftransformshift { \pgfpoint { 0.5 * (#2 + #4) } { 0.5 * (#3 + #5) } }
693 \pgfnode
694 { rectangle }
695 { center }
696 {
697 \vbox_to_ht:nn
698 { \dim_abs:n { #5 - #3 } }
699 {
700 \vfill
701 \hbox_to_wd:nn { \dim_abs:n { #4 - #2 } } { }
702 }
703 }
704 { #1 }
705 { }
706 \end { pgfscope }
707 }

The command \@@_pgf_rect_node:nnn is a variant of \@@_pgf_rect_node:nnnnn: it takes two pgf
points as arguments instead of the four dimensions which are the coordinates.

708 \cs_new_protected:Npn \@@_pgf_rect_node:nnn #1 #2 #3
709 {
710 \begin { pgfscope }
711 \pgfset
712 {
713 inner~sep = \c_zero_dim ,

25

714 minimum~size = \c_zero_dim
715 }
716 \pgftransformshift { \pgfpointscale { 0.5 } { \pgfpointadd { #2 } { #3 } } }
717 \pgfpointdiff { #3 } { #2 }
718 \pgfgetlastxy \l_tmpa_dim \l_tmpb_dim
719 \pgfnode
720 { rectangle }
721 { center }
722 {
723 \vbox_to_ht:nn
724 { \dim_abs:n \l_tmpb_dim }
725 { \vfill \hbox_to_wd:nn { \dim_abs:n \l_tmpa_dim } { } }
726 }
727 { #1 }
728 { }
729 \end { pgfscope }
730 }

7 The options

The following parameter corresponds to the keys caption, short-caption and label of the envi-
ronment {NiceTabular}.

731 \tl_new:N \l_@@_caption_tl
732 \tl_new:N \l_@@_short_caption_tl
733 \tl_new:N \l_@@_label_tl

The following parameter corresponds to the key caption-above of \NiceMatrixOptions. When this
paremeter is true, the captions of the environments {NiceTabular}, specified with the key caption
are put above the tabular (and below elsewhere).

734 \bool_new:N \l_@@_caption_above_bool

By default, the behaviour of \cline is changed in the environments of nicematrix: a \cline spreads
the array by an amount equal to \arrayrulewidth. It’s possible to disable this feature with the key
\l_@@_standard_line_bool.

735 \bool_new:N \l_@@_standard_cline_bool

The following dimensions correspond to the options cell-space-top-limit and co (these parameters
are inspired by the package cellspace).

736 \dim_new:N \l_@@_cell_space_top_limit_dim
737 \dim_new:N \l_@@_cell_space_bottom_limit_dim

The following parameter corresponds to the key xdots/horizontal_labels.
738 \bool_new:N \l_@@_xdots_h_labels_bool

The following dimension is the distance between two dots for the dotted lines (when line-style is
equal to standard, which is the initial value). The initial value is 0.45 em but it will be changed if
the option small is used.

739 \dim_new:N \l_@@_xdots_inter_dim
740 \hook_gput_code:nnn { begindocument } { . }
741 { \dim_set:Nn \l_@@_xdots_inter_dim { 0.45 em } }

26

The unit is em and that’s why we fix the dimension after the preamble.

The following dimension is the distance between a node (in fact an anchor of that node) and a dotted
line (for real dotted lines, the actual distance may, of course, be a bit larger, depending of the exact
position of the dots).

742 \dim_new:N \l_@@_xdots_shorten_start_dim
743 \dim_new:N \l_@@_xdots_shorten_end_dim
744 \hook_gput_code:nnn { begindocument } { . }
745 {
746 \dim_set:Nn \l_@@_xdots_shorten_start_dim { 0.3 em }
747 \dim_set:Nn \l_@@_xdots_shorten_end_dim { 0.3 em }
748 }

The unit is em and that’s why we fix the dimension after the preamble.

The following dimension is the radius of the dots for the dotted lines (when line-style is equal to
standard, which is the initial value). The initial value is 0.53 pt but it will be changed if the option
small is used.

749 \dim_new:N \l_@@_xdots_radius_dim
750 \hook_gput_code:nnn { begindocument } { . }
751 { \dim_set:Nn \l_@@_xdots_radius_dim { 0.53 pt } }

The unit is em and that’s why we fix the dimension after the preamble.

The token list \l_@@_xdots_line_style_tl corresponds to the option tikz of the commands \Cdots,
\Ldots, etc. and of the options line-style for the environments and \NiceMatrixOptions. The
constant \c_@@_standard_tl will be used in some tests.

752 \tl_new:N \l_@@_xdots_line_style_tl
753 \tl_const:Nn \c_@@_standard_tl { standard }
754 \tl_set_eq:NN \l_@@_xdots_line_style_tl \c_@@_standard_tl

The boolean \l_@@_light_syntax_bool corresponds to the option light-syntax and the boolean
\l_@@_light_syntax_expanded_bool correspond to the the option light-syntax-expanded.

755 \bool_new:N \l_@@_light_syntax_bool
756 \bool_new:N \l_@@_light_syntax_expanded_bool

The string \l_@@_baseline_tl may contain one of the three values t, c or b as in the option of the
environment {array}. However, it may also contain an integer (which represents the number of the
row to which align the array).

757 \tl_new:N \l_@@_baseline_tl
758 \tl_set:Nn \l_@@_baseline_tl { c }

The following parameter corresponds to the key ampersand-in-blocks
759 \bool_new:N \l_@@_amp_in_blocks_bool

The flag \l_@@_exterior_arraycolsep_bool corresponds to the option exterior-arraycolsep.
If this option is set, a space equal to \arraycolsep will be put on both sides of an environment
{NiceArray} (as it is done in {array} of array).

760 \bool_new:N \l_@@_exterior_arraycolsep_bool

The flag \l_@@_parallelize_diags_bool controls whether the diagonals are parallelized. The initial
value is true.

761 \bool_new:N \l_@@_parallelize_diags_bool
762 \bool_set_true:N \l_@@_parallelize_diags_bool

The following parameter correspond to the key corners. The elements of that clist must be within
NW, SW, NE and SE.

763 \clist_new:N \l_@@_corners_clist

27

The flag \l_@@_nullify_dots_bool corresponds to the option nullify-dots. When the flag is
down, the instructions like \vdots are inserted within a \hphantom (and so the constructed matrix
has exactly the same size as a matrix constructed with the classical {matrix} and \ldots, \vdots,
etc.).

764 \bool_new:N \l_@@_nullify_dots_bool

When the key respect-arraystretch is used, the following command will be nullified.
765 \cs_new_protected:Npn \@@_reset_arraystretch: { \def \arraystretch { 1 } }

The following flag will be used when the current options specify that all the columns of the array
must have the same width equal to the largest width of a cell of the array (except the cells of the
potential exterior columns).

766 \bool_new:N \l_@@_auto_columns_width_bool

The following boolean corresponds to the key create-cell-nodes of the keyword \CodeBefore.
When that key is used the “cell nodes” will be created before the \CodeBefore but, of course, they
are always available in the main tabular and after!

767 \bool_new:N \g_@@_create_cell_nodes_bool

The string \l_@@_name_str will contain the optional name of the environment: this name can be
used to access to the TikZ nodes created in the array from outside the environment.

768 \str_new:N \l_@@_name_str

The boolean \l_@@_medium_nodes_bool will be used to indicate whether the “medium nodes” are
created in the array. Idem for the “large nodes”.

769 \bool_new:N \l_@@_medium_nodes_bool
770 \bool_new:N \l_@@_large_nodes_bool

The boolean \l_@@_except_borders_bool will be raised when the key hvlines-except-borders
will be used (but that key has also other effects).

771 \bool_new:N \l_@@_except_borders_bool

The dimension \l_@@_left_margin_dim correspond to the option left-margin. Idem for the right
margin. These parameters are involved in the creation of the “medium nodes” but also in the
placement of the delimiters and the drawing of the horizontal dotted lines (\hdottedline).

772 \dim_new:N \l_@@_left_margin_dim
773 \dim_new:N \l_@@_right_margin_dim

The dimensions \l_@@_extra_left_margin_dim and \l_@@_extra_right_margin_dim correspond
to the options extra-left-margin and extra-right-margin.

774 \dim_new:N \l_@@_extra_left_margin_dim
775 \dim_new:N \l_@@_extra_right_margin_dim

The token list \l_@@_end_of_row_tl corresponds to the option end-of-row. It specifies the symbol
used to mark the ends of rows when the light syntax is used.

776 \tl_new:N \l_@@_end_of_row_tl
777 \tl_set:Nn \l_@@_end_of_row_tl { ; }

The following parameter is for the color the dotted lines drawn by \Cdots, \Ldots, \Vdots, \Ddots,
\Iddots and \Hdotsfor but not the dotted lines drawn by \hdottedline and “:”.

778 \tl_new:N \l_@@_xdots_color_tl

The following token list corresponds to the key delimiters/color.
779 \tl_new:N \l_@@_delimiters_color_tl

28

Sometimes, we want to have several arrays vertically juxtaposed in order to have an alignment of the
columns of these arrays. To acheive this goal, one may wish to use the same width for all the columns
(for example with the option columns-width or the option auto-columns-width of the environment
{NiceMatrixBlock}). However, even if we use the same type of delimiters, the width of the delimiters
may be different from an array to another because the width of the delimiter is fonction of its size.
That’s why we create an option called delimiters/max-width which will give to the delimiters the
width of a delimiter (of the same type) of big size. The following boolean corresponds to this option.

780 \bool_new:N \l_@@_delimiters_max_width_bool

781 \keys_define:nn { nicematrix / xdots }
782 {
783 nullify .bool_set:N = \l_@@_nullify_dots_bool ,
784 nullify .default:n = true ,
785 brace-shift .dim_set:N = \l_@@_brace_shift_dim ,
786 brace-shift .value_required:n = true ,
787 brace-shift+ .code:n =
788 \dim_add:Nn \l_@@_brace_shift_dim { #1 } ,
789 brace-shift+ .value_required:n = true ,
790 brace-shift~+ .meta:n = { brace-shift+ = #1 } ,
791 Vbrace .bool_set:N = \l_@@_Vbrace_bool ,
792 shorten-start .code:n =
793 \hook_gput_code:nnn { begindocument } { . }
794 { \dim_set:Nn \l_@@_xdots_shorten_start_dim { #1 } } ,
795 shorten-start .value_required:n = true ,
796 shorten-start+ .code:n =
797 \hook_gput_code:nnn { begindocument } { . }
798 { \dim_add:Nn \l_@@_xdots_shorten_start_dim { #1 } } ,
799 shorten-start~+ .meta:n = { shorten-start+ = #1 } ,
800 shorten-start+ .value_required:n = true ,
801 shorten-end .code:n =
802 \hook_gput_code:nnn { begindocument } { . }
803 { \dim_set:Nn \l_@@_xdots_shorten_end_dim { #1 } } ,
804 shorten-end .value_required:n = true ,
805 shorten-end+ .code:n =
806 \hook_gput_code:nnn { begindocument } { . }
807 { \dim_add:Nn \l_@@_xdots_shorten_end_dim { #1 } } ,
808 shorten-end+ .value_required:n = true ,
809 shorten-end~+ .meta:n = { shorten-end+ = #1 } ,
810 shorten .code:n =
811 \hook_gput_code:nnn { begindocument } { . }
812 {
813 \dim_set:Nn \l_@@_xdots_shorten_start_dim { #1 }
814 \dim_set:Nn \l_@@_xdots_shorten_end_dim { #1 }
815 } ,
816 shorten .value_required:n = true ,
817 shorten+ .code:n =
818 \hook_gput_code:nnn { begindocument } { . }
819 {
820 \dim_add:Nn \l_@@_xdots_shorten_start_dim { #1 }
821 \dim_add:Nn \l_@@_xdots_shorten_end_dim { #1 }
822 } ,
823 shorten~+ .meta:n = { shorten+ = #1 } ,
824 horizontal-labels .bool_set:N = \l_@@_xdots_h_labels_bool ,
825 horizontal-labels .default:n = true ,
826 horizontal-label .bool_set:N = \l_@@_xdots_h_labels_bool ,
827 horizontal-label .default:n = true ,
828 line-style .code:n =
829 {
830 \bool_lazy_or:nnTF
831 { \cs_if_exist_p:N \tikzpicture }
832 { \str_if_eq_p:nn { #1 } { standard } }
833 { \tl_set:Nn \l_@@_xdots_line_style_tl { #1 } }

29

834 { \@@_error:n { bad~option~for~line-style } }
835 } ,
836 line-style .value_required:n = true ,
837 color .tl_set:N = \l_@@_xdots_color_tl ,
838 color .value_required:n = true ,
839 radius .code:n =
840 \hook_gput_code:nnn { begindocument } { . }
841 { \dim_set:Nn \l_@@_xdots_radius_dim { #1 } } ,
842 radius .value_required:n = true ,
843 inter .code:n =
844 \hook_gput_code:nnn { begindocument } { . }
845 { \dim_set:Nn \l_@@_xdots_inter_dim { #1 } } ,
846 radius .value_required:n = true ,

The options down, up and middle are not documented for the final user because he should use the
syntax with ^, _ and :. We use \tl_put_right:Nn and not \tl_set:Nn (or .tl_set:N) because we
don’t want a direct use of up=... erased by an absent ^{...}.

847 down .code:n = \tl_put_right:Nn \l_@@_xdots_down_tl { #1 } ,
848 up .code:n = \tl_put_right:Nn \l_@@_xdots_up_tl { #1 } ,
849 middle .code:n = \tl_put_right:Nn \l_@@_xdots_middle_tl { #1 } ,

The key draw-first, which is meant to be used only with \Ddots and \Iddots, will be caught when
\Ddots or \Iddots is used (during the construction of the array and not when we draw the dotted
lines).

850 draw-first .code:n = \prg_do_nothing: ,
851 unknown .code:n =
852 \@@_unknown_key:nn { nicematrix / xdots } { Unknown~key~for~xdots }
853 }

854 \keys_define:nn { nicematrix / rules }
855 {
856 color .tl_set:N = \l_@@_rules_color_tl ,
857 color .value_required:n = true ,
858 width .dim_set:N = \arrayrulewidth ,
859 width .value_required:n = true ,
860 unknown .code:n = \@@_error:n { Unknown~key~for~rules }
861 }

First, we define a set of keys “nicematrix / Global” which will be used (with the mechanism of
.inherit:n) by other sets of keys.

862 \keys_define:nn { nicematrix / Global }
863 {
864 caption-above .code:n = \@@_error_or_warning:n { caption-above~in~env } ,
865 show-cell-names .code = \@@_error_or_warning:n { show-cell-names } ,
866 color-inside .code:n = \@@_fatal:n { key~color-inside } ,
867 colortbl-like .code:n = \@@_fatal:n { key~color-inside } ,
868 ampersand-in-blocks .bool_set:N = \l_@@_amp_in_blocks_bool ,
869 ampersand-in-blocks .default:n = true ,
870 &-in-blocks .meta:n = ampersand-in-blocks ,
871 no-cell-nodes .code:n =
872 \bool_set_true:N \l_@@_no_cell_nodes_bool
873 \cs_set_protected:Npn \@@_node_cell:
874 { \set@color \box_use_drop:N \l_@@_cell_box } ,
875 no-cell-nodes .value_forbidden:n = true ,
876 rounded-corners .dim_set:N = \l_@@_tab_rounded_corners_dim ,
877 rounded-corners .default:n = 4 pt ,
878 custom-line .code:n = \@@_custom_line:n { #1 } ,
879 rules .code:n = \keys_set:nn { nicematrix / rules } { #1 } ,
880 rules .value_required:n = true ,
881 standard-cline .bool_set:N = \l_@@_standard_cline_bool ,
882 standard-cline .default:n = true ,
883 cell-space-top-limit .dim_set:N = \l_@@_cell_space_top_limit_dim ,

30

884 cell-space-top-limit .value_required:n = true ,
885 cell-space-top-limit+ .code:n =
886 \dim_add:Nn \l_@@_cell_space_top_limit_dim { #1 } ,
887 cell-space-top-limit+ .value_required:n = true ,
888 cell-space-top-limit~+ .meta:n = { cell-space-top-limit+ = #1 } ,
889 cell-space-bottom-limit .dim_set:N = \l_@@_cell_space_bottom_limit_dim ,
890 cell-space-bottom-limit .value_required:n = true ,
891 cell-space-bottom-limit+ .code:n =
892 \dim_add:Nn \l_@@_cell_space_bottom_limit_dim { #1 } ,
893 cell-space-bottom-limit+ .value_required:n = true ,
894 cell-space-bottom-limit~+ .meta:n = { cell-space-bottom-limit+ = #1 } ,
895 cell-space-limits .meta:n =
896 {
897 cell-space-top-limit = #1 ,
898 cell-space-bottom-limit = #1 ,
899 } ,
900 cell-space-limits .value_required:n = true ,
901 cell-space-limits+ .meta:n =
902 {
903 cell-space-top-limit += #1 ,
904 cell-space-bottom-limit += #1 ,
905 } ,
906 cell-space-limits+ .value_required:n = true ,
907 cell-space-limits~+ .meta:n = { cell-space-limits+ = #1 } ,
908 xdots .code:n = \keys_set:nn { nicematrix / xdots } { #1 } ,
909 light-syntax .code:n =
910 \bool_set_true:N \l_@@_light_syntax_bool
911 \bool_set_false:N \l_@@_light_syntax_expanded_bool ,
912 light-syntax .value_forbidden:n = true ,
913 light-syntax-expanded .code:n =
914 \bool_set_true:N \l_@@_light_syntax_bool
915 \bool_set_true:N \l_@@_light_syntax_expanded_bool ,
916 light-syntax-expanded .value_forbidden:n = true ,
917 end-of-row .tl_set:N = \l_@@_end_of_row_tl ,
918 end-of-row .value_required:n = true ,
919

920 first-col .code:n = \int_zero:N \l_@@_first_col_int ,
921 first-row .code:n = \int_zero:N \l_@@_first_row_int ,
922 last-row .int_set:N = \l_@@_last_row_int ,
923 last-row .default:n = -1 ,
924

925 code-for-first-col .tl_set:N = \l_@@_code_for_first_col_tl ,
926 code-for-first-col .value_required:n = true ,
927 code-for-first-col+ .code:n =
928 { \tl_put_right:Nn \l_@@_code_for_first_col_tl { #1 } } ,
929 code-for-first-col+ .value_required:n = true ,
930 code-for-first-col~+ .meta:n = { code-for-first-col+ = #1 } ,
931

932 code-for-last-col .tl_set:N = \l_@@_code_for_last_col_tl ,
933 code-for-last-col .value_required:n = true ,
934 code-for-last-col+ .code:n =
935 { \tl_put_right:Nn \l_@@_code_for_last_col_tl { #1 } } ,
936 code-for-last-col+ .value_required:n = true ,
937 code-for-last-col~+ .meta:n = { code-for-last-col+ = #1 } ,
938

939 code-for-first-row .tl_set:N = \l_@@_code_for_first_row_tl ,
940 code-for-first-row .value_required:n = true ,
941 code-for-first-row+ .code:n =
942 { \tl_put_right:Nn \l_@@_code_for_first_row_tl { #1 } } ,
943 code-for-first-row+ .value_required:n = true ,
944 code-for-first-row~+ .meta:n = { code-for-first-row+ = #1 } ,
945

946 code-for-last-row .tl_set:N = \l_@@_code_for_last_row_tl ,

31

947 code-for-last-row .value_required:n = true ,
948 code-for-last-row+ .code:n =
949 { \tl_put_right:Nn \l_@@_code_for_first_col_tl { #1 } } ,
950 code-for-last-row+ .value_required:n = true ,
951 code-for-last-row~+ .meta:n = { code-for-last-row+ = #1 } ,
952

953 hlines .clist_set:N = \l_@@_hlines_clist ,
954 vlines .clist_set:N = \l_@@_vlines_clist ,
955 hlines .default:n = all ,
956 vlines .default:n = all ,
957 vlines-in-sub-matrix .code:n =
958 {
959 \tl_if_single_token:nTF { #1 }
960 {
961 \tl_if_in:NnTF \c_@@_forbidden_letters_tl { #1 }
962 { \@@_error:nn { Forbidden~letter } { #1 } }

We write directly a command for the automata which reads the preamble provided by the final user.
963 { \cs_set_eq:cN { @@ _ #1 : } \@@_make_preamble_vlism:n }
964 }
965 { \@@_error:n { One~letter~allowed } }
966 } ,
967 vlines-in-sub-matrix .value_required:n = true ,
968 hvlines .code:n =
969 {
970 \bool_set_true:N \l_@@_hvlines_bool
971 \tl_set_eq:NN \l_@@_vlines_clist \c_@@_all_tl
972 \tl_set_eq:NN \l_@@_hlines_clist \c_@@_all_tl
973 } ,
974 hvlines .value_forbidden:n = true ,
975 hvlines-except-borders .code:n =
976 {
977 \tl_set_eq:NN \l_@@_vlines_clist \c_@@_all_tl
978 \tl_set_eq:NN \l_@@_hlines_clist \c_@@_all_tl
979 \bool_set_true:N \l_@@_hvlines_bool
980 \bool_set_true:N \l_@@_except_borders_bool
981 } ,
982 hvlines-except-borders .value_forbidden:n = true ,
983 parallelize-diags .bool_set:N = \l_@@_parallelize_diags_bool ,

With the option renew-dots, the command \cdots, \ldots, \vdots, \ddots, etc. are redefined and
behave like the commands \Cdots, \Ldots, \Vdots, \Ddots, etc.

984 renew-dots .bool_set:N = \l_@@_renew_dots_bool ,
985 renew-dots .value_forbidden:n = true ,
986 nullify-dots .bool_set:N = \l_@@_nullify_dots_bool ,
987 create-medium-nodes .bool_set:N = \l_@@_medium_nodes_bool ,
988 create-large-nodes .bool_set:N = \l_@@_large_nodes_bool ,
989 create-extra-nodes .meta:n =
990 { create-medium-nodes , create-large-nodes } ,
991 left-margin .dim_set:N = \l_@@_left_margin_dim ,
992 left-margin .default:n = \arraycolsep ,
993 right-margin .dim_set:N = \l_@@_right_margin_dim ,
994 right-margin .default:n = \arraycolsep ,
995 margin .meta:n = { left-margin = #1 , right-margin = #1 } ,
996 margin .default:n = \arraycolsep ,
997 extra-left-margin .dim_set:N = \l_@@_extra_left_margin_dim ,
998 extra-right-margin .dim_set:N = \l_@@_extra_right_margin_dim ,
999 extra-margin .meta:n =

1000 { extra-left-margin = #1 , extra-right-margin = #1 } ,
1001 extra-margin .value_required:n = true ,
1002 respect-arraystretch .code:n =
1003 \cs_set_eq:NN \@@_reset_arraystretch: \prg_do_nothing: ,
1004 respect-arraystretch .value_forbidden:n = true ,

32

1005 pgf-node-code .tl_set:N = \l_@@_pgf_node_code_tl ,
1006 pgf-node-code .value_required:n = true
1007 }

We define a set of keys used by the environments of nicematrix (but not by the command
\NiceMatrixOptions).

1008 \keys_define:nn { nicematrix / environments }
1009 {
1010 create-blocks-in-col .code:n = \@@_create_blocks_in_col:n { #1 } ,
1011 create-blocks-in-col .value_required:n = true ,
1012 corners .clist_set:N = \l_@@_corners_clist ,
1013 corners .default:n = { NW , SW , NE , SE } ,
1014 code-before .code:n =
1015 {
1016 \tl_if_empty:nF { #1 }
1017 {
1018 \tl_gput_left:Nn \g_@@_pre_code_before_tl { #1 }
1019 \bool_set_true:N \l_@@_code_before_bool
1020 }
1021 } ,
1022 code-before .value_required:n = true ,

The options c, t and b of the environment {NiceArray} have the same meaning as the option of the
classical environment {array}.

1023 c .code:n = \tl_set:Nn \l_@@_baseline_tl c ,
1024 t .code:n = \tl_set:Nn \l_@@_baseline_tl t ,
1025 b .code:n = \tl_set:Nn \l_@@_baseline_tl b ,
1026 baseline .tl_set:N = \l_@@_baseline_tl ,
1027 baseline .value_required:n = true ,
1028 columns-width .code:n =

We use \str_if_eq:nnTF which is slightly faster than \tl_if_eq:nnTF (and is expandable).
\str_if_eq:ee(TF) is faster than \str_if_eq:nn(TF).

1029 \str_if_eq:eeTF { #1 } { auto }
1030 { \bool_set_true:N \l_@@_auto_columns_width_bool }
1031 { \dim_set:Nn \l_@@_columns_width_dim { #1 } } ,
1032 columns-width .value_required:n = true ,
1033 name .code:n =

We test whether we are in the measuring phase of an environment of amsmath (always loaded by
nicematrix) because we want to avoid a fallacious message of duplicate name in this case.

1034 \legacy_if:nF { measuring@ }
1035 {
1036 \str_set:Ne \l_@@_name_str { #1 }
1037 \clist_if_in:NoTF \g_@@_names_clist \l_@@_name_str
1038 { \@@_err_duplicate_names:n { #1 } }
1039 { \clist_gpush:No \g_@@_names_clist \l_@@_name_str }
1040 } ,
1041 name .value_required:n = true ,
1042 code-after .tl_gset:N = \g_nicematrix_code_after_tl ,
1043 code-after .value_required:n = true ,
1044 }

1045 \cs_set:Npn \@@_err_duplicate_names:n #1
1046 { \@@_error:nn { Duplicate~name } { #1 } }

1047 \keys_define:nn { nicematrix / notes }
1048 {
1049 para .bool_set:N = \l_@@_notes_para_bool ,
1050 para .default:n = true ,
1051 code-before .tl_set:N = \l_@@_notes_code_before_tl ,
1052 code-before .value_required:n = true ,
1053 code-before+ .code:n =
1054 \tl_put_right:Nn \l_@@_note_code_before_tl { #1 } ,

33

1055 code-before+ .value_required:n = true ,
1056 code-before~+ .code:n =
1057 \tl_put_right:Nn \l_@@_note_code_before_tl { #1 } ,
1058 code-before~+ .value_required:n = true ,
1059 code-after .tl_set:N = \l_@@_notes_code_after_tl ,
1060 code-after .value_required:n = true ,
1061 bottomrule .bool_set:N = \l_@@_notes_bottomrule_bool ,
1062 bottomrule .default:n = true ,
1063 style .cs_set:Np = \@@_notes_style:n #1 ,
1064 style .value_required:n = true ,
1065 label-in-tabular .cs_set:Np = \@@_notes_label_in_tabular:n #1 ,
1066 label-in-tabular .value_required:n = true ,
1067 label-in-list .cs_set:Np = \@@_notes_label_in_list:n #1 ,
1068 label-in-list .value_required:n = true ,
1069 enumitem-keys .code:n =
1070 {
1071 \hook_gput_code:nnn { begindocument } { . }
1072 {
1073 \IfPackageLoadedT { enumitem }
1074 { \setlist* [tabularnotes] { #1 } }
1075 }
1076 } ,
1077 enumitem-keys .value_required:n = true ,
1078 enumitem-keys-para .code:n =
1079 {
1080 \hook_gput_code:nnn { begindocument } { . }
1081 {
1082 \IfPackageLoadedT { enumitem }
1083 { \setlist* [tabularnotes*] { #1 } }
1084 }
1085 } ,
1086 enumitem-keys-para .value_required:n = true ,
1087 detect-duplicates .bool_set:N = \l_@@_notes_detect_duplicates_bool ,
1088 detect-duplicates .default:n = true ,
1089 unknown .code:n =
1090 \@@_unknown_key:nn { nicematrix / notes } { Unknown~key~for~notes }
1091 }

1092 \keys_define:nn { nicematrix / delimiters }
1093 {
1094 max-width .bool_set:N = \l_@@_delimiters_max_width_bool ,
1095 max-width .default:n = true ,
1096 color .tl_set:N = \l_@@_delimiters_color_tl ,
1097 color .value_required:n = true ,
1098 }

We begin the construction of the major sets of keys (used by the different user commands and
environments).

1099 \keys_define:nn { nicematrix }
1100 {
1101 NiceMatrixOptions .inherit:n =
1102 { nicematrix / Global } ,
1103 NiceMatrixOptions / xdots .inherit:n = nicematrix / xdots ,
1104 NiceMatrixOptions / rules .inherit:n = nicematrix / rules ,
1105 NiceMatrixOptions / notes .inherit:n = nicematrix / notes ,
1106 NiceMatrixOptions / sub-matrix .inherit:n = nicematrix / sub-matrix ,
1107 SubMatrix / rules .inherit:n = nicematrix / rules ,
1108 CodeAfter / xdots .inherit:n = nicematrix / xdots ,
1109 CodeBefore / sub-matrix .inherit:n = nicematrix / sub-matrix ,
1110 CodeAfter / sub-matrix .inherit:n = nicematrix / sub-matrix ,
1111 NiceMatrix .inherit:n =
1112 {
1113 nicematrix / Global ,

34

1114 nicematrix / environments ,
1115 } ,
1116 NiceMatrix / xdots .inherit:n = nicematrix / xdots ,
1117 NiceMatrix / rules .inherit:n = nicematrix / rules ,
1118 NiceTabular .inherit:n =
1119 {
1120 nicematrix / Global ,
1121 nicematrix / environments
1122 } ,
1123 NiceTabular / xdots .inherit:n = nicematrix / xdots ,
1124 NiceTabular / rules .inherit:n = nicematrix / rules ,
1125 NiceTabular / notes .inherit:n = nicematrix / notes ,
1126 NiceArray .inherit:n =
1127 {
1128 nicematrix / Global ,
1129 nicematrix / environments ,
1130 } ,
1131 NiceArray / xdots .inherit:n = nicematrix / xdots ,
1132 NiceArray / rules .inherit:n = nicematrix / rules ,
1133 pNiceArray .inherit:n =
1134 {
1135 nicematrix / Global ,
1136 nicematrix / environments ,
1137 } ,
1138 pNiceArray / xdots .inherit:n = nicematrix / xdots ,
1139 pNiceArray / rules .inherit:n = nicematrix / rules ,
1140 }

We finalise the definition of the set of keys “nicematrix / NiceMatrixOptions” with the options
specific to \NiceMatrixOptions.

1141 \keys_define:nn { nicematrix / NiceMatrixOptions }
1142 {
1143 delimiters / color .tl_set:N = \l_@@_delimiters_color_tl ,
1144 delimiters / color .value_required:n = true ,
1145 delimiters / max-width .bool_set:N = \l_@@_delimiters_max_width_bool ,
1146 delimiters / max-width .default:n = true ,
1147 delimiters .code:n = \keys_set:nn { nicematrix / delimiters } { #1 } ,
1148 delimiters .value_required:n = true ,
1149 width .dim_set:N = \l_@@_width_dim ,
1150 width .value_required:n = true ,
1151 last-col .code:n =
1152 \tl_if_empty:nF { #1 }
1153 { \@@_error:n { last-col~non~empty~for~NiceMatrixOptions } }
1154 \int_zero:N \l_@@_last_col_int ,
1155 small .bool_set:N = \l_@@_small_bool ,
1156 small .value_forbidden:n = true ,

With the option renew-matrix, the environment {matrix} of amsmath and its variants are redefined
to behave like the environment {NiceMatrix} and its variants.

1157 renew-matrix .code:n = \@@_renew_matrix: ,
1158 renew-matrix .value_forbidden:n = true ,

The option exterior-arraycolsep will have effect only in {NiceArray} for those who want to have
for {NiceArray} the same behaviour as {array}.

1159 exterior-arraycolsep .bool_set:N = \l_@@_exterior_arraycolsep_bool ,

If the option columns-width is used, all the columns will have the same width.
In \NiceMatrixOptions, the special value auto is not available.

1160 columns-width .code:n =

35

We use \str_if_eq:nnTF which is slightly faster than \tl_if_eq:nnTF. \str_if_eq:ee(TF) is faster
than \str_if_eq:nn(TF).

1161 \str_if_eq:eeTF { #1 } { auto }
1162 { \@@_error:n { Option~auto~for~columns-width } }
1163 { \dim_set:Nn \l_@@_columns_width_dim { #1 } } ,

Usually, an error is raised when the user tries to give the same name to two distincts environments
of nicematrix (these names are global and not local to the current TeX scope). However, the option
allow-duplicate-names disables this feature.

1164 allow-duplicate-names .code:n =
1165 \cs_set:Nn \@@_err_duplicate_names:n { } ,
1166 allow-duplicate-names .value_forbidden:n = true ,
1167 notes .code:n = \keys_set:nn { nicematrix / notes } { #1 } ,
1168 notes .value_required:n = true ,
1169 sub-matrix .code:n = \keys_set:nn { nicematrix / sub-matrix } { #1 } ,
1170 sub-matrix .value_required:n = true ,
1171 matrix / columns-type .tl_set:N = \l_@@_columns_type_tl ,
1172 matrix / columns-type .value_required:n = true ,
1173 caption-above .bool_set:N = \l_@@_caption_above_bool ,
1174 caption-above .default:n = true ,
1175 unknown .code:n =
1176 \@@_unknown_key:nn
1177 { nicematrix / Global , nicematrix / NiceMatrixOptions }
1178 { Unknown~key~for~NiceMatrixOptions }
1179 }

\NiceMatrixOptions is the command of the nicematrix package to fix options at the document level.
The scope of these specifications is the current TeX group.

1180 \NewDocumentCommand \NiceMatrixOptions { m }
1181 { \keys_set:nn { nicematrix / NiceMatrixOptions } { #1 } }

We finalise the definition of the set of keys “nicematrix / NiceMatrix”. That set of keys will be
used by {NiceMatrix}, {pNiceMatrix}, {bNiceMatrix}, etc.

1182 \keys_define:nn { nicematrix / NiceMatrix }
1183 {
1184 last-col .code:n = \tl_if_empty:nTF { #1 }
1185 {
1186 \bool_set_true:N \l_@@_last_col_without_value_bool
1187 \int_set:Nn \l_@@_last_col_int { -1 }
1188 }
1189 { \int_set:Nn \l_@@_last_col_int { #1 } } ,
1190 columns-type .tl_set:N = \l_@@_columns_type_tl ,
1191 columns-type .value_required:n = true ,
1192 l .meta:n = { columns-type = l } ,
1193 r .meta:n = { columns-type = r } ,
1194 delimiters / color .tl_set:N = \l_@@_delimiters_color_tl ,
1195 delimiters / color .value_required:n = true ,
1196 delimiters / max-width .bool_set:N = \l_@@_delimiters_max_width_bool ,
1197 delimiters / max-width .default:n = true ,
1198 delimiters .code:n = \keys_set:nn { nicematrix / delimiters } { #1 } ,
1199 delimiters .value_required:n = true ,
1200 small .bool_set:N = \l_@@_small_bool ,
1201 small .value_forbidden:n = true ,
1202 unknown .code:n = \@@_error:n { Unknown~key~for~NiceMatrix }
1203 }

We finalise the definition of the set of keys “nicematrix / NiceArray” with the options specific to
{NiceArray}.

1204 \keys_define:nn { nicematrix / NiceArray }
1205 {

36

In the environments {NiceArray} and its variants, the option last-col must be used without value
because the number of columns of the array is read from the preamble of the array.

1206 small .bool_set:N = \l_@@_small_bool ,
1207 small .value_forbidden:n = true ,
1208 last-col .code:n = \tl_if_empty:nF { #1 }
1209 { \@@_error:n { last-col~non~empty~for~NiceArray } }
1210 \int_zero:N \l_@@_last_col_int ,
1211 r .code:n = \@@_error:n { r~or~l~with~preamble } ,
1212 l .code:n = \@@_error:n { r~or~l~with~preamble } ,
1213 unknown .code:n =
1214 \@@_unknown_key:nn
1215 { nicematrix / NiceArray , nicematrix / Global , nicematrix / environments}
1216 { Unknown~key~for~NiceArray }
1217 }

1218 \keys_define:nn { nicematrix / pNiceArray }
1219 {
1220 first-col .code:n = \int_zero:N \l_@@_first_col_int ,
1221 last-col .code:n = \tl_if_empty:nF { #1 }
1222 { \@@_error:n { last-col~non~empty~for~NiceArray } }
1223 \int_zero:N \l_@@_last_col_int ,
1224 first-row .code:n = \int_zero:N \l_@@_first_row_int ,
1225 delimiters / color .tl_set:N = \l_@@_delimiters_color_tl ,
1226 delimiters / color .value_required:n = true ,
1227 delimiters / max-width .bool_set:N = \l_@@_delimiters_max_width_bool ,
1228 delimiters / max-width .default:n = true ,
1229 delimiters .code:n = \keys_set:nn { nicematrix / delimiters } { #1 } ,
1230 delimiters .value_required:n = true ,
1231 small .bool_set:N = \l_@@_small_bool ,
1232 small .value_forbidden:n = true ,
1233 r .code:n = \@@_error:n { r~or~l~with~preamble } ,
1234 l .code:n = \@@_error:n { r~or~l~with~preamble } ,
1235 unknown .code:n =
1236 \@@_unknown_key:nn
1237 { nicematrix / pNiceArray , nicematrix / Global , nicematrix / environments }
1238 { Unknown~key~for~NiceMatrix }
1239 }

We finalise the definition of the set of keys “nicematrix / NiceTabular” with the options specific
to {NiceTabular}.

1240 \keys_define:nn { nicematrix / NiceTabular }
1241 {

The dimension width will be used if at least a column of type X is used. If there is no column of type
X, an error will be raised.

1242 width .code:n = \dim_set:Nn \l_@@_width_dim { #1 }
1243 \bool_set_true:N \l_@@_width_used_bool ,
1244 width .value_required:n = true ,
1245 notes .code:n = \keys_set:nn { nicematrix / notes } { #1 } ,
1246 tabularnote .tl_gset:N = \g_@@_tabularnote_tl ,
1247 tabularnote .value_required:n = true ,
1248 caption .tl_set:N = \l_@@_caption_tl ,
1249 caption .value_required:n = true ,
1250 short-caption .tl_set:N = \l_@@_short_caption_tl ,
1251 short-caption .value_required:n = true ,
1252 label .tl_set:N = \l_@@_label_tl ,
1253 label .value_required:n = true ,
1254 last-col .code:n = \tl_if_empty:nF { #1 }
1255 { \@@_error:n { last-col~non~empty~for~NiceArray } }
1256 \int_zero:N \l_@@_last_col_int ,
1257 r .code:n = \@@_error:n { r~or~l~with~preamble } ,
1258 l .code:n = \@@_error:n { r~or~l~with~preamble } ,
1259 unknown .code:n =

37

1260 \@@_unknown_key:nn
1261 { nicematrix / NiceTabular , nicematrix / Global , nicematrix / environments }
1262 { Unknown~key~for~NiceTabular }
1263 }

The \CodeAfter (inserted with the key code-after or after the keyword \CodeAfter) may always
begin with a list of pairs key=value between square brackets. Here is the corresponding set of keys.
We must put the following instructions after the :

CodeAfter / sub-matrix .inherit:n = nicematrix / sub-matrix

1264 \keys_define:nn { nicematrix / CodeAfter }
1265 {
1266 delimiters / color .tl_set:N = \l_@@_delimiters_color_tl ,
1267 delimiters / color .value_required:n = true ,
1268 rules .code:n = \keys_set:nn { nicematrix / rules } { #1 } ,
1269 rules .value_required:n = true ,
1270 xdots .code:n = \keys_set:nn { nicematrix / xdots } { #1 } ,
1271 sub-matrix .code:n = \keys_set:nn { nicematrix / sub-matrix } { #1 } ,
1272 sub-matrix .value_required:n = true ,
1273 unknown .code:n = \@@_error:n { Unknown~key~for~CodeAfter }
1274 }

8 Important code used by {NiceArrayWithDelims}

The pseudo-environment \@@_cell_begin:–\@@_cell_end: will be used to format the cells of the
array. In the code, the affectations are global because this pseudo-environment will be used in the
cells of a \halign (via an environment {array}).

1275 \cs_new_protected:Npn \@@_cell_begin:
1276 {

\g_@@_cell_after_hook_tl will be set during the composition of the box \l_@@_cell_box and will
be used after the composition in order to modify that box.

1277 \tl_gclear:N \g_@@_cell_after_hook_tl

At the beginning of the cell, we link \CodeAfter to a command which do begin with \\ (whereas the
standard version of \CodeAfter does not).

1278 \cs_set_eq:NN \CodeAfter \@@_CodeAfter_i:

The following link only to have a better error message when \Hline is used in another place than
the beginning of a line.

1279 \cs_set_eq:NN \Hline \@@_Hline_in_cell:

We increment the LaTeX counter jCol, which is the counter of the columns.
1280 \int_gincr:N \c@jCol

Now, we increment the counter of the rows. We don’t do this incrementation in the \everycr
because some packages, like arydshln, create special rows in the \halign that we don’t want to take
into account.
Here is a version with the standard syntax of L3.

\int_compare:nNnT { \c@jCol } = { 1 }
{ \int_compare:nNnT \l_@@_first_col_int = { 1 } { \@@_begin_of_row: } }

We will use a version a little more efficient.
1281 \if_int_compare:w \c@jCol = \c_one_int
1282 \if_int_compare:w \l_@@_first_col_int = \c_one_int
1283 \@@_begin_of_row:
1284 \fi:
1285 \fi:

38

The content of the cell is composed in the box \l_@@_cell_box. The \hbox_set_end: corresponding
to this \hbox_set:Nw is in the \@@_cell_end:.

1286 \hbox_set:Nw \l_@@_cell_box

The following command is nullified in the tabulars.
1287 \@@_tuning_not_tabular_begin:

1288 \@@_tuning_first_row:
1289 \@@_tuning_last_row:
1290 \g_@@_row_style_tl
1291 }

The following command will be nullified unless there is a first row.
Here is a version with the standard syntax of L3.

\cs_new_protected:Npn \@@_tuning_first_row:
{
\int_if_zero:nTF { \c@iRow }
{

\int_if_zero:nF { \c@jCol }
{
\l_@@_code_for_first_row_tl
\xglobal \colorlet { nicematrix-first-row } { . }

}
}
{ \cs_set_eq:NN \@@_tuning_first_row: \prg_do_nothing: }

}

We will use a version a little more efficient.
1292 \cs_new_protected:Npn \@@_tuning_first_row:
1293 {
1294 \if_int_compare:w \c@iRow = \c_zero_int
1295 \if_int_compare:w \c@jCol > \c_zero_int
1296 \l_@@_code_for_first_row_tl
1297 \xglobal \colorlet { nicematrix-first-row } { . }
1298 \fi:
1299 \else:
1300 \cs_set_eq:NN \@@_tuning_first_row: \prg_do_nothing:
1301 \fi:
1302 }

The following command will be nullified unless there is a last row and we know its value (ie:
\l_@@_lat_row_int > 0).

\cs_new_protected:Npn \@@_tuning_last_row:
{
\int_compare:nNnT { \c@iRow } = { \l_@@_last_row_int }
{

\l_@@_code_for_last_row_tl
\xglobal \colorlet { nicematrix-last-row } { . }

}
}

We will use a version a little more efficient.
1303 \cs_new_protected:Npn \@@_tuning_last_row:
1304 {
1305 \if_int_compare:w \c@iRow = \l_@@_last_row_int
1306 \l_@@_code_for_last_row_tl
1307 \xglobal \colorlet { nicematrix-last-row } { . }
1308 \fi:
1309 }

A different value will be provided to the following commands when the key small is in force.
1310 \cs_set_eq:NN \@@_tuning_key_small: \prg_do_nothing:

39

The following commands are nullified in the tabulars.
1311 \cs_set_nopar:Npn \@@_tuning_not_tabular_begin:
1312 {
1313 \m@th
1314 $ % $

A special value is provided by the following control sequence when the key small is in force.
1315 \@@_tuning_key_small:
1316 }
1317 \cs_set:Nn \@@_tuning_not_tabular_end: { $ } % $

The following macro \@@_begin_of_row is usually used in the cell number 1 of the row. However,
when the key first-col is used, \@@_begin_of_row is executed in the cell number 0 of the row.

1318 \cs_new_protected:Npn \@@_begin_of_row:
1319 {
1320 \int_gincr:N \c@iRow
1321 \dim_gset_eq:NN \g_@@_dp_ante_last_row_dim \g_@@_dp_last_row_dim
1322 \dim_gset:Nn \g_@@_dp_last_row_dim { \box_dp:N \@arstrutbox }
1323 \dim_gset:Nn \g_@@_ht_last_row_dim { \box_ht:N \@arstrutbox }
1324 \pgfpicture
1325 \pgfrememberpicturepositiononpagetrue
1326 \pgfcoordinate
1327 { \@@_env: - row - \int_use:N \c@iRow - base }
1328 { \pgfpoint \c_zero_dim { 0.5 \arrayrulewidth } }
1329 \str_if_empty:NF \l_@@_name_str
1330 {
1331 \pgfnodealias
1332 { \l_@@_name_str - row - \int_use:N \c@iRow - base }
1333 { \@@_env: - row - \int_use:N \c@iRow - base }
1334 }
1335 \endpgfpicture
1336 }

Remark: If the key create-cell-nodes of the \CodeBefore is used, then we will add some lines to
that command.

The following code is used in each cell of the array. It actualises quantities that, at the end of the
array, will give information about the vertical dimension of the two first rows and the two last rows.
If the user uses the last-row, some lines of code will be dynamically added to this command.
Here is a version with the standard syntax of L3.

\cs_new_protected:Npn \@@_update_for_first_and_last_row:
{
\int_if_zero:nTF { \c@iRow }
{

\dim_compare:nNnT
{ \box_dp:N \l_@@_cell_box } > { \g_@@_dp_row_zero_dim }
{ \dim_gset:Nn \g_@@_dp_row_zero_dim { \box_dp:N \l_@@_cell_box } }

\dim_compare:nNnT
{ \box_ht:N \l_@@_cell_box } > { \g_@@_ht_row_zero_dim }
{ \dim_gset:Nn \g_@@_ht_row_zero_dim { \box_ht:N \l_@@_cell_box } }

}
{

\int_compare:nNnT { \c@iRow } = { 1 }
{
\dim_compare:nNnT
{ \box_ht:N \l_@@_cell_box } > { \g_@@_ht_row_one_dim }
{ \dim_gset:Nn \g_@@_ht_row_one_dim { \box_ht:N \l_@@_cell_box } }

}
}

}

40

We will use a version a little more efficient.
1337 \cs_new_protected:Npn \@@_update_for_first_and_last_row:
1338 {
1339 \if_int_compare:w \c@iRow = \c_zero_int
1340 \if_dim:w \box_dp:N \l_@@_cell_box > \g_@@_dp_row_zero_dim
1341 \global \g_@@_dp_row_zero_dim = \box_dp:N \l_@@_cell_box
1342 \fi:
1343 \if_dim:w \box_ht:N \l_@@_cell_box > \g_@@_ht_row_zero_dim
1344 \global \g_@@_ht_row_zero_dim = \box_ht:N \l_@@_cell_box
1345 \fi:
1346 \else:
1347 \if_int_compare:w \c@iRow = \c_one_int
1348 \if_dim:w \box_ht:N \l_@@_cell_box > \g_@@_ht_row_one_dim
1349 \global \g_@@_ht_row_one_dim = \box_ht:N \l_@@_cell_box
1350 \fi:
1351 \fi:
1352 \fi:
1353 }

1354 \cs_new_protected:Npn \@@_rotate_cell_box:
1355 {
1356 \box_rotate:Nn \l_@@_cell_box { 90 }
1357 \bool_if:NTF \g_@@_rotate_c_bool
1358 {
1359 \hbox_set:Nn \l_@@_cell_box
1360 {
1361 \m@th
1362 $ % $
1363 \vcenter { \box_use:N \l_@@_cell_box }
1364 $ % $
1365 }
1366 }
1367 {
1368 \int_compare:nNnT { \c@iRow } = { \l_@@_last_row_int }
1369 {
1370 \vbox_set_top:Nn \l_@@_cell_box
1371 {
1372 \vbox_to_zero:n { }
1373 \skip_vertical:n { - \box_ht:N \@arstrutbox + 0.8 ex }
1374 \box_use:N \l_@@_cell_box
1375 }
1376 }
1377 }
1378 \bool_gset_false:N \g_@@_rotate_bool
1379 \bool_gset_false:N \g_@@_rotate_c_bool
1380 }

Here is a version of the command \@@_adjust_size_box: with the syntax of standard L3.

\cs_new_protected:Npn \@@_adjust_size_box:
{
\dim_compare:nNnT { \g_@@_blocks_wd_dim } > { \c_zero_dim }
{

\dim_compare:nNnT \g_@@_blocks_wd_dim > { \box_wd:N \l_@@_cell_box }
{ \box_set_wd:Nn \l_@@_cell_box \g_@@_blocks_wd_dim }

\dim_gzero:N \g_@@_blocks_wd_dim
}

\dim_compare:nNnT { \g_@@_blocks_dp_dim } > { \c_zero_dim }
{

\dim_compare:nNnT \g_@@_blocks_dp_dim > { \box_dp:N \l_@@_cell_box }
{ \box_set_dp:Nn \l_@@_cell_box \g_@@_blocks_dp_dim }

\dim_gzero:N \g_@@_blocks_dp_dim

41

}
\dim_compare:nNnT { \g_@@_blocks_ht_dim } > { \c_zero_dim }
{

\dim_compare:nNnT \g_@@_blocks_ht_dim > { \box_ht:N \l_@@_cell_box }
{ \box_set_ht:Nn \l_@@_cell_box \g_@@_blocks_ht_dim }

\dim_gzero:N \g_@@_blocks_ht_dim
}

}

Here is a version slightly more efficient.
1381 \cs_set_protected:Npn \@@_adjust_size_box:
1382 {
1383 \if_dim:w \g_@@_blocks_wd_dim > \c_zero_dim
1384 \if_dim:w \g_@@_blocks_wd_dim > \box_wd:N \l_@@_cell_box
1385 \box_wd:N \l_@@_cell_box = \g_@@_blocks_wd_dim
1386 \fi:
1387 \global \g_@@_blocks_wd_dim = \c_zero_dim
1388 \fi:
1389 \if_dim:w \g_@@_blocks_dp_dim > \c_zero_dim
1390 \if_dim:w \g_@@_blocks_dp_dim > \box_dp:N \l_@@_cell_box
1391 \box_dp:N \l_@@_cell_box = \g_@@_blocks_dp_dim
1392 \fi
1393 \global \g_@@_blocks_dp_dim = \c_zero_dim
1394 \fi:
1395 \if_dim:w \g_@@_blocks_ht_dim > \c_zero_dim
1396 \if_dim:w \g_@@_blocks_ht_dim > \box_ht:N \l_@@_cell_box
1397 \box_ht:N \l_@@_cell_box = \g_@@_blocks_ht_dim
1398 \fi:
1399 \global \g_@@_blocks_ht_dim = \c_zero_dim
1400 \fi:
1401 }

1402 \cs_new_protected:Npn \@@_cell_end:
1403 {

The following command is nullified in the tabulars.
1404 \@@_tuning_not_tabular_end:
1405 \hbox_set_end:
1406 \@@_cell_end_i:
1407 }

\cs_new_protected:Npn \@@_cell_end_i:
{
\g_@@_cell_after_hook_tl
\bool_if:NT \g_@@_rotate_bool { \@@_rotate_cell_box: }
\@@_adjust_size_box:
\box_set_ht:Nn \l_@@_cell_box
{ \box_ht:N \l_@@_cell_box + \l_@@_cell_space_top_limit_dim }

\box_set_dp:Nn \l_@@_cell_box
{ \box_dp:N \l_@@_cell_box + \l_@@_cell_space_bottom_limit_dim }

\@@_update_max_cell_width:
\@@_update_for_first_and_last_row:
\bool_if:NTF \g_@@_empty_cell_bool
{ \box_use_drop:N \l_@@_cell_box }
{

\bool_if:NTF \g_@@_not_empty_cell_bool
{ \@@_print_node_cell: }
{
\dim_compare:nNnTF { \box_wd:N \l_@@_cell_box } > { \c_zero_dim }
{ \@@_print_node_cell: }
{ \box_use_drop:N \l_@@_cell_box }

}
}

\int_compare:nNnT { \c@jCol } > { \g_@@_col_total_int }
{ \int_gset_eq:NN \g_@@_col_total_int \c@jCol }

42

\bool_gset_false:N \g_@@_empty_cell_bool
\bool_gset_false:N \g_@@_not_empty_cell_bool

}

Here is a version slightly more efficient.
1408 \cs_new_protected:Npn \@@_cell_end_i:
1409 {

The token list \g_@@_cell_after_hook_tl is (potentially) set during the composition of the box
\l_@@_cell_box and is used now after the composition in order to modify that box.

1410 \g_@@_cell_after_hook_tl
1411 \bool_if:NT \g_@@_rotate_bool { \@@_rotate_cell_box: }
1412 \@@_adjust_size_box:

1413 \box_set_ht:Nn \l_@@_cell_box
1414 { \box_ht:N \l_@@_cell_box + \l_@@_cell_space_top_limit_dim }
1415 \box_set_dp:Nn \l_@@_cell_box
1416 { \box_dp:N \l_@@_cell_box + \l_@@_cell_space_bottom_limit_dim }

We want to compute in \g_@@_max_cell_width_dim the width of the widest cell of the array (except
the cells of the “first column” and the “last column”).

1417 \@@_update_max_cell_width:

The following computations are for the “first row” and the “last row”.
1418 \@@_update_for_first_and_last_row:

If the cell is empty, or may be considered as if, we must not create the pgf node, for two reasons:

• it’s a waste of time since such a node would be rather pointless;

• we test the existence of these nodes in order to determine whether a cell is empty when we
search the extremities of a dotted line.

However, it’s difficult to determine whether a cell is empty. Up to now we use the following technique:

• for the columns of type p, m, b, V (of varwidth) or X, we test whether the cell is syntactically
empty with \@@_test_if_empty: and \@@_test_if_empty_for_S:

• if the width of the box \l_@@_cell_box (created with the content of the cell) is equal to zero,
we consider the cell as empty (however, this is not perfect since the user may have used a \rlap,
\llap, \clap or a \mathclap of mathtools).

• the cells with a command \Ldots or \Cdots, \Vdots, etc., should also be considered as empty;
if nullify-dots is in force, there would be nothing to do (in this case the previous commands
only write an instruction in a kind of \CodeAfter); however, if nullify-dots is not in force, a
phantom of \ldots, \cdots, \vdots is inserted and its width is not equal to zero; that’s why
these commands raise a boolean \g_@@_empty_cell_bool and we begin by testing this boolean.

1419 \bool_if:NTF \g_@@_empty_cell_bool
1420 { \box_use_drop:N \l_@@_cell_box }
1421 {
1422 \bool_if:NTF \g_@@_not_empty_cell_bool
1423 { \@@_print_node_cell: }
1424 {
1425 \if_dim:w \box_wd:N \l_@@_cell_box > \c_zero_dim
1426 \@@_print_node_cell:
1427 \else:
1428 \box_use_drop:N \l_@@_cell_box
1429 \fi:
1430 }
1431 }
1432 \if_int_compare:w \c@jCol > \g_@@_col_total_int
1433 \global \g_@@_col_total_int = \c@jCol
1434 \fi:
1435 \global \let \g_@@_empty_cell_bool \c_false_bool
1436 \global \let \g_@@_not_empty_cell_bool \c_false_bool
1437 }

43

The following command will be nullified in our redefinition of \multicolumn.

\cs_new_protected:Npn \@@_update_max_cell_width:
{
\dim_gset:Nn \g_@@_max_cell_width_dim
{ \dim_max:nn { \g_@@_max_cell_width_dim } { \box_wd:N \l_@@_cell_box } }

}

We will use the following version, slightly more efficient:

1438 \cs_new_protected:Npn \@@_update_max_cell_width:
1439 {
1440 \if_dim:w \box_wd:N \l_@@_cell_box > \g_@@_max_cell_width_dim
1441 \global \g_@@_max_cell_width_dim = \box_wd:N \l_@@_cell_box
1442 \fi:
1443 }

The following variant of \@@_cell_end: is only for the columns of type w{s}{...} or W{s}{...}
(which use the horizontal alignment key s of \makebox).

1444 \cs_new_protected:Npn \@@_cell_end_for_w_s:
1445 {
1446 \@@_math_toggle:
1447 \hbox_set_end:
1448 \bool_if:NF \g_@@_rotate_bool
1449 {
1450 \hbox_set:Nn \l_@@_cell_box
1451 {
1452 \makebox [\l_@@_col_width_dim] [s]
1453 { \hbox_unpack_drop:N \l_@@_cell_box }
1454 }
1455 }
1456 \@@_cell_end_i:
1457 }

1458 \pgfset
1459 {
1460 nicematrix / cell-node /.style =
1461 {
1462 inner~sep = \c_zero_dim ,
1463 minimum~width = \c_zero_dim
1464 }
1465 }

In the cells of a column of type S (of siunitx), we have to wrap the command \@@_node_cell: inside
a command of siunitx to inforce the correct horizontal alignment. In the cells of the columns with
other columns type, we don’t have to do that job. That’s why we create a socket with its default
plug (identity) and a plug when we have to do the wrapping.

1466 \socket_new:nn { nicematrix / siunitx-wrap } { 1 }
1467 \socket_new_plug:nnn { nicematrix / siunitx-wrap } { active }
1468 {
1469 \use:c
1470 {
1471 __siunitx_table_align_
1472 \bool_if:NTF \l__siunitx_table_text_bool
1473 { \l__siunitx_table_align_text_tl }
1474 { \l__siunitx_table_align_number_tl }
1475 :n
1476 }
1477 { #1 }
1478 }

44

Now, a socket which deal with create-cell-nodes of the keyword \CodeBefore. When that key is
used the “cell nodes” will be created before the \CodeBefore but, of course, they are always available
in the main tabular and after!

1479 \socket_new:nn { nicematrix / create-cell-nodes } { 1 }
1480 \socket_new_plug:nnn { nicematrix / create-cell-nodes } { active }
1481 {
1482 \box_move_up:nn { \box_ht:N \l_@@_cell_box }
1483 \hbox:n
1484 {
1485 \pgfsys@markposition
1486 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol - NW }
1487 }
1488 #1
1489 \box_move_down:nn { \box_dp:N \l_@@_cell_box }
1490 \hbox:n
1491 {
1492 \pgfsys@markposition
1493 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol - SE }
1494 }
1495 }

1496 \cs_new_protected:Npn \@@_print_node_cell:
1497 {
1498 \socket_use:nn { nicematrix / siunitx-wrap }
1499 { \socket_use:nn { nicematrix / create-cell-nodes } { \@@_node_cell: } }
1500 }

The following command creates the pgf name of the node with, of course, \l_@@_cell_box as the
content.

1501 \cs_new_protected:Npn \@@_node_cell:
1502 {
1503 \pgfpicture
1504 \pgfsetbaseline \c_zero_dim
1505 \pgfrememberpicturepositiononpagetrue
1506 \pgfset { nicematrix / cell-node }
1507 \pgfnode
1508 { rectangle }
1509 { base }
1510 {

The following instruction \set@color has been added on 2022/10/06. It’s necessary only with Xe-
LaTeX and not with the other engines (we don’t know why).

1511 \sys_if_engine_xetex:T { \set@color }
1512 \box_use:N \l_@@_cell_box
1513 }
1514 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol }
1515 { \l_@@_pgf_node_code_tl }
1516 \str_if_empty:NF \l_@@_name_str
1517 {
1518 \pgfnodealias
1519 { \l_@@_name_str - \int_use:N \c@iRow - \int_use:N \c@jCol }
1520 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol }
1521 }
1522 \endpgfpicture
1523 }

The second argument of the following command \@@_instruction_of_type:nnn defined below is
the type of the instruction (Cdots, Vdots, Ddots, etc.). The third argument is the list of options.
This command writes in the corresponding \g_@@_type_lines_tl the instruction which will actually
draw the line after the construction of the matrix.

45

For example, for the following matrix,
\begin{pNiceMatrix}
1 & 2 & 3 & 4 \\
5 & \Cdots & & 6 \\
7 & \Cdots[color=red]
\end{pNiceMatrix}

1 2 3 4
5 6
7


the content of \g_@@_Cdots_lines_tl will be:
\@@_draw_Cdots:nnn {2}{2}{}
\@@_draw_Cdots:nnn {3}{2}{color=red}

The first argument is a boolean which indicates whether you must put the instruction on the left
or on the right on the list of instructions (with consequences for the parallelisation of the diagonal
lines).

1524 \cs_new_protected:Npn \@@_instruction_of_type:nnn #1 #2 #3
1525 {
1526 \bool_if:nTF { #1 } { \tl_gput_left:ce } { \tl_gput_right:ce }
1527 { g_@@_ #2 _ lines _ tl }
1528 {
1529 \use:c { @@ _ draw _ #2 : nnn }
1530 { \int_use:N \c@iRow }
1531 { \int_use:N \c@jCol }
1532 { \exp_not:n { #3 } }
1533 }
1534 }

1535 \cs_new_protected:Npn \@@_array:n
1536 {
1537 \dim_set:Nn \col@sep
1538 { \bool_if:NTF \l_@@_tabular_bool { \tabcolsep } { \arraycolsep } }
1539 \dim_compare:nNnTF { \l_@@_tabular_width_dim } = { \c_zero_dim }
1540 { \def \@halignto { } }
1541 { \cs_set_nopar:Npe \@halignto { to \dim_use:N \l_@@_tabular_width_dim } }

It colortbl is loaded, \@tabarray has been redefined to incorporate \CT@start.
1542 \@tabarray

\l_@@_baseline_tl may have the value t, c or b. However, if the value is b, we compose
the \array (of array) with the option t and the right translation will be done further. Re-
mark that \str_if_eq:eeTF is fully expandable and we need something fully expandable here.
\str_if_eq:ee(TF) is faster than \str_if_eq:nn(TF).

1543 [\str_if_eq:eeTF { \l_@@_baseline_tl } { c } { c } { t }]
1544 }
1545 \cs_generate_variant:Nn \@@_array:n { o }

We keep in memory the standard version of \ar@ialign because we will redefine \ar@ialign in the
environment {NiceArrayWithDelims} but restore the standard version for use in the cells of the
array. However, it seems that RevTeX goes on with a redefinition of array which uses \ialign.

1546 \bool_if:NTF \c_@@_revtex_bool
1547 { \cs_new_eq:NN \@@_old_ialign: \ialign }

We use here a \cs_set_eq:cN instead of a \cs_set_eq:NN in order to avoid a message when
explcheck is used on nicematrix.sty.

1548 { \cs_new_eq:cN { @@_old_ar@ialign: } \ar@ialign }

The following command creates a row node (and not a row of nodes!).
1549 \cs_new_protected:Npn \@@_create_row_node:
1550 {
1551 \int_compare:nNnT { \c@iRow } > { \g_@@_last_row_node_int }
1552 {
1553 \int_gset_eq:NN \g_@@_last_row_node_int \c@iRow
1554 \@@_create_row_node_i:
1555 }
1556 }

46

1557 \cs_new_protected:Npn \@@_create_row_node_i:
1558 {

The \hbox:n (or \hbox) is mandatory.
1559 \hbox
1560 {
1561 \bool_if:NT \l_@@_code_before_bool
1562 {
1563 \vtop
1564 {
1565 \skip_vertical:N 0.5\arrayrulewidth
1566 \pgfsys@markposition
1567 { \@@_env: - row - \int_eval:n { \c@iRow + 1 } }
1568 \skip_vertical:N -0.5\arrayrulewidth
1569 }
1570 }
1571 \pgfpicture
1572 \pgfrememberpicturepositiononpagetrue
1573 \pgfcoordinate { \@@_env: - row - \int_eval:n { \c@iRow + 1 } }
1574 { \pgfpoint \c_zero_dim { - 0.5 \arrayrulewidth } }
1575 \str_if_empty:NF \l_@@_name_str
1576 {
1577 \pgfnodealias
1578 { \l_@@_name_str - row - \int_eval:n { \c@iRow + 1 } }
1579 { \@@_env: - row - \int_eval:n { \c@iRow + 1 } }
1580 }
1581 \endpgfpicture
1582 }
1583 }

1584 \cs_new_protected:Npn \@@_in_everycr:
1585 {
1586 \tbl_if_row_was_started:T { \UseTaggingSocket { tbl / row / end } }
1587 \tbl_update_cell_data_for_next_row:
1588 \int_gzero:N \c@jCol
1589 \bool_gset_false:N \g_@@_after_col_zero_bool
1590 \bool_if:NF \g_@@_row_of_col_done_bool
1591 {
1592 \@@_create_row_node:

We don’t draw now the rules of the key hlines (or hvlines) but we reserve the vertical space for
these rules (the rules will be drawn by pgf).

1593 \clist_if_empty:NF \l_@@_hlines_clist
1594 {
1595 \str_if_eq:eeF { \l_@@_hlines_clist } { all }
1596 {
1597 \clist_if_in:NeT
1598 \l_@@_hlines_clist
1599 { \int_eval:n { \c@iRow + 1 } }
1600 }
1601 {

The counter \c@iRow has the value −1 only if there is a “first row” and that we are before that “first
row”, i.e. just before the beginning of the array.

1602 \int_compare:nNnT { \c@iRow } > { -1 }
1603 {
1604 \int_compare:nNnF { \c@iRow } = { \l_@@_last_row_int }

1605 { \hrule height \arrayrulewidth width \c_zero_dim }
1606 }
1607 }
1608 }
1609 }
1610 }

47

When the key renew-dots is used, the following code will be executed.
1611 \cs_set_protected:Npn \@@_renew_dots:
1612 {
1613 \cs_set_eq:NN \ldots \@@_Ldots:
1614 \cs_set_eq:NN \cdots \@@_Cdots:
1615 \cs_set_eq:NN \vdots \@@_Vdots:
1616 \cs_set_eq:NN \ddots \@@_Ddots:
1617 \cs_set_eq:NN \iddots \@@_Iddots:
1618 \cs_set_eq:NN \dots \@@_Ldots:
1619 \cs_set_eq:NN \hdotsfor \@@_Hdotsfor:
1620 }

If booktabs is loaded, we have to patch the macro \@BTnormal which is a macro of booktabs. The
macro \@BTnormal draws an horizontal rule but it occurs after a vertical skip done by a low level TeX
command. When this macro \@BTnormal occurs, the row node has yet been inserted by nicematrix
before the vertical skip (and thus, at a wrong place). That why we decide to create a new row node
(for the same row). We patch the macro \@BTnormal to create this row node. This new row node will
overwrite the previous definition of that row node and we have managed to avoid the error messages
of that redefinition 5.

1621 \hook_gput_code:nnn { begindocument } { . }
1622 {
1623 \IfPackageLoadedTF { booktabs }
1624 {
1625 \cs_new_protected:Npn \@@_patch_booktabs:
1626 { \tl_put_left:Nn \@BTnormal \@@_create_row_node_i: }
1627 }
1628 { \cs_new_protected:Npn \@@_patch_booktabs: { } }

1629 }

The box \@arstrutbox is a box constructed in the beginning of the environment {array}. The con-
struction of that box takes into account the current value of \arraystretch6 and \extrarowheight
(of array). That box is inserted (via \@arstrut) in the beginning of each row of the array. That’s
why we use the dimensions of that box to initialize the variables which will be the dimensions of the
potential first and last row of the environment. This initialization must be done after the creation of
\@arstrutbox and that’s why we do it in the \ialign.

1630 \cs_new_protected:Npn \@@_some_initialization:
1631 {
1632 \@@_everycr:
1633 \dim_gset:Nn \g_@@_dp_row_zero_dim { \box_dp:N \@arstrutbox }
1634 \dim_gset:Nn \g_@@_ht_row_zero_dim { \box_ht:N \@arstrutbox }
1635 \dim_gset_eq:NN \g_@@_ht_row_one_dim \g_@@_ht_row_zero_dim
1636 \dim_gzero:N \g_@@_dp_ante_last_row_dim
1637 \dim_gset:Nn \g_@@_ht_last_row_dim { \box_ht:N \@arstrutbox }
1638 \dim_gset:Nn \g_@@_dp_last_row_dim { \box_dp:N \@arstrutbox }
1639 }

\@@_pre_array_after_CodeBefore: will be executed in \@@_pre_array: after the execution
of the \CodeBefore. It contains all the code before the beginning of the construction of
\l_@@_the_array_box.

1640 \cs_new_protected:Npn \@@_pre_array_after_CodeBefore:
1641 {

The value of \g_@@_pos_of_blocks_seq has been written on the aux file and loaded before the
(potential) execution of the \CodeBefore.

5cf. \nicematrix@redefine@check@rerun
6The option small of nicematrix changes (among others) the value of \arraystretch. This is done, of course, before

the call of {array}.

48

Now, we reinitialize that variable with the content of \g_@@_future_pos_of_blocks_seq because
the mains blocks will be added in \g_@@_pos_of_blocks_seq during the construction of the array.

1642 \seq_gclear:N \g_@@_pos_of_blocks_seq

Idem for other sequences written on the aux file.
1643 \seq_gclear_new:N \g_@@_multicolumn_cells_seq
1644 \seq_gclear_new:N \g_@@_multicolumn_sizes_seq

The command \create_row_node: will create a row-node (and not a row of nodes!). However, at the
end of the array we construct a “false row” (for the col-nodes) and it interferes with the construction
of the last row-node of the array. We don’t want to create such row-node twice (to avaid warnings
or, maybe, errors). That’s why the command \@@_create_row_node: will use the following counter
to avoid such construction.

1645 \int_gset:Nn \g_@@_last_row_node_int { -2 }

The value −2 is important.

The total weight of the letters X in the preamble of the array.
1646 \fp_gzero:N \g_@@_total_X_weight_fp
1647 \bool_gset_false:N \g_@@_V_of_X_bool

1648 \@@_expand_clist_hvlines:NN \l_@@_hlines_clist \c@iRow
1649 \@@_expand_clist_hvlines:NN \l_@@_vlines_clist \c@jCol

1650 \@@_patch_booktabs:
1651 \box_clear_new:N \l_@@_cell_box
1652 \normalbaselines

If the option small is used, we have to do some tuning. In particular, we change the value of
\arraystretch (this parameter is used in the construction of \@arstrutbox in the beginning of
{array}).

1653 \bool_if:NT \l_@@_small_bool
1654 {

1655 \def \arraystretch { 0.47 }
1656 \dim_set:Nn \arraycolsep { 1.45 pt }

By default, \@@_tuning_key_small: is no-op.
1657 \cs_set_eq:NN \@@_tuning_key_small: \scriptstyle
1658 }

The boolean \g_@@_create_cell_nodes_bool corresponds to the key create-cell-nodes of the
keyword \CodeBefore. When that key is used the “cell nodes” will be created before the \CodeBefore
but, of course, they are always available in the main tabular and after!

1659 \bool_if:NT \g_@@_create_cell_nodes_bool
1660 {
1661 \tl_put_right:Nn \@@_begin_of_row:
1662 {
1663 \pgfsys@markposition
1664 { \@@_env: - row - \int_use:N \c@iRow - base }
1665 }
1666 \socket_assign_plug:nn { nicematrix / create-cell-nodes } { active }
1667 }

The environment {array} uses internally the command \ar@ialign. We change that command for
several reasons. In particular, \ar@ialign sets \everycr to { } and we need to change the value of
\everycr.

1668 \bool_if:NF \c_@@_revtex_bool
1669 {
1670 \def \ar@ialign
1671 {
1672 \tbl_init_cell_data_for_table:
1673 \@@_some_initialization:
1674 \dim_zero:N \tabskip

49

After its first use, the definition of \ar@ialign will revert automatically to its default definition.
With that programmation, we will have, in the cells of the array, a clean version of \ar@ialign. We
use \cs_set_eq:Nc instead of \cs_set_eq:NN in order to avoid a message when explcheck is used
on nicematrix.sty.

1675 \cs_set_eq:Nc \ar@ialign { @@_old_ar@ialign: }
1676 \halign
1677 }
1678 }

It seems that there is a problem when nicematrix is used with in revtex4-2 with the package colortbl
loaded. The following code prevent that problem but it does not treat the actual problem! It’s only
a patch ad hoc.
That patch has been added in version 7.0x, 2024-11-27 (question by mail of Tamra Nebabu).

1679 \bool_if:NT \c_@@_revtex_bool
1680 {
1681 \IfPackageLoadedT { colortbl }
1682 { \cs_set_protected:Npn \CT@setup { } }
1683 }

We keep in memory the old versions or \ldots, \cdots, etc. only because we use them inside
\phantom commands in order that the new commands \Ldots, \Cdots, etc. give the same spacing
(except when the option nullify-dots is used).

1684 \cs_set_eq:NN \@@_old_ldots: \ldots
1685 \cs_set_eq:NN \@@_old_cdots: \cdots
1686 \cs_set_eq:NN \@@_old_vdots: \vdots
1687 \cs_set_eq:NN \@@_old_ddots: \ddots
1688 \cs_set_eq:NN \@@_old_iddots: \iddots
1689 \bool_if:NTF \l_@@_standard_cline_bool
1690 { \cs_set_eq:NN \cline \@@_standard_cline: }
1691 { \cs_set_eq:NN \cline \@@_cline: }
1692 \cs_set_eq:NN \Ldots \@@_Ldots:
1693 \cs_set_eq:NN \Cdots \@@_Cdots:
1694 \cs_set_eq:NN \Vdots \@@_Vdots:
1695 \cs_set_eq:NN \Ddots \@@_Ddots:
1696 \cs_set_eq:NN \Iddots \@@_Iddots:
1697 \cs_set_eq:NN \Hline \@@_Hline:
1698 \cs_set_eq:NN \Hspace \@@_Hspace:
1699 \cs_set_eq:NN \Hdotsfor \@@_Hdotsfor:
1700 \cs_set_eq:NN \Vdotsfor \@@_Vdotsfor:
1701 \cs_set_eq:NN \Block \@@_Block:
1702 \cs_set_eq:NN \rotate \@@_rotate:
1703 \cs_set_eq:NN \OnlyMainNiceMatrix \@@_OnlyMainNiceMatrix:n
1704 \cs_set_eq:NN \dotfill \@@_dotfill:
1705 \cs_set_eq:NN \CodeAfter \@@_CodeAfter:
1706 \cs_if_free:NT \Body { \cs_set_eq:NN \Body \@@_Body: }
1707 \cs_set_eq:NN \diagbox \@@_diagbox:nn
1708 \cs_set_eq:NN \NotEmpty \@@_NotEmpty:
1709 \cs_set_eq:NN \TopRule \@@_TopRule
1710 \cs_set_eq:NN \MidRule \@@_MidRule
1711 \cs_set_eq:NN \BottomRule \@@_BottomRule
1712 \cs_set_eq:NN \RowStyle \@@_RowStyle:n
1713 \cs_set_eq:NN \Hbrace \@@_Hbrace
1714 \cs_set_eq:NN \Vbrace \@@_Vbrace
1715 \seq_map_inline:Nn \l_@@_custom_line_commands_seq
1716 { \cs_set_eq:cc { ##1 } { nicematrix - ##1 } }
1717 \cs_set_eq:NN \cellcolor \@@_cellcolor_tabular
1718 \cs_set_eq:NN \rowcolor \@@_rowcolor_tabular
1719 \cs_set_eq:NN \rowcolors \@@_rowcolors_tabular
1720 \cs_set_eq:NN \rowlistcolors \@@_rowlistcolors_tabular
1721 \int_compare:nNnT { \l_@@_first_row_int } > { \c_zero_int }
1722 { \cs_set_eq:NN \@@_tuning_first_row: \prg_do_nothing: }
1723 \int_compare:nNnT { \l_@@_last_row_int } < { \c_zero_int }
1724 { \cs_set_eq:NN \@@_tuning_last_row: \prg_do_nothing: }

50

1725 \bool_if:NT \l_@@_renew_dots_bool { \@@_renew_dots: }

We redefine \multicolumn and, since we want \multicolumn to be available in the potential envi-
ronments {tabular} nested in the environments of nicematrix, we patch {tabular} to go back to the
original definition. A \hook_gremove_code:nn will be put in \@@_after_array:.

1726 \cs_set_eq:NN \multicolumn \@@_multicolumn:nnn
1727 \hook_gput_code:nnn { env / tabular / begin } { nicematrix }
1728 { \cs_set_eq:NN \multicolumn \@@_old_multicolumn: }
1729 \@@_revert_colortbl:

If there is one or several commands \tabularnote in the caption specified by the key caption and
if that caption has to be composed above the tabular, we have now that information because it has
been written in the aux file at a previous run. We use that information to start counting the tabular
notes in the main array at the right value (we remember that the caption will be composed after the
array!).

1730 \tl_if_exist:NT \l_@@_note_in_caption_tl
1731 {
1732 \tl_if_empty:NF \l_@@_note_in_caption_tl
1733 {
1734 \int_gset:Nn \g_@@_notes_caption_int { \l_@@_note_in_caption_tl }
1735 \int_gset:Nn \c@tabularnote { \l_@@_note_in_caption_tl }
1736 }
1737 }

The sequence \g_@@_multicolumn_cells_seq will contain the list of the cells of the array where a
command \multicolumn{n}{...}{...} with n > 1 is issued. In \g_@@_multicolumn_sizes_seq,
the “sizes” (that is to say the values of n) correspondent will be stored. These lists will be used for
the creation of the “medium nodes” (if they are created).

1738 \seq_gclear:N \g_@@_multicolumn_cells_seq
1739 \seq_gclear:N \g_@@_multicolumn_sizes_seq

The counter \c@iRow will be used to count the rows of the array (its incrementation will be in the
first cell of the row).

1740 \int_gset:Nn \c@iRow { \l_@@_first_row_int - 1 }

At the end of the environment {array}, \c@iRow will be the total number de rows.
\g_@@_row_total_int will be the number of rows excepted the last row (if \l_@@_last_row_bool
has been raised with the option last-row).

1741 \int_gzero:N \g_@@_row_total_int

The counter \c@jCol will be used to count the columns of the array. Since we want to know the total
number of columns of the matrix, we also create a counter \g_@@_col_total_int. These counters
are updated in the command \@@_cell_begin: executed at the beginning of each cell.

1742 \int_gzero:N \g_@@_col_total_int

1743 \cs_set_eq:NN \@ifnextchar \new@ifnextchar

1744 \bool_gset_false:N \g_@@_last_col_found_bool

During the construction of the array, the instructions \Cdots, \Ldots, etc. will be written in token
lists \g_@@_Cdots_lines_tl, etc. which will be executed after the construction of the array.

1745 \tl_gclear_new:N \g_@@_Cdots_lines_tl
1746 \tl_gclear_new:N \g_@@_Ldots_lines_tl
1747 \tl_gclear_new:N \g_@@_Vdots_lines_tl
1748 \tl_gclear_new:N \g_@@_Ddots_lines_tl
1749 \tl_gclear_new:N \g_@@_Iddots_lines_tl
1750 \tl_gclear_new:N \g_@@_HVdotsfor_lines_tl

1751 \tl_gclear:N \g_nicematrix_code_before_tl
1752 \tl_gclear:N \g_@@_pre_code_before_tl

51

We compute the width of both delimiters. We remind that, when the environment {NiceArray} is
used, it’s possible to specify the delimiters in the preamble (eg [ccc]).

1753 \dim_zero_new:N \l_@@_left_delim_dim
1754 \dim_zero_new:N \l_@@_right_delim_dim
1755 \bool_if:NTF \g_@@_delims_bool
1756 {

The command \bBigg@ is a command of amsmath.
1757 \hbox_set:Nn \l_tmpa_box { $ \bBigg@ 5 \g_@@_left_delim_tl $ }
1758 \dim_set:Nn \l_@@_left_delim_dim { \box_wd:N \l_tmpa_box }
1759 \hbox_set:Nn \l_tmpa_box { $ \bBigg@ 5 \g_@@_right_delim_tl $ }
1760 \dim_set:Nn \l_@@_right_delim_dim { \box_wd:N \l_tmpa_box }
1761 }
1762 {
1763 \dim_gset:Nn \l_@@_left_delim_dim
1764 { 2 \bool_if:NTF \l_@@_tabular_bool { \tabcolsep } { \arraycolsep } }
1765 \dim_gset_eq:NN \l_@@_right_delim_dim \l_@@_left_delim_dim
1766 }
1767 }

This is the end of \@@_pre_array_after_CodeBefore:.

The command \@@_pre_array: will be executed after analysis of the keys of the environment. If
will, in particular, read the potential informations written on the aux file.

1768 \cs_new_protected:Npn \@@_pre_array:
1769 {
1770 \cs_if_exist:NT \theiRow { \int_set_eq:NN \l_@@_old_iRow_int \c@iRow }
1771 \int_gzero_new:N \c@iRow
1772 \cs_if_exist:NT \thejCol { \int_set_eq:NN \l_@@_old_jCol_int \c@jCol }
1773 \int_gzero_new:N \c@jCol

We give values to the LaTeX counters iRow and jCol. We remind that before and after the
main array (in particular in the \CodeBefore and the \CodeAfter, they represent the numbers
of rows and columns of the array (without the potential last row and last column). The value
of \g_@@_row_total_int is the number of the last row (with potentially a last exterior row) and
\g_@@_col_total_int is the number of the last column (with potentially a last exterior column).

1774 \int_compare:nNnT \l_@@_last_row_int > 0
1775 { \int_set:Nn \c@iRow { \l_@@_last_row_int - 1 } }
1776 \int_compare:nNnT \l_@@_last_col_int > 0
1777 { \int_set:Nn \c@jCol { \l_@@_last_col_int - 1 } }
1778 \bool_if:NT \g_@@_aux_found_bool
1779 {
1780 \int_set:Nn \c@iRow { \seq_item:Nn \g_@@_size_seq { 2 } }
1781 \int_set:Nn \c@jCol { \seq_item:Nn \g_@@_size_seq { 5 } }
1782 \int_gset:Nn \g_@@_row_total_int { \seq_item:Nn \g_@@_size_seq { 3 } }
1783 \int_gset:Nn \g_@@_col_total_int { \seq_item:Nn \g_@@_size_seq { 6 } }
1784 }

We recall that \l_@@_last_row_int and \l_@@_last_col_int are not the numbers of the last row
and last column of the array. There are only the values of the keys last-row and last-col (maybe
the user has provided erroneous values). The meaning of that counters does not change during the
environment of nicematrix. There is only a slight adjustment: if the user have used one of those keys
without value, we provide now the right value as read on the aux file (of course, it’s possible only
after the first compilation).

1785 \int_compare:nNnT { \l_@@_last_row_int } = { -1 }
1786 {
1787 \bool_set_true:N \l_@@_last_row_without_value_bool
1788 \bool_if:NT \g_@@_aux_found_bool
1789 { \int_set:Nn \l_@@_last_row_int { \seq_item:Nn \g_@@_size_seq { 3 } } }
1790 }
1791 \int_compare:nNnT { \l_@@_last_col_int } = { -1 }
1792 {
1793 \bool_if:NT \g_@@_aux_found_bool

52

1794 { \int_set:Nn \l_@@_last_col_int { \seq_item:Nn \g_@@_size_seq { 6 } } }
1795 }

If there is an exterior row, we patch a command used in \@@_cell_begin: in order to keep track of
some dimensions needed to the construction of that “last row”.

1796 \int_compare:nNnT { \l_@@_last_row_int } > { -2 }
1797 {
1798 \tl_put_right:Nn \@@_update_for_first_and_last_row:
1799 {
1800 \dim_compare:nNnT { \g_@@_ht_last_row_dim } < { \box_ht:N \l_@@_cell_box }
1801 { \dim_gset:Nn \g_@@_ht_last_row_dim { \box_ht:N \l_@@_cell_box } }
1802 \dim_compare:nNnT { \g_@@_dp_last_row_dim } < { \box_dp:N \l_@@_cell_box }
1803 { \dim_gset:Nn \g_@@_dp_last_row_dim { \box_dp:N \l_@@_cell_box } }
1804 }
1805 }

1806 \seq_gclear:N \g_@@_cols_vlism_seq
1807 \seq_gclear:N \g_@@_submatrix_seq

Now the \CodeBefore.
1808 \bool_if:NT \l_@@_code_before_bool { \@@_exec_code_before: }

The code in \@@_pre_array_after_CodeBefore: is used only here.
1809 \@@_pre_array_after_CodeBefore:

Here is the beginning of the box which will contain the array. The \hbox_set_end: corresponding
to this \hbox_set:Nw will be in the second part of the environment (and the closing $ also).

1810 \hbox_set:Nw \l_@@_the_array_box

1811 \skip_horizontal:N \l_@@_left_margin_dim
1812 \skip_horizontal:N \l_@@_extra_left_margin_dim
1813 \UseTaggingSocket { tbl / hmode / begin }

The following code is a workaround to specify to the tagging system that the following code is fake
math (it raises \l__math_fakemath_bool in recent versions of LaTeX).

1814 \m@th
1815 $ % $
1816 \bool_if:NTF \l_@@_light_syntax_bool
1817 { \use:c { @@-light-syntax } }
1818 { \use:c { @@-normal-syntax } }
1819 }

The following command \@@_CodeBefore_Body:w will be used when the keyword \CodeBefore is
present at the beginning of the environment.

1820 \cs_new_protected_nopar:Npn \@@_CodeBefore_Body:w #1 \Body
1821 {
1822 \tl_set:Nn \l_tmpa_tl { #1 }
1823 \int_compare:nNnT { \char_value_catcode:n { 60 } } = { 13 }
1824 { \@@_rescan_for_spanish:N \l_tmpa_tl }
1825 \tl_gput_left:No \g_@@_pre_code_before_tl \l_tmpa_tl
1826 \bool_set_true:N \l_@@_code_before_bool

We go on with \@@_pre_array: which will (among other) execute the \CodeBefore (specified in
the key code-before or after the keyword \CodeBefore). By definition, the \CodeBefore must be
executed before the body of the array...

1827 \@@_pre_array:
1828 }

53

9 The \CodeBefore

1829 \cs_new_protected_nopar:Npn \@@_Body: { \@@_fatal:n { Body~alone } }

The following command will be executed if the \CodeBefore has to be actually executed (that
command will be used only once and is present alone only for legibility).

1830 \cs_new_protected:Npn \@@_pre_code_before:
1831 {

We will create all the col nodes and row nodes with the information written in the aux file. You use
the technique described in the page 1247 of pgfmanual.pdf, version 3.1.10.

1832 \pgfsys@markposition { \@@_env: - position }
1833 \pgfsys@getposition { \@@_env: - position } \@@_picture_position:
1834 \pgfpicture
1835 \pgf@relevantforpicturesizefalse

First, the recreation of the row nodes.
1836 \int_step_inline:nnn { \l_@@_first_row_int } { \g_@@_row_total_int + 1 }
1837 {
1838 \pgfsys@getposition { \@@_env: - row - ##1 } \@@_node_position:
1839 \pgfcoordinate { \@@_env: - row - ##1 }
1840 { \pgfpointdiff \@@_picture_position: \@@_node_position: }
1841 }

Now, the recreation of the col nodes.
1842 \int_step_inline:nnn { \l_@@_first_col_int } { \g_@@_col_total_int + 1 }
1843 {
1844 \pgfsys@getposition { \@@_env: - col - ##1 } \@@_node_position:
1845 \pgfcoordinate { \@@_env: - col - ##1 }
1846 { \pgfpointdiff \@@_picture_position: \@@_node_position: }
1847 }

Now, the creation of the cell nodes (i-j), and, maybe also the “medium nodes” and the “large
nodes”.

1848 \bool_if:NT \g_@@_create_cell_nodes_bool { \@@_recreate_cell_nodes: }
1849 \endpgfpicture

Now, you recreate the diagonal nodes by using the row nodes and the col nodes.
1850 \@@_create_diag_nodes:

Now, the recreation of the nodes of the blocks which have a name.
1851 \@@_create_blocks_nodes:

1852 \IfPackageLoadedT { tikz }
1853 {
1854 \tikzset
1855 {
1856 every~picture / .style =
1857 { overlay , name~prefix = \@@_env: - }
1858 }
1859 }
1860 \cs_set_eq:NN \cellcolor \@@_cellcolor
1861 \cs_set_eq:NN \rectanglecolor \@@_rectanglecolor
1862 \cs_set_eq:NN \roundedrectanglecolor \@@_roundedrectanglecolor
1863 \cs_set_eq:NN \rowcolor \@@_rowcolor
1864 \cs_set_eq:NN \rowcolors \@@_rowcolors
1865 \cs_set_eq:NN \rowlistcolors \@@_rowlistcolors
1866 \cs_set_eq:NN \arraycolor \@@_arraycolor
1867 \cs_set_eq:NN \columncolor \@@_columncolor
1868 \cs_set_eq:NN \chessboardcolors \@@_chessboardcolors
1869 \cs_set_eq:NN \SubMatrix \@@_SubMatrix_in_code_before
1870 \cs_set_eq:NN \ShowCellNames \@@_ShowCellNames
1871 \cs_set_eq:NN \TikzEveryCell \@@_TikzEveryCell
1872 \cs_set_eq:NN \EmptyColumn \@@_EmptyColumn:n
1873 \cs_set_eq:NN \EmptyRow \@@_EmptyRow:n
1874 }

54

1875 \cs_new_protected:Npn \@@_exec_code_before:
1876 {

We mark the cells which are in the (empty) corners because those cells must not be colored. We
should try to find a way to detected whether we actually have coloring instructions to execute...

1877 \clist_map_inline:Nn \l_@@_corners_cells_clist
1878 { \cs_set_nopar:cpn { @@ _ corner _ ##1 } { } }

1879 \seq_gclear_new:N \g_@@_colors_seq

The sequence \g_@@_colors_seq will always contain as first element the special color nocolor: when
that color is used, no color will be applied in the corresponding cells by the other coloring commands
of nicematrix.

1880 \@@_add_to_colors_seq:nn { { nocolor } } { }
1881 \bool_gset_false:N \g_@@_create_cell_nodes_bool
1882 \group_begin:

We compose the \CodeBefore in math mode in order to nullify the spaces put by the user between
instructions in the \CodeBefore.

1883 \if_mode_math:
1884 \@@_exec_code_before_i:
1885 \else:
1886 $ % $
1887 \@@_exec_code_before_i:
1888 $ % $
1889 \fi:
1890 \group_end:
1891 }

The following code is a security for the case the user has used babel with the option spanish: in
that case, the characters < (de code ascci 60) and > are activated and TikZ is not able to solve the
problem (even with the TikZ library babel).

1892 \cs_new_protected:Npn \@@_exec_code_before_i:
1893 {
1894 \int_compare:nNnT { \char_value_catcode:n { 60 } } = { 13 }
1895 { \@@_rescan_for_spanish:N \l_@@_code_before_tl }

Here is the \CodeBefore. The construction is a bit complicated because \g_@@_pre_code_before_tl
may begin with keys between square brackets. Moreover, after the analyze of those keys, we sometimes
have to decide to do not execute the rest of \g_@@_pre_code_before_tl (when it is asked for the
creation of cell nodes in the \CodeBefore). That’s why we use a \q_stop: it will be used to discard
the rest of \g_@@_pre_code_before_tl.

1896 \exp_last_unbraced:No \@@_CodeBefore_keys:
1897 \g_@@_pre_code_before_tl

Now, all the cells which are specified to be colored by instructions in the \CodeBefore will actually
be colored. It’s a two-stages mechanism because we want to draw all the cells with the same color at
the same time to absolutely avoid thin white lines in some pdf viewers.

1898 \@@_actually_color:
1899 \l_@@_code_before_tl
1900 \q_stop
1901 }

1902 \keys_define:nn { nicematrix / CodeBefore }
1903 {
1904 create-cell-nodes .bool_gset:N = \g_@@_create_cell_nodes_bool ,
1905 create-cell-nodes .default:n = true ,
1906 sub-matrix .code:n = \keys_set:nn { nicematrix / sub-matrix } { #1 } ,
1907 sub-matrix .value_required:n = true ,
1908 delimiters / color .tl_set:N = \l_@@_delimiters_color_tl ,
1909 delimiters / color .value_required:n = true ,
1910 unknown .code:n = \@@_error:n { Unknown~key~for~CodeBefore }
1911 }

1912 \NewDocumentCommand \@@_CodeBefore_keys: { O { } }
1913 {

55

1914 \keys_set:nn { nicematrix / CodeBefore } { #1 }
1915 \@@_CodeBefore:w
1916 }

We have extracted the options of the keyword \CodeBefore in order to see whether the key create-
cell-nodes has been used. Now, you can execute the rest of the \CodeBefore, excepted, of course,
if we are in the first compilation.

1917 \cs_new_protected:Npn \@@_CodeBefore:w #1 \q_stop
1918 {
1919 \bool_if:NTF \g_@@_aux_found_bool
1920 {
1921 \@@_pre_code_before:
1922 \legacy_if:nF { measuring@ } { #1 }
1923 }

If we are in the first compilation, you won’t really execute the \CodeBefore but we have to execute
some instructions of creation of PGF/TikZ pictures in order to have the correct aux file in the next
run (hence, we avoid to “lose” a run).

1924 {
1925 \pgfsys@markposition { \@@_env: - position }
1926 \pgfsys@getposition { \@@_env: - position } \@@_picture_position:
1927 \pgfpicture
1928 \pgf@relevantforpicturesizefalse
1929 \endpgfpicture

The following picture corresponds to \@@_create_diag_nodes:
1930 \pgfpicture
1931 \pgfrememberpicturepositiononpagetrue
1932 \endpgfpicture

The following picture corresponds to \@@_create_blocks_nodes:.
1933 \pgfpicture
1934 \pgf@relevantforpicturesizefalse
1935 \pgfrememberpicturepositiononpagetrue
1936 \endpgfpicture

The following picture corresponds \@@_actually_color:
1937 \pgfpicture
1938 \pgf@relevantforpicturesizefalse
1939 \endpgfpicture
1940 }
1941 }

By default, if the user uses the \CodeBefore, only the col nodes, row nodes and diag nodes are
available in that \CodeBefore. With the key create-cell-nodes, the cell nodes, that is to say the
nodes of the form (i-j) (but not the extra nodes) are also available because those nodes also are
recreated and that recreation is done by the following command.

1942 \cs_new_protected:Npn \@@_recreate_cell_nodes:
1943 {
1944 \int_step_inline:nnn { \l_@@_first_row_int } { \g_@@_row_total_int }
1945 {
1946 \pgfsys@getposition { \@@_env: - ##1 - base } \@@_node_position:
1947 \pgfcoordinate { \@@_env: - row - ##1 - base }
1948 { \pgfpointdiff \@@_picture_position: \@@_node_position: }
1949 \int_step_inline:nnn { \l_@@_first_col_int } { \g_@@_col_total_int }
1950 {
1951 \cs_if_exist:cT
1952 { pgf @ sys @ pdf @ mark @ pos @ \@@_env: - ##1 - ####1 - NW }
1953 {
1954 \pgfsys@getposition
1955 { \@@_env: - ##1 - ####1 - NW }
1956 \@@_node_position:
1957 \pgfsys@getposition
1958 { \@@_env: - ##1 - ####1 - SE }
1959 \@@_node_position_i:

56

1960 \@@_pgf_rect_node:nnn
1961 { \@@_env: - ##1 - ####1 }
1962 { \pgfpointdiff \@@_picture_position: \@@_node_position: }
1963 { \pgfpointdiff \@@_picture_position: \@@_node_position_i: }
1964 }
1965 }
1966 }
1967 \@@_create_extra_nodes:
1968 \@@_create_aliases_last:
1969 }

1970 \cs_new_protected:Npn \@@_create_aliases_last:
1971 {
1972 \int_step_inline:nn { \c@iRow }
1973 {
1974 \pgfnodealias
1975 { \@@_env: - ##1 - last }
1976 { \@@_env: - ##1 - \int_use:N \c@jCol }
1977 }
1978 \int_step_inline:nn { \c@jCol }
1979 {
1980 \pgfnodealias
1981 { \@@_env: - last - ##1 }
1982 { \@@_env: - \int_use:N \c@iRow - ##1 }
1983 }
1984 \pgfnodealias
1985 { \@@_env: - last - last }
1986 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol }
1987 }

1988 \cs_new_protected:Npn \@@_create_blocks_nodes:
1989 {
1990 \pgfpicture
1991 \pgf@relevantforpicturesizefalse
1992 \pgfrememberpicturepositiononpagetrue
1993 \seq_map_inline:Nn \g_@@_pos_of_blocks_seq
1994 { \@@_create_one_block_node:nnnnn ##1 }
1995 \endpgfpicture
1996 }

The following command is called \@@_create_one_block_node:nnnnn but, in fact, it creates a node
only if the last argument (#5) which is the name of the block, is not empty.7

1997 \cs_new_protected:Npn \@@_create_one_block_node:nnnnn #1 #2 #3 #4 #5
1998 {
1999 \tl_if_empty:nF { #5 }
2000 {
2001 \@@_qpoint:n { col - #2 }
2002 \dim_set_eq:NN \l_tmpa_dim \pgf@x
2003 \@@_qpoint:n { #1 }
2004 \dim_set_eq:NN \l_tmpb_dim \pgf@y
2005 \@@_qpoint:n { col - \int_eval:n { #4 + 1 } }
2006 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@x
2007 \@@_qpoint:n { \int_eval:n { #3 + 1 } }
2008 \dim_set_eq:NN \l_@@_tmpd_dim \pgf@y
2009 \@@_pgf_rect_node:nnnnn
2010 { \@@_env: - #5 }
2011 { \dim_use:N \l_tmpa_dim }
2012 { \dim_use:N \l_tmpb_dim }
2013 { \dim_use:N \l_@@_tmpc_dim }

7Moreover, there is also in the list \g_@@_pos_of_blocks_seq the positions of the dotted lines (created by \Cdots,
etc.) and, for these entries, there is, of course, no name (the fifth component is empty).

57

2014 { \dim_use:N \l_@@_tmpd_dim }
2015 }
2016 }

2017 \cs_new_protected:Npn \@@_patch_for_revtex:
2018 {
2019 \cs_set_eq:NN \@addamp \@addamp@LaTeX
2020 \cs_set_eq:NN \@array \@array@array
2021 \cs_set_eq:NN \@tabular \@tabular@array
2022 \cs_set:Npn \@tabarray { \@ifnextchar [{ \@array } { \@array [c] } }
2023 \cs_set_eq:NN \array \array@array
2024 \cs_set_eq:NN \endarray \endarray@array
2025 \cs_set:Npn \endtabular { \endarray $\egroup} % $
2026 \cs_set_eq:NN \@mkpream \@mkpream@array
2027 \cs_set_eq:NN \@classx \@classx@array
2028 \cs_set_eq:NN \insert@column \insert@column@array
2029 \cs_set_eq:NN \@arraycr \@arraycr@array
2030 \cs_set_eq:NN \@xarraycr \@xarraycr@array
2031 \cs_set_eq:NN \@xargarraycr \@xargarraycr@array
2032 }

10 The environment {NiceArrayWithDelims}

2033 \NewDocumentEnvironment { NiceArrayWithDelims }
2034 { m m O { } m ! O { } t \CodeBefore }
2035 {
2036 \bool_if:NT \c_@@_revtex_bool { \@@_patch_for_revtex: }

2037 \@@_provide_pgfsyspdfmark:
2038 \bool_if:NT \g_@@_footnote_bool { \savenotes }

The aim of the following \bgroup (the corresponding \egroup is, of course, at the end of the envi-
ronment) is to be able to put an exposant to a matrix in a mathematical formula.

2039 \bgroup

2040 \tl_gset:Nn \g_@@_left_delim_tl { #1 }
2041 \tl_gset:Nn \g_@@_right_delim_tl { #2 }
2042 \tl_gset:Nn \g_@@_user_preamble_tl { #4 }
2043 \tl_if_empty:NT \g_@@_user_preamble_tl { \@@_fatal:n { empty~preamble } }

2044 \int_gzero:N \g_@@_block_box_int
2045 \dim_gzero:N \g_@@_width_last_col_dim
2046 \dim_gzero:N \g_@@_width_first_col_dim
2047 \bool_gset_false:N \g_@@_row_of_col_done_bool
2048 \str_if_empty:NT \g_@@_name_env_str
2049 { \str_gset:Nn \g_@@_name_env_str { NiceArrayWithDelims } }
2050 \bool_if:NTF \l_@@_tabular_bool
2051 { \mode_leave_vertical: }
2052 { \@@_test_if_math_mode: }
2053 \bool_if:NT \l_@@_in_env_bool { \@@_fatal:n { Yet~in~env } }
2054 \bool_set_true:N \l_@@_in_env_bool

The command \CT@arc@ contains the instruction of color for the rules of the array8. This command
is used by \CT@arc@ but we use it also for compatibility with colortbl. But we want also to be able
to use color for the rules of the array when colortbl is not loaded. That’s why we do the following
instruction which is in the patch of the beginning of arrays done by colortbl. Of course, we restore
the value of \CT@arc@ at the end of our environment.

2055 \cs_gset_eq:cN { @@_old_CT@arc@ } \CT@arc@

8e.g. \color[rgb]{0.5,0.5,0}

58

We deactivate TikZ externalization because we will use pgf pictures with the options overlay and
remember picture (or equivalent forms). We deactivate with \tikzexternaldisable and not with
\tikzset{external/export=false} which is not equivalent.

2056 \cs_if_exist:NT \tikz@library@external@loaded
2057 {
2058 \tikzexternaldisable
2059 \cs_if_exist:NT \ifstandalone
2060 { \tikzset { external / optimize = false } }
2061 }

We increment the counter \g_@@_env_int which counts the environments of the package.
2062 \int_gincr:N \g_@@_env_int
2063 \bool_if:NF \l_@@_block_auto_columns_width_bool
2064 { \dim_gzero_new:N \g_@@_max_cell_width_dim }

The sequence \g_@@_blocks_seq will contain the characteristics of the blocks (specified by \Block)
of the array. The sequence \g_@@_pos_of_blocks_seq will contain only the position of the blocks.

2065 \seq_gclear:N \g_@@_blocks_seq
2066 \seq_gclear:N \g_@@_pos_of_blocks_seq

In fact, the sequence \g_@@_pos_of_blocks_seq will also contain the positions of the cells with a
\diagbox and the \multicolumn.

2067 \seq_gclear:N \g_@@_pos_of_stroken_blocks_seq
2068 \seq_gclear:N \g_@@_pos_of_xdots_seq
2069 \tl_gclear_new:N \g_@@_code_before_tl
2070 \tl_gclear:N \g_@@_row_style_tl

We load all the information written in the aux file during previous compilations corresponding to the
current environment.

2071 \tl_if_exist:cTF { g_@@ _ \int_use:N \g_@@_env_int _ tl }
2072 {
2073 \bool_gset_true:N \g_@@_aux_found_bool
2074 \use:c { g_@@ _ \int_use:N \g_@@_env_int _ tl }
2075 }
2076 { \bool_gset_false:N \g_@@_aux_found_bool }

Now, we prepare the token list for the instructions that we will have to write on the aux file at the
end of the environment.

2077 \tl_gclear:N \g_@@_aux_tl

2078 \tl_if_empty:NF \g_@@_code_before_tl
2079 {
2080 \bool_set_true:N \l_@@_code_before_bool
2081 \tl_put_right:No \l_@@_code_before_tl \g_@@_code_before_tl
2082 }
2083 \tl_if_empty:NF \g_@@_pre_code_before_tl
2084 { \bool_set_true:N \l_@@_code_before_bool }

The set of keys is not exactly the same for {NiceArray} and for the variants of {NiceArray}
({pNiceArray}, {bNiceArray}, etc.) because, for {NiceArray}, we have the options t, c, b and
baseline.

2085 \bool_if:NTF \g_@@_delims_bool
2086 { \keys_set:nn { nicematrix / pNiceArray } }
2087 { \keys_set:nn { nicematrix / NiceArray } }
2088 { #3 , #5 }

2089 \@@_set_CTarc:o \l_@@_rules_color_tl % noqa: w302

The argument #6 is the last argument of {NiceArrayWithDelims}. With that argument of type
“t \CodeBefore”, we test whether there is the keyword \CodeBefore at the beginning of the body
of the environment. If that keyword is present, we have now to extract all the content between
that keyword \CodeBefore and the (other) keyword \Body. It’s the job that will do the command
\@@_CodeBefore_Body:w. After that job, the command \@@_CodeBefore_Body:w will go on with
\@@_pre_array:.

2090 \bool_if:nTF { #6 } { \@@_CodeBefore_Body:w } { \@@_pre_array: }

59

2091 }

Now, the second part of the environment {NiceArrayWithDelims}.
2092 {
2093 \bool_if:NTF \l_@@_light_syntax_bool
2094 { \use:c { end @@-light-syntax } }
2095 { \use:c { end @@-normal-syntax } }
2096 $ % $
2097 \skip_horizontal:N \l_@@_right_margin_dim
2098 \skip_horizontal:N \l_@@_extra_right_margin_dim
2099 \hbox_set_end:
2100 \UseTaggingSocket { tbl / hmode / end }

End of the construction of the array (in the box \l_@@_the_array_box).

If the user has used the key width without any column X, we raise an error.
2101 \bool_if:NT \l_@@_width_used_bool
2102 {
2103 \fp_compare:nNnT { \g_@@_total_X_weight_fp } = { \c_zero_fp }
2104 { \@@_error_or_warning:n { width~without~X~columns } }
2105 }

Now, if there is at least one X-column in the environment, we compute the width that those columns
will have (in the next compilation). In fact, l_@@_X_columns_dim will be the width of a column of
weight 1.0. For a X-column of weight x, the width will be \l_@@_X_columns_dim multiplied by x.

2106 \fp_compare:nNnT { \g_@@_total_X_weight_fp } > { \c_zero_fp }
2107 { \@@_compute_width_X: }

It the user has used the key last-row with a value, we control that the given value is correct (since
we have just constructed the array, we know the actual number of rows of the array).

2108 \int_compare:nNnT { \l_@@_last_row_int } > { -2 }
2109 {
2110 \bool_if:NF \l_@@_last_row_without_value_bool
2111 {
2112 \int_compare:nNnF { \l_@@_last_row_int } = { \c@iRow }
2113 {
2114 \@@_error:n { Wrong~last~row }
2115 \int_set_eq:NN \l_@@_last_row_int \c@iRow
2116 }
2117 }
2118 }

Now, the definition of \c@jCol and \g_@@_col_total_int changes: \c@jCol will be the number of
columns without the “last column”; \g_@@_col_total_int will be the number of columns with this
“last column”.9

2119 \int_gset_eq:NN \c@jCol \g_@@_col_total_int
2120 \bool_if:NTF \g_@@_last_col_found_bool
2121 { \int_gdecr:N \c@jCol }
2122 {
2123 \int_compare:nNnT { \l_@@_last_col_int } > { -1 }
2124 { \@@_error:n { last~col~not~used } }
2125 }

We fix also the value of \c@iRow and \g_@@_row_total_int with the same principle.
2126 \int_gset_eq:NN \g_@@_row_total_int \c@iRow
2127 \int_compare:nNnT { \l_@@_last_row_int } > { -1 }
2128 { \int_gdecr:N \c@iRow }

Now, we begin the real construction in the output flow of TeX. First, we take into account
a potential “first column” (we remind that this “first column” has been constructed in an overlapping
position and that we have computed its width in \g_@@_width_first_col_dim: see p. 95).

9We remind that the potential “first column” (exterior) has the number 0.

60

2129 \int_if_zero:nT { \l_@@_first_col_int }
2130 { \skip_horizontal:N \g_@@_width_first_col_dim }

The construction of the real box is different whether we have delimiters to put.
2131 \bool_if:nTF { ! \g_@@_delims_bool }
2132 {
2133 \str_if_eq:eeTF { \l_@@_baseline_tl } { c }
2134 { \@@_use_arraybox_with_notes_c: }
2135 {
2136 \str_if_eq:eeTF { \l_@@_baseline_tl } { b }
2137 { \@@_use_arraybox_with_notes_b: }
2138 { \@@_use_arraybox_with_notes: }
2139 }
2140 }

Now, in the case of an environment with delimiters. We compute \l_tmpa_dim which is the total
height of the “first row” above the array (when the key first-row is used).

2141 {
2142 \int_if_zero:nTF { \l_@@_first_row_int }
2143 {
2144 \dim_set_eq:NN \l_tmpa_dim \g_@@_dp_row_zero_dim
2145 \dim_add:Nn \l_tmpa_dim \g_@@_ht_row_zero_dim
2146 }
2147 { \dim_zero:N \l_tmpa_dim }

We compute \l_tmpb_dim which is the total height of the “last row” below the array (when the key
last-row is used). A value of −2 for \l_@@_last_row_int means that there is no “last row”.10

2148 \int_compare:nNnTF { \l_@@_last_row_int } > { -2 }
2149 {
2150 \dim_set_eq:NN \l_tmpb_dim \g_@@_ht_last_row_dim
2151 \dim_add:Nn \l_tmpb_dim \g_@@_dp_last_row_dim
2152 }
2153 { \dim_zero:N \l_tmpb_dim }

2154 \hbox_set:Nn \l_tmpa_box
2155 {
2156 \m@th
2157 $ % $
2158 \@@_color:o \l_@@_delimiters_color_tl
2159 \exp_after:wN \left \g_@@_left_delim_tl
2160 \vcenter
2161 {

We take into account the “first row” (we have previously computed its total height in \l_tmpa_dim).
The \hbox:n (or \hbox) is necessary here.

2162 \skip_vertical:n { - \l_tmpa_dim - \arrayrulewidth }
2163 \hbox
2164 {
2165 \bool_if:NTF \l_@@_tabular_bool
2166 { \skip_horizontal:n { - \tabcolsep } }
2167 { \skip_horizontal:n { - \arraycolsep } }
2168 \@@_use_arraybox_with_notes_c:
2169 \bool_if:NTF \l_@@_tabular_bool
2170 { \skip_horizontal:n { - \tabcolsep } }
2171 { \skip_horizontal:n { - \arraycolsep } }
2172 }

We take into account the “last row” (we have previously computed its total height in \l_tmpb_dim).
2173 \skip_vertical:n { - \l_tmpb_dim + \arrayrulewidth }
2174 }
2175 \exp_after:wN \right \g_@@_right_delim_tl
2176 $ % $
2177 }

10A value of −1 for \l_@@_last_row_int means that there is a “last row” but the the user have not set the value
with the option last row (and we are in the first compilation).

61

Now, the box \l_tmpa_box is created with the correct delimiters.
We will put the box in the TeX flow. However, we have a small work to do when the option
delimiters/max-width is used.

2178 \bool_if:NTF \l_@@_delimiters_max_width_bool
2179 {
2180 \@@_put_box_in_flow_bis:nn
2181 { \g_@@_left_delim_tl }
2182 { \g_@@_right_delim_tl }
2183 }
2184 \@@_put_box_in_flow:
2185 }

We take into account a potential “last column” (this “last column” has been constructed in an
overlapping position and we have computed its width in \g_@@_width_last_col_dim: see p. 96).

2186 \bool_if:NT \g_@@_last_col_found_bool
2187 { \skip_horizontal:N \g_@@_width_last_col_dim }
2188 \bool_if:NT \l_@@_preamble_bool
2189 {
2190 \int_compare:nNnT { \c@jCol } < { \g_@@_static_num_of_col_int }
2191 { \@@_err_columns_not_used: }
2192 }
2193 \@@_after_array:

The aim of the following \egroup (the corresponding \bgroup is, of course, at the beginning of the
environment) is to be able to put an exposant to a matrix in a mathematical formula.

2194 \egroup

We write on the aux file all the information corresponding to the current environment.
2195 \iow_now:Nn \@mainaux { \ExplSyntaxOn }
2196 \iow_now:Nn \@mainaux { \char_set_catcode_space:n { 32 } }
2197 \iow_now:Ne \@mainaux
2198 {
2199 \tl_gclear_new:c { g_@@_ \int_use:N \g_@@_env_int _ tl }
2200 \tl_gset:cn { g_@@_ \int_use:N \g_@@_env_int _ tl }
2201 { \exp_not:o \g_@@_aux_tl }
2202 }
2203 \iow_now:Nn \@mainaux { \ExplSyntaxOff }

2204 \bool_if:NT \g_@@_footnote_bool { \endsavenotes }
2205 }

This is the end of the environment {NiceArrayWithDelims}.

2206 \cs_new_protected:Npn \@@_err_columns_not_used:
2207 {
2208 \@@_warning:n { columns~not~used }
2209 \cs_gset:Npn \@@_err_columns_not_used: { }
2210 }

The following command will be used only once. We have written that command for legibility. If there
is at least one X-column in the environment, we compute the width that those columns will have (in
the next compilation). In fact, l_@@_X_columns_dim will be the width of a column of weight 1.0.
For a X-column of weight x, the width will be \l_@@_X_columns_dim multiplied by x.

2211 \cs_new_protected:Npn \@@_compute_width_X:
2212 {
2213 \tl_gput_right:Ne \g_@@_aux_tl
2214 {
2215 \bool_set_true:N \l_@@_X_columns_aux_bool
2216 \dim_set:Nn \l_@@_X_columns_dim
2217 {

The flag g_@@_V_of_X_bool is raised when there is at least in the tabular a column of type X using
the key V. In that case, the width of the X column may be considered as correct even though the
tabular has not (of course) a width equal to \l_@@_width_dim

62

2218 \bool_lazy_and:nnTF
2219 { \g_@@_V_of_X_bool }
2220 { \l_@@_X_columns_aux_bool }
2221 { \dim_use:N \l_@@_X_columns_dim }
2222 {
2223 \dim_compare:nNnTF
2224 {
2225 \dim_abs:n
2226 { \l_@@_width_dim - \box_wd:N \l_@@_the_array_box }
2227 }
2228 <
2229 { 0.001 pt }
2230 { \dim_use:N \l_@@_X_columns_dim }
2231 {
2232 \dim_eval:n
2233 {
2234 \l_@@_X_columns_dim
2235 +
2236 \fp_to_dim:n
2237 {
2238 (
2239 \dim_eval:n
2240 { \l_@@_width_dim - \box_wd:N \l_@@_the_array_box }
2241)
2242 / \fp_use:N \g_@@_total_X_weight_fp
2243 }
2244 }
2245 }
2246 }
2247 }
2248 }
2249 }

11 Construction of the preamble of the array

The final user provides a preamble, but we must convert that preamble into a preamble which will
be given to {array} (of the package array).

The preamble given by the final user is stored in \g_@@_user_preamble_tl. The modified version
will be stored in \g_@@_array_preamble_tl.

2250 \cs_new_protected:Npn \@@_transform_preamble:
2251 {
2252 \@@_transform_preamble_i:
2253 \@@_transform_preamble_ii:
2254 }

2255 \cs_new_protected:Npn \@@_transform_preamble_i:
2256 {
2257 \int_gzero:N \c@jCol

The sequence \g_@@_cols_vlsim_seq will contain the numbers of the columns where you will to
have to draw vertical lines in the potential sub-matrices (hence the name vlism).

2258 \seq_gclear:N \g_@@_cols_vlism_seq

\g_tmpb_bool will be raised if you have a | at the end of the preamble provided by the final user.
2259 \bool_gset_false:N \g_tmpb_bool

The following sequence will store the arguments of the successive > in the preamble.
2260 \tl_gclear_new:N \g_@@_pre_cell_tl

63

The counter \l_tmpa_int will count the number of consecutive occurrences of the symbol |.
2261 \int_zero:N \l_tmpa_int
2262 \tl_gclear:N \g_@@_array_preamble_tl
2263 \str_if_eq:eeTF { \l_@@_vlines_clist } { all }
2264 {
2265 \tl_gset:Nn \g_@@_array_preamble_tl
2266 { ! { \skip_horizontal:N \arrayrulewidth } }
2267 }
2268 {
2269 \clist_if_in:NnT \l_@@_vlines_clist 1
2270 {
2271 \tl_gset:Nn \g_@@_array_preamble_tl
2272 { ! { \skip_horizontal:N \arrayrulewidth } }
2273 }
2274 }

Now, we actually make the preamble (which will be given to {array}). It will be stored in
\g_@@_array_preamble_tl.

2275 \exp_last_unbraced:No \@@_rec_preamble:n \g_@@_user_preamble_tl \s_stop
2276 \int_gset_eq:NN \g_@@_static_num_of_col_int \c@jCol

2277 \@@_replace_columncolor:
2278 }

2279 \cs_new_protected:Npn \@@_transform_preamble_ii:
2280 {

If there were delimiters at the beginning or at the end of the preamble, the environment {NiceArray}
is transformed into an environment {xNiceMatrix}.

2281 \tl_if_eq:NNTF \g_@@_left_delim_tl \c_@@_dot_tl
2282 {
2283 \tl_if_eq:NNF \g_@@_right_delim_tl \c_@@_dot_tl
2284 { \bool_gset_true:N \g_@@_delims_bool }
2285 }
2286 { \bool_gset_true:N \g_@@_delims_bool }

We want to remind whether there is a specifier | at the end of the preamble.
2287 \bool_if:NT \g_tmpb_bool { \bool_set_true:N \l_@@_bar_at_end_of_pream_bool }

We complete the preamble with the potential “exterior columns” (on both sides).
2288 \int_if_zero:nTF { \l_@@_first_col_int }
2289 { \tl_gput_left:No \g_@@_array_preamble_tl \c_@@_preamble_first_col_tl }
2290 {
2291 \bool_if:NF \g_@@_delims_bool
2292 {
2293 \bool_if:NF \l_@@_tabular_bool
2294 {
2295 \clist_if_empty:NT \l_@@_vlines_clist
2296 {
2297 \bool_if:NF \l_@@_exterior_arraycolsep_bool
2298 { \tl_gput_left:Nn \g_@@_array_preamble_tl { @ { } } }
2299 }
2300 }
2301 }
2302 }
2303 \int_compare:nNnTF { \l_@@_last_col_int } > { -1 }
2304 { \tl_gput_right:No \g_@@_array_preamble_tl \c_@@_preamble_last_col_tl }
2305 {
2306 \bool_if:NF \g_@@_delims_bool
2307 {

64

2308 \bool_if:NF \l_@@_tabular_bool
2309 {
2310 \clist_if_empty:NT \l_@@_vlines_clist
2311 {
2312 \bool_if:NF \l_@@_exterior_arraycolsep_bool
2313 { \tl_gput_right:Nn \g_@@_array_preamble_tl { @ { } } }
2314 }
2315 }
2316 }
2317 }

We try to give a good error message when the final user puts more columns than allowed by the
preamble of the array. The mechanism consists of an extra column. However, if tagging is in force,
that dummy extra column will be tagged (with <TD> tags) and that’s why we disable that mechanism
when tagging is in force.

2318 \tag_if_active:F
2319 {

Moreover, when {NiceTabular*} is used, the mechanism can’t be used for technical reasons. We test
that situation with \l_@@_tabular_width_dim.

2320 \dim_compare:nNnT { \l_@@_tabular_width_dim } = { \c_zero_dim }
2321 {
2322 \tl_gput_right:Nn \g_@@_array_preamble_tl
2323 { > { \@@_err_too_many_cols: } l }
2324 }
2325 }
2326 }

We have used to add a last column to raise a good error message when the user puts more columns
than allowed by its preamble. For technical reasons, it was not possible to do that in {NiceTabular*}
and that’s why we used to control that with the value of \l_@@_tabular_width_dim).

The preamble provided by the final user will be read by a finite automata. The following function
\@@_rec_preamble:n will read that preamble (usually letter by letter) in a recursive way (hence the
name of that function). in the preamble.

2327 \cs_new_protected:Npn \@@_rec_preamble:n #1
2328 {

For the majority of the letters, we will trigger the corresponding action by calling directly a function
in the main hashtable of TeX (thanks to the mechanism \csname...\endcsname. Be careful: all
these functions take in as first argument the letter (or token) itself.11

2329 \cs_if_exist:cTF { @@ _ \token_to_str:N #1 : }
2330 { \use:c { @@ _ \token_to_str:N #1 : } { #1 } }
2331 {

Now, the columns defined by \newcolumntype of array.
2332 \cs_if_exist:cTF { NC @ find @ #1 }
2333 {
2334 \tl_set_eq:Nc \l_tmpb_tl { NC @ rewrite @ #1 }
2335 \exp_last_unbraced:No \@@_rec_preamble:n \l_tmpb_tl
2336 }
2337 {
2338 \str_if_eq:nnTF { #1 } { S }
2339 { \@@_fatal:n { unknown~column~type~S } }
2340 { \@@_fatal:nn { unknown~column~type } { #1 } }
2341 }
2342 }
2343 }

11We do that because it’s an easy way to insert the letter at some places in the code that we will add to
\g_@@_array_preamble_tl.

65

For c, l and r
2344 \cs_new_protected:Npn \@@_c: #1
2345 {
2346 \tl_gput_right:No \g_@@_array_preamble_tl \g_@@_pre_cell_tl
2347 \tl_gclear:N \g_@@_pre_cell_tl
2348 \tl_gput_right:Nn \g_@@_array_preamble_tl
2349 { > \@@_cell_begin: c < \@@_cell_end: }

We increment the counter of columns and then we test for the presence of a <.
2350 \int_gincr:N \c@jCol
2351 \@@_rec_preamble_after_col:n
2352 }

2353 \cs_new_protected:Npn \@@_l: #1
2354 {
2355 \tl_gput_right:No \g_@@_array_preamble_tl \g_@@_pre_cell_tl
2356 \tl_gclear:N \g_@@_pre_cell_tl
2357 \tl_gput_right:Nn \g_@@_array_preamble_tl
2358 {
2359 > { \@@_cell_begin: \tl_set_eq:NN \l_@@_hpos_cell_tl \c_@@_l_tl }
2360 l
2361 < \@@_cell_end:
2362 }
2363 \int_gincr:N \c@jCol
2364 \@@_rec_preamble_after_col:n
2365 }

2366 \cs_new_protected:Npn \@@_r: #1
2367 {
2368 \tl_gput_right:No \g_@@_array_preamble_tl \g_@@_pre_cell_tl
2369 \tl_gclear:N \g_@@_pre_cell_tl
2370 \tl_gput_right:Nn \g_@@_array_preamble_tl
2371 {
2372 > { \@@_cell_begin: \tl_set_eq:NN \l_@@_hpos_cell_tl \c_@@_r_tl }
2373 r
2374 < \@@_cell_end:
2375 }
2376 \int_gincr:N \c@jCol
2377 \@@_rec_preamble_after_col:n
2378 }

For ! and @
2379 \cs_new_protected:cpn { @@ _ \token_to_str:N ! : } #1 #2
2380 {
2381 \tl_gput_right:Nn \g_@@_array_preamble_tl { #1 { #2 } }
2382 \@@_rec_preamble:n
2383 }
2384 \cs_set_eq:cc { @@ _ \token_to_str:N @ : } { @@ _ \token_to_str:N ! : }

For |
2385 \cs_new_protected:cpn { @@ _ | : } #1
2386 {

\l_tmpa_int is the number of successive occurrences of |
2387 \int_incr:N \l_tmpa_int
2388 \@@_make_preamble_i_i:n
2389 }

2390 \cs_new_protected:Npn \@@_make_preamble_i_i:n #1
2391 {

Here, we can’t use \str_if_eq:eeTF.
2392 \str_if_eq:nnTF { #1 } { | }
2393 { \use:c { @@ _ | : } | }
2394 { \@@_make_preamble_i_ii:nn { } #1 }
2395 }

66

The following constructions aims to allow cumulative blocks of options between square brackets such
as in |[color=blue][tikz=dashed].

2396 \cs_new_protected:Npn \@@_make_preamble_i_ii:nn #1 #2
2397 {
2398 \str_if_eq:nnTF { #2 } { [}
2399 { \@@_make_preamble_i_ii:nw { #1 } [}
2400 { \@@_make_preamble_i_iii:nn { #2 } { #1 } }
2401 }
2402 \cs_new_protected:Npn \@@_make_preamble_i_ii:nw #1 [#2]
2403 { \@@_make_preamble_i_ii:nn { #1 , #2 } }

2404 \cs_new_protected:Npn \@@_make_preamble_i_iii:nn #1 #2
2405 {
2406 \@@_compute_rule_width:n { multiplicity = \l_tmpa_int , #2 }
2407 \tl_gput_right:Ne \g_@@_array_preamble_tl
2408 {

Here, the command \dim_use:N is mandatory.
2409 \exp_not:N ! { \skip_horizontal:N \dim_use:N \l_@@_rule_width_dim }
2410 }
2411 \tl_gput_right:Ne \g_@@_pre_code_after_tl
2412 {
2413 \@@_vline:n
2414 {
2415 position = \int_eval:n { \c@jCol + 1 } ,
2416 multiplicity = \int_use:N \l_tmpa_int ,
2417 total-width = \dim_use:N \l_@@_rule_width_dim ,
2418 #2
2419 }

We don’t have provided value for start nor for end, which means that the rule will cover (potentially)
all the rows of the array.

2420 }
2421 \int_zero:N \l_tmpa_int
2422 \str_if_eq:nnT { #1 } { \s_stop } { \bool_gset_true:N \g_tmpb_bool }
2423 \@@_rec_preamble:n #1
2424 }

2425 \cs_new_protected:cpn { @@ _ > : } #1 #2
2426 {
2427 \tl_gput_right:Nn \g_@@_pre_cell_tl { > { #2 } }
2428 \@@_rec_preamble:n
2429 }

2430 \bool_new:N \l_@@_bar_at_end_of_pream_bool

The specifier p (and also the specifiers m, b, V and X) have an optional argument between square
brackets for a list of key-value pairs. Here are the corresponding keys.

2431 \keys_define:nn { nicematrix / p-column }
2432 {
2433 r .code:n = \str_set_eq:NN \l_@@_hpos_col_str \c_@@_r_str ,
2434 r .value_forbidden:n = true ,
2435 c .code:n = \str_set_eq:NN \l_@@_hpos_col_str \c_@@_c_str ,
2436 c .value_forbidden:n = true ,
2437 l .code:n = \str_set_eq:NN \l_@@_hpos_col_str \c_@@_l_str ,
2438 l .value_forbidden:n = true ,
2439 S .code:n = \str_set:Nn \l_@@_hpos_col_str { si } ,
2440 S .value_forbidden:n = true ,
2441 p .code:n = \str_set:Nn \l_@@_vpos_col_str { p } ,
2442 p .value_forbidden:n = true ,
2443 t .meta:n = p ,
2444 m .code:n = \str_set:Nn \l_@@_vpos_col_str { m } ,
2445 m .value_forbidden:n = true ,

67

2446 b .code:n = \str_set:Nn \l_@@_vpos_col_str { b } ,
2447 b .value_forbidden:n = true
2448 }

For p but also b and m.
2449 \cs_new_protected:Npn \@@_p: #1
2450 {
2451 \str_set:Nn \l_@@_vpos_col_str { #1 }

Now, you look for a potential character [after the letter of the specifier (for the options).
2452 \@@_make_preamble_ii_i:n
2453 }
2454 \cs_new_eq:NN \@@_b: \@@_p:
2455 \cs_new_eq:NN \@@_m: \@@_p:

2456 \cs_new_protected:Npn \@@_make_preamble_ii_i:n #1
2457 {
2458 \str_if_eq:nnTF { #1 } { [}
2459 { \@@_make_preamble_ii_ii:w [}
2460 { \@@_make_preamble_ii_ii:w [] { #1 } }
2461 }

2462 \cs_new_protected:Npn \@@_make_preamble_ii_ii:w [#1]
2463 { \@@_make_preamble_ii_iii:nn { #1 } }

#1 is the optional argument of the specifier (a list of key-value pairs).
#2 is the mandatory argument of the specifier: the width of the column.

2464 \cs_new_protected:Npn \@@_make_preamble_ii_iii:nn #1 #2
2465 {

The possible values of \l_@@_hpos_col_str are j (for justified which is the initial value), l, c, r, L,
C and R (when the user has used the corresponding key in the optional argument of the specifier).

2466 \str_set:Nn \l_@@_hpos_col_str { j }
2467 \@@_keys_p_column:n { #1 }

We apply setlength in order to allow a width of column of the form \widthof{Some words}.
\widthof is a command of the package calc (not loaded by nicematrix) which redefines the com-
mand \setlength. Of course, even if calc is not loaded, the following code will work with the
standard version of \setlength.

2468 \setlength { \l_tmpa_dim } { #2 }
2469 \@@_make_preamble_ii_iv:nnn { \dim_use:N \l_tmpa_dim } { minipage } { }
2470 }

2471 \cs_new_protected:Npn \@@_keys_p_column:n #1
2472 { \keys_set_known:nnN { nicematrix / p-column } { #1 } \l_tmpa_tl }

The first argument is the width of the column. The second is the type of environment: minipage or
varwidth. The third is some code added at the beginning of the cell.

2473 \cs_new_protected:Npn \@@_make_preamble_ii_iv:nnn #1 #2 #3
2474 {

Here, \expanded would probably be slightly faster than \use:e
2475 \use:e
2476 {
2477 \@@_make_preamble_ii_vi:nnnnnnnn
2478 { \str_if_eq:eeTF { \l_@@_vpos_col_str } { p } { t } { b } }
2479 { #1 }
2480 {
2481 \cs_set_eq:NN \rotate \@@_rotate_p_col:

68

The parameter \l_@@_hpos_col_str (as \l_@@_vpos_col_str) exists only during the construction
of the preamble. During the composition of the array itself, you will have, in each cell, the parameter
\l_@@_hpos_cell_tl which will provide the horizontal alignment of the column to which belongs
the cell.

2482 \str_if_eq:eeTF { \l_@@_hpos_col_str } { j }
2483 { \tl_clear:N \exp_not:N \l_@@_hpos_cell_tl }
2484 {

Here, we use \def instead of \tl_set:Nn for efficiency only.
2485 \def \exp_not:N \l_@@_hpos_cell_tl
2486 { \str_lowercase:f { \l_@@_hpos_col_str } }
2487 }
2488 \IfPackageLoadedTF { ragged2e }
2489 {
2490 \str_case:on \l_@@_hpos_col_str
2491 {

The following \exp_not:N are mandatory.
2492 c { \exp_not:N \Centering }
2493 l { \exp_not:N \RaggedRight }
2494 r { \exp_not:N \RaggedLeft }
2495 }
2496 }
2497 {
2498 \str_case:on \l_@@_hpos_col_str
2499 {
2500 c { \exp_not:N \centering }
2501 l { \exp_not:N \raggedright }
2502 r { \exp_not:N \raggedleft }
2503 }
2504 }
2505 #3
2506 }
2507 { \str_if_eq:eeT { \l_@@_vpos_col_str } { m } \@@_center_cell_box: }
2508 { \str_if_eq:eeT { \l_@@_hpos_col_str } { si } \siunitx_cell_begin:w }
2509 { \str_if_eq:eeT { \l_@@_hpos_col_str } { si } \siunitx_cell_end: }
2510 { #2 }
2511 {
2512 \str_case:onF \l_@@_hpos_col_str
2513 {
2514 { j } { c }
2515 { si } { c }
2516 }

We use \str_lowercase:n to convert R to r, etc.
2517 { \str_lowercase:f \l_@@_hpos_col_str }
2518 }
2519 }

We increment the counter of columns, and then we test for the presence of a <.
2520 \int_gincr:N \c@jCol
2521 \@@_rec_preamble_after_col:n
2522 }

#1 is the optional argument of {minipage} (or {varwidth}): t or b. Indeed, for the columns of type
m, we use the value b here because there is a special post-action in order to center vertically the box
(see #4).
#2 is the width of the {minipage} (or {varwidth}), that is to say also the width of the column.
#3 is the coding for the horizontal position of the content of the cell (\centering, \raggedright,
\raggedleft or nothing). It’s also possible to put in that #3 some code to fix the value of
\l_@@_hpos_cell_tl which will be available in each cell of the column.
#4 is an extra-code which contains \@@_center_cell_box: (when the column is a m column) or
nothing (in the other cases).

69

#5 is a code put just before the c (or r or l: see #8).
#6 is a code put just after the c (or r or l: see #8).
#7 is the type of environment: minipage or varwidth.
#8 is the letter c or r or l which is the basic specifier of column which is used in fine.

2523 \cs_new_protected:Npn \@@_make_preamble_ii_vi:nnnnnnnn #1 #2 #3 #4 #5 #6 #7 #8
2524 {
2525 \str_if_eq:eeTF { \l_@@_hpos_col_str } { si }
2526 {
2527 \tl_gput_right:Nn \g_@@_array_preamble_tl
2528 { > \@@_test_if_empty_for_S: }
2529 }
2530 {
2531 \str_if_eq:eeTF { #7 } { varwidth }
2532 {
2533 \tl_gput_right:Nn \g_@@_array_preamble_tl
2534 { > \@@_test_if_empty_varwidth: }
2535 }
2536 { \tl_gput_right:Nn \g_@@_array_preamble_tl { > \@@_test_if_empty: } }
2537 }
2538 \tl_gput_right:No \g_@@_array_preamble_tl \g_@@_pre_cell_tl
2539 \tl_gclear:N \g_@@_pre_cell_tl
2540 \tl_gput_right:Nn \g_@@_array_preamble_tl
2541 {
2542 > {

The parameter \l_@@_col_width_dim, which is the width of the current column, will be available in
each cell of the column. It will be used by the mono-column blocks.

2543 \dim_set:Nn \l_@@_col_width_dim { #2 }
2544 \@@_cell_begin:

We use the form \minipage–\endminipage (\varwidth–\endvarwidth) for compatibility with collcell
(2023-10-31).

2545 \use:c { #7 } [#1] { #2 }

The following lines have been taken from array.sty.
2546 \everypar
2547 {
2548 \vrule height \box_ht:N \@arstrutbox width \c_zero_dim
2549 \everypar { }
2550 }

Now, the potential code for the horizontal position of the content of the cell (\centering,
\raggedright, \RaggedRight, etc.).

2551 #3

The following code is to allow something like \centering in \RowStyle.
2552 \g_@@_row_style_tl
2553 \arraybackslash
2554 #5
2555 }
2556 #8
2557 < {
2558 #6

The following line has been taken from array.sty.
2559 \@finalstrut \@arstrutbox
2560 \use:c { end #7 }

If the letter in the preamble is m, #4 will be equal to \@@_center_cell_box: (see just below).
2561 #4
2562 \@@_cell_end:
2563 }
2564 }
2565 }

70

The cell always begins with \ignorespaces with array and that’s why we retrieve that token.
2566 \cs_new_protected:Npn \@@_test_if_empty: \ignorespaces
2567 {

We open a special group with \group_align_safe_begin:. Thus, when \peek_meaning:NTF will
read the & (when the cell is empty), that lecture won’t trigger the end of the cell (since we are in a
lower group...). If the end of cell was trigerred, we would have other tokens in the TeX flow (and not
&).

2568 \group_align_safe_begin:
2569 \peek_meaning:NTF &
2570 { \@@_the_cell_is_empty: }
2571 {
2572 \peek_meaning:NTF \\
2573 { \@@_the_cell_is_empty: }
2574 {
2575 \peek_meaning:NTF \crcr
2576 \@@_the_cell_is_empty:
2577 \group_align_safe_end:
2578 }
2579 }
2580 }

A special version of the previous function for the columns of type V (of varwidth).
2581 \cs_new_protected:Npn \@@_test_if_empty_varwidth: \ignorespaces
2582 {
2583 \group_align_safe_begin:
2584 \peek_meaning:NTF &
2585 { \@@_the_cell_is_empty_varwidth: }
2586 {
2587 \peek_meaning:NTF \\
2588 { \@@_the_cell_is_empty_varwidth: }
2589 {
2590 \peek_meaning:NTF \crcr
2591 \@@_the_cell_is_empty_varwidth:
2592 \group_align_safe_end:
2593 }
2594 }
2595 }

2596 \cs_new_protected:Npn \@@_the_cell_is_empty:
2597 {
2598 \group_align_safe_end:
2599 \tl_gput_right:Nn \g_@@_cell_after_hook_tl
2600 {

Be careful: here, we can’t merely use \bool_gset_true: \g_@@_empty_cell_bool, in particular
because of the columns of type X.

2601 \box_set_wd:Nn \l_@@_cell_box \c_zero_dim

If all the cells of the column are empty, we still must have a column with the width required by the
column of type p (or b, or m).

2602 \skip_horizontal:N \l_@@_col_width_dim
2603 }
2604 }

2605 \cs_new_protected:Npn \@@_the_cell_is_empty_varwidth:
2606 {
2607 \group_align_safe_end:
2608 \tl_gput_right:Nn \g_@@_cell_after_hook_tl
2609 { \box_set_wd:Nn \l_@@_cell_box \c_zero_dim }
2610 }

71

2611 \cs_new_protected:Npn \@@_test_if_empty_for_S:
2612 {
2613 \peek_meaning:NT __siunitx_table_skip:n
2614 { \bool_gset_true:N \g_@@_empty_cell_bool }
2615 }

The following command will be used in m-columns in order to center vertically the box. In fact,
despite its name, the command does not always center the cell. Indeed, if there is only one row in
the cell, it should not be centered vertically. It’s not possible to know the number of rows of the
cell. However, we consider (as in array) that if the height of the cell is no more that the height of
\strutbox, there is only one row.

2616 \cs_new_protected:Npn \@@_center_cell_box:
2617 {

By putting instructions in \g_@@_cell_after_hook_tl, we require a post-action of the box
\l_@@_cell_box.

2618 \tl_gput_right:Nn \g_@@_cell_after_hook_tl
2619 {
2620 \dim_compare:nNnT
2621 { \box_ht:N \l_@@_cell_box }
2622 >

Previously, we had \@arstrutbox and not \strutbox in the following line but the code in array
has changed in v 2.5g and we follow the change (see array: Correctly identify single-line m-cells in
LaTeX News 36).

2623 { \box_ht:N \strutbox }
2624 {
2625 \hbox_set:Nn \l_@@_cell_box
2626 {
2627 \box_move_down:nn
2628 {
2629 (\box_ht:N \l_@@_cell_box - \box_ht:N \@arstrutbox
2630 + \baselineskip) / 2
2631 }
2632 { \box_use:N \l_@@_cell_box }
2633 }
2634 }
2635 }
2636 }

For V (similar to the V of varwidth).
2637 \cs_new_protected:Npn \@@_V: #1 #2
2638 {
2639 \str_if_eq:nnTF { #2 } { [}
2640 { \@@_make_preamble_V_i:w [}
2641 { \@@_make_preamble_V_i:w [] { #2 } }
2642 }
2643 \cs_new_protected:Npn \@@_make_preamble_V_i:w [#1]
2644 { \@@_make_preamble_V_ii:nn { #1 } }
2645 \cs_new_protected:Npn \@@_make_preamble_V_ii:nn #1 #2
2646 {
2647 \str_set:Nn \l_@@_vpos_col_str { p }
2648 \str_set:Nn \l_@@_hpos_col_str { j }
2649 \@@_keys_p_column:n { #1 }

We apply setlength in order to allow a width of column of the form \widthof{Some words}.
\widthof is a command of the package calc (not loaded by nicematrix) which redefines the com-
mand \setlength. Of course, even if calc is not loaded, the following code will work with the
standard version of \setlength.

2650 \setlength { \l_tmpa_dim } { #2 }
2651 \IfPackageLoadedTF { varwidth }
2652 { \@@_make_preamble_ii_iv:nnn { \dim_use:N \l_tmpa_dim } { varwidth } { } }
2653 {

72

2654 \@@_error_or_warning:n { varwidth~not~loaded }
2655 \@@_make_preamble_ii_iv:nnn { \dim_use:N \l_tmpa_dim } { minipage } { }
2656 }
2657 }

For w and W
2658 \cs_new_protected:Npn \@@_w: { \@@_make_preamble_w:nnnn { } }
2659 \cs_new_protected:Npn \@@_W: { \@@_make_preamble_w:nnnn { \@@_special_W: } }

#1 is a special argument: empty for w and equal to \@@_special_W: for W;
#2 is the type of column (w or W);
#3 is the type of horizontal alignment (c, l, r or s);
#4 is the width of the column.

2660 \cs_new_protected:Npn \@@_make_preamble_w:nnnn #1 #2 #3 #4
2661 {
2662 \str_if_eq:nnTF { #3 } { s }
2663 { \@@_make_preamble_w_i:nnnn { #1 } { #4 } }
2664 { \@@_make_preamble_w_ii:nnnn { #1 } { #2 } { #3 } { #4 } }
2665 }

First, the case of an horizontal alignment equal to s (for stretch).
#1 is a special argument: empty for w and equal to \@@_special_W: for W;
#2 is the width of the column.

2666 \cs_new_protected:Npn \@@_make_preamble_w_i:nnnn #1 #2
2667 {
2668 \tl_gput_right:No \g_@@_array_preamble_tl \g_@@_pre_cell_tl
2669 \tl_gclear:N \g_@@_pre_cell_tl
2670 \tl_gput_right:Nn \g_@@_array_preamble_tl
2671 {
2672 > {

We use \setlength in order to allow \widthof which is a command of calc (when loaded calc redefines
\setlength). Of course, even if calc is not loaded, the following code will work with the standard
version of \setlength.

2673 \setlength { \l_@@_col_width_dim } { #2 }
2674 \@@_cell_begin:
2675 \tl_set_eq:NN \l_@@_hpos_cell_tl \c_@@_c_tl
2676 }
2677 c
2678 < {
2679 \@@_cell_end_for_w_s:
2680 #1
2681 \@@_adjust_size_box:
2682 \box_use_drop:N \l_@@_cell_box
2683 }
2684 }
2685 \int_gincr:N \c@jCol
2686 \@@_rec_preamble_after_col:n
2687 }

Then, the most important version, for the horizontal alignments types of c, l and r (and not s).
2688 \cs_new_protected:Npn \@@_make_preamble_w_ii:nnnn #1 #2 #3 #4
2689 {
2690 \tl_gput_right:No \g_@@_array_preamble_tl \g_@@_pre_cell_tl
2691 \tl_gclear:N \g_@@_pre_cell_tl
2692 \tl_gput_right:Nn \g_@@_array_preamble_tl
2693 {
2694 > {

73

The parameter \l_@@_col_width_dim, which is the width of the current column, will be available in
each cell of the column. It will be used by the mono-column blocks.
We use \setlength in order to allow \widthof which is a command of calc (when loaded calc redefines
\setlength). Of course, even if calc is not loaded, the following code will work with the standard
version of \setlength.

2695 \setlength { \l_@@_col_width_dim } { #4 }
2696 \hbox_set:Nw \l_@@_cell_box
2697 \@@_cell_begin:
2698 \tl_set:Nn \l_@@_hpos_cell_tl { #3 }
2699 }
2700 c
2701 < {
2702 \@@_cell_end:
2703 \hbox_set_end:
2704 #1
2705 \@@_adjust_size_box:
2706 \makebox [#4] [#3] { \box_use_drop:N \l_@@_cell_box }
2707 }
2708 }

We increment the counter of columns and then we test for the presence of a <.
2709 \int_gincr:N \c@jCol
2710 \@@_rec_preamble_after_col:n
2711 }

2712 \cs_new_protected:Npn \@@_special_W:
2713 {
2714 \dim_compare:nNnT { \box_wd:N \l_@@_cell_box } > { \l_@@_col_width_dim }
2715 { \@@_warning:n { W~warning } }
2716 }

For S (of siunitx).
2717 \cs_new_protected:Npn \@@_S: #1 #2
2718 {
2719 \str_if_eq:nnTF { #2 } { [}
2720 { \@@_make_preamble_S:w [}
2721 { \@@_make_preamble_S:w [] { #2 } }
2722 }

2723 \cs_new_protected:Npn \@@_make_preamble_S:w [#1]
2724 { \@@_make_preamble_S_i:n { #1 } }

2725 \cs_new_protected:Npn \@@_make_preamble_S_i:n #1
2726 {
2727 \IfPackageLoadedF { siunitx } { \@@_fatal:n { siunitx~not~loaded } }
2728 \tl_gput_right:No \g_@@_array_preamble_tl \g_@@_pre_cell_tl
2729 \tl_gclear:N \g_@@_pre_cell_tl
2730 \tl_gput_right:Nn \g_@@_array_preamble_tl
2731 {
2732 > {

In the cells of a column of type S, we have to wrap the command \@@_node_cell: for the horizontal
alignment of the content of the cell (siunitx has done a job but it’s without effect since we have to
put the content in a box for the PGF/TikZ node and that’s why we have to do the job of horizontal
alignement once again).

2733 \socket_assign_plug:nn { nicematrix / siunitx-wrap } { active }
2734 \keys_set:nn { siunitx } { #1 }
2735 \@@_cell_begin:
2736 \siunitx_cell_begin:w
2737 }
2738 c
2739 <
2740 {
2741 \siunitx_cell_end:

74

We want the value of \l__siunitx_table_text_bool available after \@@_cell_end: because we
need it to know how to align our box after the construction of the PGF/TikZ node. That’s why
we use \g_@@_cell_after_hook_tl to reset the correct value of \l__siunitx_table_text_bool (of
course, if will stay local within the cell of the underlying \halign).

2742 \tl_gput_right:Ne \g_@@_cell_after_hook_tl
2743 {
2744 \bool_if:NTF \l__siunitx_table_text_bool
2745 { \bool_set_true:N }
2746 { \bool_set_false:N }
2747 \l__siunitx_table_text_bool
2748 }
2749 \@@_cell_end:
2750 }
2751 }

We increment the counter of columns and then we test for the presence of a <.
2752 \int_gincr:N \c@jCol
2753 \@@_rec_preamble_after_col:n
2754 }

For (, [and \{.
2755 \cs_new_protected:cpn { @@ _ \token_to_str:N (: } #1 #2
2756 {
2757 \bool_if:NT \l_@@_small_bool { \@@_fatal:n { Delimiter~with~small } }

If we are before the column 1 and not in {NiceArray}, we reserve space for the left delimiter.
2758 \int_if_zero:nTF { \c@jCol }
2759 {
2760 \tl_if_eq:NNTF \g_@@_left_delim_tl \c_@@_dot_tl
2761 {

In that case, in fact, the first letter of the preamble must be considered as the left delimiter of the
array.

2762 \tl_gset:Nn \g_@@_left_delim_tl { #1 }
2763 \tl_gset_eq:NN \g_@@_right_delim_tl \c_@@_dot_tl
2764 \@@_rec_preamble:n #2
2765 }
2766 {
2767 \tl_gput_right:Nn \g_@@_array_preamble_tl { ! { \enskip } }
2768 \@@_make_preamble_iv:nn { #1 } { #2 }
2769 }
2770 }
2771 { \@@_make_preamble_iv:nn { #1 } { #2 } }
2772 }
2773 \cs_set_eq:cc { @@ _ \token_to_str:N [: } { @@ _ \token_to_str:N (: }
2774 \cs_set_eq:cc { @@ _ \token_to_str:N \{ : } { @@ _ \token_to_str:N (: }

2775 \cs_new_protected:Npn \@@_make_preamble_iv:nn #1 #2
2776 {
2777 \tl_gput_right:Ne \g_@@_pre_code_after_tl
2778 { \@@_delimiter:nnn #1 { \int_eval:n { \c@jCol + 1 } } \c_true_bool }
2779 \tl_if_in:nnTF { ([\{)] \} \left \right } { #2 }
2780 {
2781 \@@_error:nn { delimiter~after~opening } { #2 }
2782 \@@_rec_preamble:n
2783 }
2784 { \@@_rec_preamble:n #2 }
2785 }

In fact, if would be possible to define \left and \right as no-op.
2786 \cs_new_protected:cpn { @@ _ \token_to_str:N \left : } #1
2787 { \use:c { @@ _ \token_to_str:N (: } }

75

For the closing delimiters. We have two arguments for the following command because we directly
read the following letter in the preamble (we have to see whether we have a opening delimiter following
and we also have to see whether we are at the end of the preamble because, in that case, our letter
must be considered as the right delimiter of the environment if the environment is {NiceArray}).

2788 \cs_new_protected:cpn { @@ _ \token_to_str:N) : } #1 #2
2789 {
2790 \bool_if:NT \l_@@_small_bool { \@@_fatal:n { Delimiter~with~small } }
2791 \tl_if_in:nnTF {)] \} } { #2 }
2792 { \@@_make_preamble_v:nnn #1 #2 }
2793 {
2794 \str_if_eq:nnTF { \s_stop } { #2 }
2795 {
2796 \tl_if_eq:NNTF \g_@@_right_delim_tl \c_@@_dot_tl
2797 { \tl_gset:Nn \g_@@_right_delim_tl { #1 } }
2798 {
2799 \tl_gput_right:Nn \g_@@_array_preamble_tl { ! { \enskip } }
2800 \tl_gput_right:Ne \g_@@_pre_code_after_tl
2801 { \@@_delimiter:nnn #1 { \int_use:N \c@jCol } \c_false_bool }
2802 \@@_rec_preamble:n #2
2803 }
2804 }
2805 {
2806 \tl_if_in:nnT { ([\{ \left } { #2 }
2807 { \tl_gput_right:Nn \g_@@_array_preamble_tl { ! { \enskip } } }
2808 \tl_gput_right:Ne \g_@@_pre_code_after_tl
2809 { \@@_delimiter:nnn #1 { \int_use:N \c@jCol } \c_false_bool }
2810 \@@_rec_preamble:n #2
2811 }
2812 }
2813 }
2814 \cs_set_eq:cc { @@ _ \token_to_str:N] : } { @@ _ \token_to_str:N) : }
2815 \cs_set_eq:cc { @@ _ \token_to_str:N \} : } { @@ _ \token_to_str:N) : }

2816 \cs_new_protected:Npn \@@_make_preamble_v:nnn #1 #2 #3
2817 {
2818 \str_if_eq:nnTF { \s_stop } { #3 }
2819 {
2820 \tl_if_eq:NNTF \g_@@_right_delim_tl \c_@@_dot_tl
2821 {
2822 \tl_gput_right:Nn \g_@@_array_preamble_tl { ! { \enskip } }
2823 \tl_gput_right:Ne \g_@@_pre_code_after_tl
2824 { \@@_delimiter:nnn #1 { \int_use:N \c@jCol } \c_false_bool }
2825 \tl_gset:Nn \g_@@_right_delim_tl { #2 }
2826 }
2827 {
2828 \tl_gput_right:Nn \g_@@_array_preamble_tl { ! { \enskip } }
2829 \tl_gput_right:Ne \g_@@_pre_code_after_tl
2830 { \@@_delimiter:nnn #1 { \int_use:N \c@jCol } \c_false_bool }
2831 \@@_error:nn { double~closing~delimiter } { #2 }
2832 }
2833 }
2834 {
2835 \tl_gput_right:Ne \g_@@_pre_code_after_tl
2836 { \@@_delimiter:nnn #1 { \int_use:N \c@jCol } \c_false_bool }
2837 \@@_error:nn { double~closing~delimiter } { #2 }
2838 \@@_rec_preamble:n #3
2839 }
2840 }

2841 \cs_new_protected:cpn { @@ _ \token_to_str:N \right : } #1
2842 { \use:c { @@ _ \token_to_str:N) : } }

After a specifier of column, we have to test whether there is one or several <{..} because, after those

76

potential <{...}, we have to insert !{\skip_horizontal:N ...} when the key vlines is used. In
fact, we have also to test whether there is, after the <{...}, a @{...}.

2843 \cs_new_protected:Npn \@@_rec_preamble_after_col:n #1
2844 {
2845 \str_if_eq:nnTF { #1 } { < }
2846 { \@@_rec_preamble_after_col_i:n }
2847 {
2848 \str_if_eq:nnTF { #1 } { @ }
2849 { \@@_rec_preamble_after_col_ii:n }
2850 {
2851 \str_if_eq:eeTF { \l_@@_vlines_clist } { all }
2852 {
2853 \tl_gput_right:Nn \g_@@_array_preamble_tl
2854 { ! { \skip_horizontal:N \arrayrulewidth } }
2855 }
2856 {
2857 \clist_if_in:NeT \l_@@_vlines_clist
2858 { \int_eval:n { \c@jCol + 1 } }
2859 {
2860 \tl_gput_right:Nn \g_@@_array_preamble_tl
2861 { ! { \skip_horizontal:N \arrayrulewidth } }
2862 }
2863 }
2864 \@@_rec_preamble:n { #1 }
2865 }
2866 }
2867 }

2868 \cs_new_protected:Npn \@@_rec_preamble_after_col_i:n #1
2869 {
2870 \tl_gput_right:Nn \g_@@_array_preamble_tl { < { #1 } }
2871 \@@_rec_preamble_after_col:n
2872 }

We have to catch a @{...} after a specifier of column because, if we have to draw a vertical rule, we
have to add in that @{...} a \hskip corresponding to the width of the vertical rule.

2873 \cs_new_protected:Npn \@@_rec_preamble_after_col_ii:n #1
2874 {
2875 \str_if_eq:eeTF { \l_@@_vlines_clist } { all }
2876 {
2877 \tl_gput_right:Nn \g_@@_array_preamble_tl
2878 { @ { #1 \skip_horizontal:N \arrayrulewidth } }
2879 }
2880 {
2881 \clist_if_in:NeTF \l_@@_vlines_clist { \int_eval:n { \c@jCol + 1 } }
2882 {
2883 \tl_gput_right:Nn \g_@@_array_preamble_tl
2884 { @ { #1 \skip_horizontal:N \arrayrulewidth } }
2885 }
2886 { \tl_gput_right:Nn \g_@@_array_preamble_tl { @ { #1 } } }
2887 }
2888 \@@_rec_preamble:n
2889 }

2890 \cs_new_protected:cpn { @@ _ * : } #1 #2 #3
2891 {
2892 \tl_clear:N \l_tmpa_tl
2893 \int_step_inline:nn { #2 } { \tl_put_right:Nn \l_tmpa_tl { #3 } }
2894 \exp_last_unbraced:No \@@_rec_preamble:n \l_tmpa_tl
2895 }

The token \NC@find is at the head of the definition of the columns type done by \newcolumntype.
We want that token to be no-op here.

77

2896 \cs_new_protected:cpn { @@ _ \token_to_str:N \NC@find : } #1
2897 { \@@_rec_preamble:n }

For the case of a letter X. This specifier may take in an optional argument (between square brackets).
That’s why we test whether there is a [after the letter X.

2898 \cs_new_protected:Npn \@@_X: #1 #2
2899 {
2900 \str_if_eq:nnTF { #2 } { [}
2901 { \@@_make_preamble_X:w [}
2902 { \@@_make_preamble_X:w [] #2 }
2903 }

2904 \cs_new_protected:Npn \@@_make_preamble_X:w [#1]
2905 { \@@_make_preamble_X_i:n { #1 } }

#1 is the optional argument of the X specifier (a list of key-value pairs).

The following set of keys is for the specifier X in the preamble of the array. Such specifier may have as
keys all the keys of { nicematrix / p-column } but also a key V and also a key which corresponds
to a positive number (1, 2, 0.5, etc.) which is the weight of the columns. The following set of keys
will be used to retrieve that value and store it in \l_tmpa_fp.

2906 \keys_define:nn { nicematrix / X-column }
2907 {
2908 V .code:n =
2909 \IfPackageLoadedTF { varwidth }
2910 {
2911 \bool_set_true:N \l_@@_V_of_X_bool
2912 \bool_gset_true:N \g_@@_V_of_X_bool
2913 }
2914 { \@@_error_or_warning:n { varwidth~not~loaded~in~X } } ,
2915 unknown .code:n =
2916 \regex_if_match:nVTF { \A[0-9]*\.?[0-9]*\Z } \l_keys_key_str
2917 { \fp_set:Nn \l_tmpa_fp { \l_keys_key_str } }
2918 { \@@_error_or_warning:n { invalid~weight } }
2919 }

In the following command, #1 is the list of the options of the specifier X.
2920 \cs_new_protected:Npn \@@_make_preamble_X_i:n #1
2921 {

The possible values of \l_@@_hpos_col_str are j (for justified which is the initial value), l, c and r
(when the user has used the corresponding key in the optional argument of the specifier X).

2922 \str_set:Nn \l_@@_hpos_col_str { j }

The possible values of \l_@@_vpos_col_str are p (the initial value), m and b (when the user has used
the corresponding key in the optional argument of the specifier X).

2923 \str_set:Nn \l_@@_vpos_col_str { p }

We will store in \l_tmpa_fp the weight of the column (\l_tmpa_fp also appears in {nicematrix/X-
column} and the error message invalid~weight.

2924 \fp_set:Nn \l_tmpa_fp { 1.0 }

2925 \@@_keys_p_column:n { #1 }

The unknown keys have been stored by \@@_keys_p_column:n in \l_tmpa_tl and we use them right
away in the set of keys nicematrix/X-column in order to retrieve the potential weight explicitely
provided by the final user.

2926 \bool_set_false:N \l_@@_V_of_X_bool
2927 \keys_set:no { nicematrix / X-column } \l_tmpa_tl

Now, the weight of the column is stored in \l_tmpa_tl.
2928 \fp_gadd:Nn \g_@@_total_X_weight_fp \l_tmpa_fp

78

We test whether we know the actual width of the X-columns by reading the aux file (after the first
compilation, the width of the X-columns is computed and written in the aux file).

2929 \bool_if:NTF \l_@@_X_columns_aux_bool
2930 {
2931 \@@_make_preamble_ii_iv:nnn

Of course, the weight of a column depends of its weight (in \l_tmpa_fp).
2932 { \fp_use:N \l_tmpa_fp \l_@@_X_columns_dim }
2933 { \bool_if:NTF \l_@@_V_of_X_bool { varwidth } { minipage } }
2934 { \@@_no_update_width: }
2935 }

In the current compilation, we don’t known the actual width of the X column. However, you have to
construct the cells of that column! By convention, we have decided to compose in a {minipage} of
width 5 cm even though we will nullify \l_@@_cell_box after its composition.

2936 {
2937 \tl_gput_right:Nn \g_@@_array_preamble_tl
2938 {
2939 > {
2940 \@@_cell_begin:
2941 \bool_set_true:N \l_@@_X_bool

You encounter a problem on 2023-03-04: for an environment with X columns, during the first com-
pilations (which are not the definitive one), sometimes, some cells are declared empty even if they
should not. That’s a problem because user’s instructions may use these nodes. That’s why we have
added the following \NotEmpty.

2942 \NotEmpty

The following code will nullify the box of the cell.
2943 \tl_gput_right:Nn \g_@@_cell_after_hook_tl
2944 { \hbox_set:Nn \l_@@_cell_box { } }

We put a {minipage} to give to the user the ability to put a command such as \centering in the
\RowStyle.

2945 \begin { minipage } { 5 cm } \arraybackslash
2946 }
2947 c
2948 < {
2949 \end { minipage }
2950 \@@_cell_end:
2951 }
2952 }
2953 \int_gincr:N \c@jCol
2954 \@@_rec_preamble_after_col:n
2955 }
2956 }

2957 \cs_new_protected:Npn \@@_no_update_width:
2958 {
2959 \tl_gput_right:Nn \g_@@_cell_after_hook_tl
2960 { \cs_set_eq:NN \@@_update_max_cell_width: \prg_do_nothing: }
2961 }

For the letter set by the user with vlines-in-sub-matrix (vlism).
2962 \cs_new_protected:Npn \@@_make_preamble_vlism:n #1
2963 {
2964 \seq_gput_right:Ne \g_@@_cols_vlism_seq
2965 { \int_eval:n { \c@jCol + 1 } }
2966 \tl_gput_right:Ne \g_@@_array_preamble_tl
2967 { \exp_not:N ! { \skip_horizontal:N \arrayrulewidth } }
2968 \@@_rec_preamble:n
2969 }

79

The token \s_stop is a marker that we have inserted to mark the end of the preamble (as provided
by the final user) that we have inserted in the TeX flow.

2970 \cs_set_eq:cN { @@ _ \token_to_str:N \s_stop : } \use_none:n

The following lines try to catch some errors (when the final user has forgotten the preamble of its
environment).

2971 \cs_new_protected:cpn { @@ _ \token_to_str:N \hline : }
2972 { \@@_fatal:n { Preamble~forgotten } }
2973 \cs_set_eq:cc { @@ _ \token_to_str:N \Hline : } { @@ _ \token_to_str:N \hline : }
2974 \cs_set_eq:cc { @@ _ \token_to_str:N \toprule : }
2975 { @@ _ \token_to_str:N \hline : }
2976 \cs_set_eq:cc { @@ _ \token_to_str:N \Block : } { @@ _ \token_to_str:N \hline : }
2977 \cs_set_eq:cc { @@ _ \token_to_str:N \CodeBefore : }
2978 { @@ _ \token_to_str:N \hline : }
2979 \cs_set_eq:cc { @@ _ \token_to_str:N \RowStyle : }
2980 { @@ _ \token_to_str:N \hline : }
2981 \cs_set_eq:cc { @@ _ \token_to_str:N \diagbox : }
2982 { @@ _ \token_to_str:N \hline : }
2983 \cs_set_eq:cc { @@ _ \token_to_str:N & : }
2984 { @@ _ \token_to_str:N \hline : }

12 The redefinition of \multicolumn

The following command must not be protected since it begins with \multispan (a TeX primitive).
2985 \cs_new:Npn \@@_multicolumn:nnn #1 #2 #3
2986 {

The following lines are from the definition of \multicolumn in array (and not in standard LaTeX).
The first line aims to raise an error if the user has put more that one column specifier in the preamble
of \multicolumn.

2987 \multispan { #1 }
2988 \cs_set_eq:NN \@@_update_max_cell_width: \prg_do_nothing:
2989 \begingroup
2990 \tbl_update_multicolumn_cell_data:n { #1 }

Now, we patch the (small) preamble as we have done with the main preamble of the array.
2991 \tl_gclear:N \g_@@_preamble_tl
2992 \@@_make_m_preamble:n #2 \q_stop

The following lines are an adaptation of the definition of \multicolumn in array.
2993 \def \@addamp
2994 {
2995 \legacy_if:nTF { @firstamp }
2996 { \legacy_if_set_false:n { @firstamp } }
2997 { \@preamerr 5 }
2998 }
2999 \exp_args:No \@mkpream \g_@@_preamble_tl
3000 \@addtopreamble \@empty
3001 \endgroup
3002 \UseTaggingSocket { tbl / colspan } { #1 }

Now, we do a treatment specific to nicematrix which has no equivalent in the original definition of
\multicolumn.

3003 \int_compare:nNnT { #1 } > { \c_one_int }
3004 {
3005 \seq_gput_left:Ne \g_@@_multicolumn_cells_seq
3006 { \int_use:N \c@iRow - \int_eval:n { \c@jCol + 1 } }
3007 \seq_gput_left:Nn \g_@@_multicolumn_sizes_seq { #1 }

80

3008 \seq_gput_right:Ne \g_@@_pos_of_blocks_seq
3009 {
3010 {
3011 \int_if_zero:nTF { \c@jCol }
3012 { \int_eval:n { \c@iRow + 1 } }
3013 { \int_use:N \c@iRow }
3014 }
3015 { \int_eval:n { \c@jCol + 1 } }
3016 {
3017 \int_if_zero:nTF { \c@jCol }
3018 { \int_eval:n { \c@iRow + 1 } }
3019 { \int_use:N \c@iRow }
3020 }
3021 { \int_eval:n { \c@jCol + #1 } }

The last argument is for the name of the block.
3022 { }
3023 }
3024 }

We want \cellcolor to be available in \multicolumn because \cellcolor of colortbl is available in
\multicolumn.

3025 \RenewDocumentCommand { \cellcolor } { O { } m }
3026 {
3027 \tl_gput_right:Ne \g_@@_pre_code_before_tl
3028 {
3029 \@@_rectanglecolor [##1]
3030 { \exp_not:n { ##2 } }
3031 { \int_use:N \c@iRow - \int_use:N \c@jCol }
3032 { \int_use:N \c@iRow - \int_eval:n { \c@jCol + #1 } }
3033 }
3034 \ignorespaces
3035 }

The following lines were in the original definition of \multicolumn.
3036 \def \@sharp { #3 }
3037 \@arstrut
3038 \@preamble
3039 \null

We add some lines.
3040 \int_gadd:Nn \c@jCol { #1 - 1 }
3041 \int_compare:nNnT { \c@jCol } > { \g_@@_col_total_int }
3042 { \int_gset_eq:NN \g_@@_col_total_int \c@jCol }
3043 \ignorespaces
3044 }

The following commands will patch the (small) preamble of the \multicolumn. All those commands
have a m in their name to recall that they deal with the redefinition of \multicolumn.

3045 \cs_new_protected:Npn \@@_make_m_preamble:n #1
3046 {
3047 \str_case:nnF { #1 }
3048 {
3049 c { \@@_make_m_preamble_i:n #1 }
3050 l { \@@_make_m_preamble_i:n #1 }
3051 r { \@@_make_m_preamble_i:n #1 }
3052 > { \@@_make_m_preamble_ii:nn #1 }
3053 ! { \@@_make_m_preamble_ii:nn #1 }
3054 @ { \@@_make_m_preamble_ii:nn #1 }
3055 | { \@@_make_m_preamble_iii:n #1 }
3056 p { \@@_make_m_preamble_iv:nnn t #1 }
3057 m { \@@_make_m_preamble_iv:nnn c #1 }

81

3058 b { \@@_make_m_preamble_iv:nnn b #1 }
3059 w { \@@_make_m_preamble_v:nnnn { } #1 }
3060 W { \@@_make_m_preamble_v:nnnn { \@@_special_W: } #1 }
3061 \q_stop { }
3062 }
3063 {
3064 \cs_if_exist:cTF { NC @ find @ #1 }
3065 {
3066 \tl_set_eq:Nc \l_tmpa_tl { NC @ rewrite @ #1 }
3067 \exp_last_unbraced:No \@@_make_m_preamble:n \l_tmpa_tl
3068 }
3069 {

3070 \str_if_eq:nnTF { #1 } { S }
3071 { \@@_fatal:n { unknown~column~type~S~multicolumn } }
3072 { \@@_fatal:nn { unknown~column~type~multicolumn } { #1 } }
3073 }
3074 }
3075 }

For c, l and r
3076 \cs_new_protected:Npn \@@_make_m_preamble_i:n #1
3077 {
3078 \tl_gput_right:Nn \g_@@_preamble_tl
3079 {
3080 > { \@@_cell_begin: \tl_set:Nn \l_@@_hpos_cell_tl { #1 } }
3081 #1
3082 < \@@_cell_end:
3083 }

We test for the presence of a <.
3084 \@@_make_m_preamble_x:n
3085 }

For >, ! and @
3086 \cs_new_protected:Npn \@@_make_m_preamble_ii:nn #1 #2
3087 {
3088 \tl_gput_right:Nn \g_@@_preamble_tl { #1 { #2 } }
3089 \@@_make_m_preamble:n
3090 }

For |
3091 \cs_new_protected:Npn \@@_make_m_preamble_iii:n #1
3092 {
3093 \tl_gput_right:Nn \g_@@_preamble_tl { #1 }
3094 \@@_make_m_preamble:n
3095 }

For p, m and b
3096 \cs_new_protected:Npn \@@_make_m_preamble_iv:nnn #1 #2 #3
3097 {
3098 \tl_gput_right:Nn \g_@@_preamble_tl
3099 {
3100 > {
3101 \@@_cell_begin:

We use \setlength instead of \dim_set:N to allow a specifier like p{\widthof{Some words}}.
widthof is a command provided by calc. Of course, even if calc is not loaded, the following code will
work with the standard version of \setlength.

3102 \setlength { \l_tmpa_dim } { #3 }
3103 \begin { minipage } [#1] { \l_tmpa_dim }
3104 \mode_leave_vertical:
3105 \arraybackslash
3106 \vrule height \box_ht:N \@arstrutbox depth \c_zero_dim width \c_zero_dim

82

3107 }
3108 c
3109 < {
3110 \vrule height \c_zero_dim depth \box_dp:N \@arstrutbox width \c_zero_dim
3111 \end { minipage }
3112 \@@_cell_end:
3113 }
3114 }

We test for the presence of a <.
3115 \@@_make_m_preamble_x:n
3116 }

For w and W
3117 \cs_new_protected:Npn \@@_make_m_preamble_v:nnnn #1 #2 #3 #4
3118 {
3119 \tl_gput_right:Nn \g_@@_preamble_tl
3120 {
3121 > {
3122 \dim_set:Nn \l_@@_col_width_dim { #4 }
3123 \hbox_set:Nw \l_@@_cell_box
3124 \@@_cell_begin:
3125 \tl_set:Nn \l_@@_hpos_cell_tl { #3 }
3126 }
3127 c
3128 < {
3129 \@@_cell_end:
3130 \hbox_set_end:
3131 \bool_if:NT \g_@@_rotate_bool { \@@_rotate_cell_box: }
3132 #1
3133 \@@_adjust_size_box:
3134 \makebox [#4] [#3] { \box_use_drop:N \l_@@_cell_box }
3135 }
3136 }

We test for the presence of a <.
3137 \@@_make_m_preamble_x:n
3138 }

After a specifier of column, we have to test whether there is one or several <{..}.
3139 \cs_new_protected:Npn \@@_make_m_preamble_x:n #1
3140 {
3141 \str_if_eq:nnTF { #1 } { < }
3142 { \@@_make_m_preamble_ix:n }
3143 { \@@_make_m_preamble:n { #1 } }
3144 }

3145 \cs_new_protected:Npn \@@_make_m_preamble_ix:n #1
3146 {
3147 \tl_gput_right:Nn \g_@@_preamble_tl { < { #1 } }
3148 \@@_make_m_preamble_x:n
3149 }

The command \@@_put_box_in_flow: puts the box \l_tmpa_box (which contains the array) in the
flow. It is used for the environments with delimiters. First, we have to modify the height and the
depth to take back into account the potential exterior rows (the total height of the first row has been
computed in \l_tmpa_dim and the total height of the potential last row in \l_tmpb_dim).

3150 \cs_new_protected:Npn \@@_put_box_in_flow:
3151 {
3152 \box_set_ht:Nn \l_tmpa_box { \box_ht:N \l_tmpa_box + \l_tmpa_dim }
3153 \box_set_dp:Nn \l_tmpa_box { \box_dp:N \l_tmpa_box + \l_tmpb_dim }
3154 \str_if_eq:eeTF { \l_@@_baseline_tl } { c }
3155 { \box_use_drop:N \l_tmpa_box }
3156 { \@@_put_box_in_flow_i: }
3157 }

83

The command \@@_put_box_in_flow_i: is used when the value of \l_@@_baseline_tl is different
of c (the initial value).

3158 \cs_new_protected:Npn \@@_put_box_in_flow_i:
3159 {
3160 \pgfpicture
3161 \@@_qpoint:n { row - 1 }
3162 \dim_gset_eq:NN \g_tmpa_dim \pgf@y
3163 \@@_qpoint:n { row - \int_eval:n { \c@iRow + 1 } }
3164 \dim_gadd:Nn \g_tmpa_dim \pgf@y
3165 \dim_gset:Nn \g_tmpa_dim { 0.5 \g_tmpa_dim }

Now, \g_tmpa_dim contains the y-value of the center of the array (the delimiters are centered in
relation with this value).

3166 \tl_if_in:NnTF \l_@@_baseline_tl { line- }
3167 {
3168 \int_set:Nn \l_tmpa_int
3169 { \str_range:Nnn \l_@@_baseline_tl { 6 } { -1 } }
3170 \bool_lazy_or:nnT
3171 { \int_compare_p:nNn { \l_tmpa_int } < { 1 } }
3172 { \int_compare_p:nNn { \l_tmpa_int } > { \c@iRow + 1 } }
3173 {
3174 \@@_error:n { bad~value~for~baseline-line }
3175 \int_set_eq:NN \l_tmpa_int \c_one_int
3176 }
3177 \@@_qpoint:n { row - \int_use:N \l_tmpa_int }
3178 }
3179 {
3180 \str_if_eq:eeTF { \l_@@_baseline_tl } { t }
3181 { \int_set_eq:NN \l_tmpa_int \c_one_int }
3182 {
3183 \str_if_eq:onTF \l_@@_baseline_tl { b }
3184 { \int_set_eq:NN \l_tmpa_int \c@iRow }
3185 { \int_set:Nn \l_tmpa_int \l_@@_baseline_tl }
3186 }
3187 \bool_lazy_or:nnT
3188 { \int_compare_p:nNn { \l_tmpa_int } < { \l_@@_first_row_int } }
3189 { \int_compare_p:nNn { \l_tmpa_int } > { \g_@@_row_total_int } }
3190 {
3191 \@@_error:n { bad~value~for~baseline }
3192 \int_set_eq:NN \l_tmpa_int \c_one_int
3193 }
3194 \@@_qpoint:n { row - \int_use:N \l_tmpa_int - base }

We take into account the position of the mathematical axis.
3195 \dim_gsub:Nn \g_tmpa_dim { \fontdimen22 \textfont2 }
3196 }
3197 \dim_gsub:Nn \g_tmpa_dim \pgf@y

Now, \g_tmpa_dim contains the value of the y translation we have to to.
3198 \endpgfpicture
3199 \box_move_up:nn \g_tmpa_dim { \box_use_drop:N \l_tmpa_box }
3200 \box_use_drop:N \l_tmpa_box
3201 }

The following command is always used by {NiceArrayWithDelims} (even if, in fact, there is no
tabular notes: in fact, it’s not possible to know whether there is tabular notes or not before the
composition of the blocks).

3202 \cs_new_protected:Npn \@@_use_arraybox_with_notes_c:
3203 {

With an environment {Matrix}, you want to remove the exterior \arraycolsep but we don’t know
the number of columns (since there is no preamble) and that’s why we can’t put @{} at the end of
the preamble. That’s why we remove a \arraycolsep now.

3204 \bool_if:NT \l_@@_NiceMatrix_without_vlines_bool

84

3205 {
3206 \int_compare:nNnT { \c@jCol } > { \c_one_int }
3207 {
3208 \box_set_wd:Nn \l_@@_the_array_box
3209 { \box_wd:N \l_@@_the_array_box - \arraycolsep }
3210 }
3211 }

We need a {minipage} because we will insert a LaTeX list for the tabular notes (that means that a
\vtop{\hsize=...} is not enough).

3212 \begin { minipage } [t] { \box_wd:N \l_@@_the_array_box }
3213 \bool_if:NT \l_@@_caption_above_bool
3214 {
3215 \tl_if_empty:NF \l_@@_caption_tl
3216 {

3217 \bool_set_false:N \g_@@_caption_finished_bool
3218 \int_gzero:N \c@tabularnote
3219 \@@_insert_caption:

If there is one or several commands \tabularnote in the caption, we will write in the aux file the
number of such tabular notes... but only the tabular notes for which the command \tabularnote
has been used without its optional argument (between square brackets).

3220 \int_compare:nNnT { \g_@@_notes_caption_int } > { \c_zero_int }
3221 {
3222 \tl_gput_right:Ne \g_@@_aux_tl
3223 {
3224 \tl_set:Nn \exp_not:N \l_@@_note_in_caption_tl
3225 { \int_use:N \g_@@_notes_caption_int }
3226 }
3227 \int_gzero:N \g_@@_notes_caption_int
3228 }
3229 }
3230 }

The \hbox avoids that the pgfpicture inside \@@_draw_blocks adds a extra vertical space before
the notes.

3231 \hbox
3232 {
3233 \box_use_drop:N \l_@@_the_array_box

We have to draw the blocks right away because there may be tabular notes in some blocks (which are
not mono-column: the blocks which are mono-column have been composed in boxes yet)... and we
have to create (potentially) the extra nodes before creating the blocks since there are medium nodes
to create for the blocks.

3234 \@@_create_extra_nodes:
3235 \seq_if_empty:NF \g_@@_blocks_seq { \@@_draw_blocks: }
3236 }

We don’t do the following test with \c@tabularnote because the value of that counter is not reli-
able when the command \ttabbox of floatrow is used (because \ttabbox de-activate \stepcounter
because it compiles twice its tabular).

3237 \bool_lazy_any:nT
3238 {
3239 { ! \seq_if_empty_p:N \g_@@_notes_seq }
3240 { ! \seq_if_empty_p:N \g_@@_notes_in_caption_seq }
3241 { ! \tl_if_empty_p:o \g_@@_tabularnote_tl }
3242 }
3243 \@@_insert_tabularnotes:
3244 \cs_set_eq:NN \tabularnote \@@_tabularnote_error:n
3245 \bool_if:NF \l_@@_caption_above_bool { \@@_insert_caption: }
3246 \end { minipage }
3247 }

85

3248 \cs_new_protected:Npn \@@_insert_caption:
3249 {
3250 \tl_if_empty:NF \l_@@_caption_tl
3251 {
3252 \cs_if_exist:NTF \@captype
3253 { \@@_insert_caption_i: }
3254 { \@@_error:n { caption~outside~float } }
3255 }
3256 }

3257 \cs_new_protected:Npn \@@_insert_caption_i:
3258 {
3259 \group_begin:

The flag \l_@@_in_caption_bool affects only the behavior of the command \tabularnote when
used in the caption.

3260 \bool_set_true:N \l_@@_in_caption_bool

The package floatrow does a redefinition of \@makecaption which will extract the caption from the
tabular. However, the old version of \@makecaption has been stored by floatrow in \FR@makecaption.
That’s why we restore the old version.

3261 \IfPackageLoadedT { floatrow } { \cs_set_eq:NN \@makecaption \FR@makecaption }
3262 \tl_if_empty:NTF \l_@@_short_caption_tl
3263 { \caption }
3264 { \caption [\l_@@_short_caption_tl] }
3265 { \l_@@_caption_tl }

In some circonstancies (in particular when the package caption is loaded), the caption is composed
several times. That’s why, when the same tabular note is encountered (in the caption!), we consider
that you are in the second compilation and you can give to \g_@@_notes_caption_int its final value,
which is the number of tabular notes in the caption. But sometimes, the caption is composed only
once. In that case, we fix the value of \g_@@_caption_finished_bool now.

3266 \bool_if:NF \g_@@_caption_finished_bool
3267 {
3268 \bool_gset_true:N \g_@@_caption_finished_bool
3269 \int_gset_eq:NN \g_@@_notes_caption_int \c@tabularnote
3270 \int_gzero:N \c@tabularnote
3271 }
3272 \tl_if_empty:NF \l_@@_label_tl { \label { \l_@@_label_tl } }
3273 \group_end:
3274 }

3275 \cs_new_protected:Npn \@@_tabularnote_error:n #1
3276 {
3277 \@@_error_or_warning:n { tabularnote~below~the~tabular }
3278 \cs_gset:Npn \@@_tabularnote_error:n ##1 { }
3279 }

3280 \cs_new_protected:Npn \@@_insert_tabularnotes:
3281 {
3282 \seq_gconcat:NNN \g_@@_notes_seq \g_@@_notes_in_caption_seq \g_@@_notes_seq
3283 \int_set:Nn \c@tabularnote { \seq_count:N \g_@@_notes_seq }
3284 \skip_vertical:N 0.65ex

The TeX group is for potential specifications in the \l_@@_notes_code_before_tl.
3285 \group_begin:
3286 \l_@@_notes_code_before_tl
3287 \tl_if_empty:NF \g_@@_tabularnote_tl
3288 {
3289 \g_@@_tabularnote_tl \par
3290 \tl_gclear:N \g_@@_tabularnote_tl
3291 }

86

We compose the tabular notes with a list of enumitem. The \strut and the \unskip are designed to
give the ability to put a \bottomrule at the end of the notes with a good vertical space.

3292 \int_compare:nNnT { \c@tabularnote } > { \c_zero_int }
3293 {
3294 \bool_if:NTF \l_@@_notes_para_bool
3295 {
3296 \begin { tabularnotes* }
3297 \seq_map_inline:Nn \g_@@_notes_seq
3298 { \@@_one_tabularnote:nn ##1 }
3299 \strut
3300 \end { tabularnotes* }

The following \par is mandatory for the event that the user has put \footnotesize (for example)
in the notes/code-before.

3301 \par
3302 }
3303 {
3304 \tabularnotes
3305 \seq_map_inline:Nn \g_@@_notes_seq
3306 { \@@_one_tabularnote:nn ##1 }
3307 \strut
3308 \endtabularnotes
3309 }
3310 }
3311 \unskip
3312 \group_end:
3313 \bool_if:NT \l_@@_notes_bottomrule_bool
3314 {
3315 \IfPackageLoadedTF { booktabs }
3316 {

The two dimensions \aboverulesep et \heavyrulewidth are parameters defined by booktabs.
3317 \skip_vertical:N \aboverulesep

\CT@arc@ is the specification of color defined by colortbl but you use it even if colortbl is not loaded.
3318 { \CT@arc@ \hrule height \heavyrulewidth }
3319 }
3320 { \@@_error_or_warning:n { bottomrule~without~booktabs } }
3321 }
3322 \l_@@_notes_code_after_tl
3323 \seq_gclear:N \g_@@_notes_seq
3324 \seq_gclear:N \g_@@_notes_in_caption_seq
3325 \int_gzero:N \c@tabularnote
3326 }

The following command will format (after the main tabular) one tabularnote (with the command
\item) . #1 is the label (when the command \tabularnote has been used with an optional argument
between square brackets) and #2 is the text of the note. The second argument is provided by
curryfication.

3327 \cs_set_protected:Npn \@@_one_tabularnote:nn #1
3328 {
3329 \tl_if_novalue:nTF { #1 }
3330 { \item }
3331 { \item [\@@_notes_label_in_list:n { #1 }] }
3332 }

The case of baseline equal to b. Remember that, when the key b is used, the {array} (of array)
is constructed with the option t (and not b). Now, we do the translation to take into account the
option b.

3333 \cs_new_protected:Npn \@@_use_arraybox_with_notes_b:
3334 {
3335 \pgfpicture
3336 \@@_qpoint:n { row - 1 }
3337 \dim_gset_eq:NN \g_tmpa_dim \pgf@y

87

3338 \@@_qpoint:n { row - \int_use:N \c@iRow - base }
3339 \dim_gsub:Nn \g_tmpa_dim \pgf@y
3340 \endpgfpicture
3341 \dim_gadd:Nn \g_tmpa_dim \arrayrulewidth
3342 \int_if_zero:nT { \l_@@_first_row_int }
3343 {
3344 \dim_gadd:Nn \g_tmpa_dim \g_@@_ht_row_zero_dim
3345 \dim_gadd:Nn \g_tmpa_dim \g_@@_dp_row_zero_dim
3346 }
3347 \box_move_up:nn \g_tmpa_dim { \hbox { \@@_use_arraybox_with_notes_c: } }
3348 }

Now, the general case.
3349 \cs_new_protected:Npn \@@_use_arraybox_with_notes:
3350 {

We convert a value of t to a value of 1.
3351 \str_if_eq:eeT { \l_@@_baseline_tl } { t }
3352 { \tl_set:Nn \l_@@_baseline_tl { 1 } }

Now, we convert the value of \l_@@_baseline_tl (which should represent an integer) to an integer
stored in \l_tmpa_int.

3353 \pgfpicture
3354 \@@_qpoint:n { row - 1 }
3355 \dim_gset_eq:NN \g_tmpa_dim \pgf@y
3356 \tl_if_in:NnTF \l_@@_baseline_tl { line- }
3357 {
3358 \int_set:Nn \l_tmpa_int
3359 {
3360 \str_range:Nnn
3361 \l_@@_baseline_tl
3362 { 6 }
3363 { \tl_count:o \l_@@_baseline_tl }
3364 }
3365 \@@_qpoint:n { row - \int_use:N \l_tmpa_int }
3366 }
3367 {
3368 \int_set:Nn \l_tmpa_int \l_@@_baseline_tl
3369 \bool_lazy_or:nnT
3370 { \int_compare_p:nNn { \l_tmpa_int } < { \l_@@_first_row_int } }
3371 { \int_compare_p:nNn { \l_tmpa_int } > { \g_@@_row_total_int } }
3372 {
3373 \@@_error:n { bad~value~for~baseline }
3374 \int_set:Nn \l_tmpa_int 1
3375 }
3376 \@@_qpoint:n { row - \int_use:N \l_tmpa_int - base }
3377 }
3378 \dim_gsub:Nn \g_tmpa_dim \pgf@y
3379 \endpgfpicture
3380 \dim_gadd:Nn \g_tmpa_dim \arrayrulewidth
3381 \int_if_zero:nT { \l_@@_first_row_int }
3382 {
3383 \dim_gadd:Nn \g_tmpa_dim \g_@@_ht_row_zero_dim
3384 \dim_gadd:Nn \g_tmpa_dim \g_@@_dp_row_zero_dim
3385 }
3386 \box_move_up:nn \g_tmpa_dim { \hbox { \@@_use_arraybox_with_notes_c: } }
3387 }

The command \@@_put_box_in_flow_bis: is used when the option delimiters/max-width is used
because, in this case, we have to adjust the widths of the delimiters. The arguments #1 and #2 are
the delimiters specified by the user.

3388 \cs_new_protected:Npn \@@_put_box_in_flow_bis:nn #1 #2
3389 {

88

We will compute the real width of both delimiters used.
3390 \dim_zero_new:N \l_@@_real_left_delim_dim
3391 \dim_zero_new:N \l_@@_real_right_delim_dim
3392 \hbox_set:Nn \l_tmpb_box
3393 {
3394 \m@th
3395 $ % $
3396 \left #1
3397 \vcenter
3398 {
3399 \vbox_to_ht:nn
3400 { \box_ht_plus_dp:N \l_tmpa_box }
3401 { }
3402 }
3403 \right .
3404 $ % $
3405 }
3406 \dim_set:Nn \l_@@_real_left_delim_dim
3407 { \box_wd:N \l_tmpb_box - \nulldelimiterspace }
3408 \hbox_set:Nn \l_tmpb_box
3409 {
3410 \m@th
3411 $ % $
3412 \left .
3413 \vbox_to_ht:nn
3414 { \box_ht_plus_dp:N \l_tmpa_box }
3415 { }
3416 \right #2
3417 $ % $
3418 }
3419 \dim_set:Nn \l_@@_real_right_delim_dim
3420 { \box_wd:N \l_tmpb_box - \nulldelimiterspace }

Now, we can put the box in the TeX flow with the horizontal adjustments on both sides.
3421 \skip_horizontal:n { \l_@@_left_delim_dim - \l_@@_real_left_delim_dim }
3422 \@@_put_box_in_flow:
3423 \skip_horizontal:n { \l_@@_right_delim_dim - \l_@@_real_right_delim_dim }
3424 }

The construction of the array in the environment {NiceArrayWithDelims} is, in fact, done by the
environment {@@-light-syntax} or by the environment {@@-normal-syntax} (whether the option
light-syntax is in force or not). When the key light-syntax is not used, the construction is a
standard environment (and, thus, it’s possible to use verbatim in the array).

3425 \NewDocumentEnvironment { @@-normal-syntax } { }

First, we test whether the environment is empty. If it is empty, we raise a fatal error (it’s only a
security). In order to detect whether it is empty, we test whether the next token is \end and, if it’s
the case, we test if this is the end of the environment (if it is not, a standard error will be raised by
LaTeX for incorrect nested environments).

3426 {
3427 \peek_remove_spaces:n
3428 {
3429 \peek_meaning:NTF \end
3430 { \@@_analyze_end:Nn }
3431 {
3432 \@@_transform_preamble:

Here is the call to \array (we have a dedicated macro \@@_array:n because of compatibility with
the classes revtex4-1 and revtex4-2).

3433 \@@_array:o \g_@@_array_preamble_tl
3434 }
3435 }
3436 }

89

3437 {
3438 \@@_create_col_nodes:
3439 \endarray
3440 }

When the key light-syntax is in force, we use an environment which takes its whole body as an
argument (with the specifier b).

3441 \NewDocumentEnvironment { @@-light-syntax } { b }
3442 {

First, we test whether the environment is empty. It’s only a security. Of course, this test is more easy
than the similar test for the “normal syntax” because we have the whole body of the environment in
#1.

3443 \tl_if_empty:nT { #1 }
3444 { \@@_fatal:n { empty~environment } }
3445 \tl_if_in:nnT { #1 } { & }
3446 { \@@_fatal:n { ampersand~in~light-syntax } }
3447 \tl_if_in:nnT { #1 } { \\ }
3448 { \@@_fatal:n { double-backslash~in~light-syntax } }

Now, you extract the \CodeAfter of the body of the environment. Maybe, there is no com-
mand \CodeAfter in the body. That’s why you put a marker \CodeAfter after #1. If there
is yet a \CodeAfter in #1, this second (or third...) \CodeAfter will be caught in the value of
\g_nicematrix_code_after_tl. That doesn’t matter because \CodeAfter will be set to no-op be-
fore the execution of \g_nicematrix_code_after_tl.

3449 \@@_light_syntax_i:w #1 \CodeAfter \q_stop

The command \array is hidden somewhere in \@@_light_syntax_i:w.
3450 }

Now, the second part of the environment. We must leave these lines in the second part (and not put
them in the first part even though we caught the whole body of the environment with an argument
of type b) in order to have the columns S of siunitx working fine.

3451 {
3452 \@@_create_col_nodes:
3453 \endarray
3454 }

3455 \cs_new_protected:Npn \@@_light_syntax_i:w #1\CodeAfter #2 \q_stop
3456 {
3457 \tl_gput_right:Nn \g_nicematrix_code_after_tl { #2 }

The body of the array, which is stored in the argument #1, is now split into items (and not tokens).
3458 \seq_clear_new:N \l_@@_rows_seq

We rescan the character of end of line in order to have the correct catcode.
3459 \tl_set_rescan:Nno \l_@@_end_of_row_tl { } \l_@@_end_of_row_tl
3460 \bool_if:NTF \l_@@_light_syntax_expanded_bool
3461 { \seq_set_split:Nee }
3462 { \seq_set_split:Non }
3463 \l_@@_rows_seq \l_@@_end_of_row_tl { #1 }

We delete the last row if it is empty.
3464 \seq_pop_right:NN \l_@@_rows_seq \l_tmpa_tl
3465 \tl_if_empty:NF \l_tmpa_tl
3466 { \seq_put_right:No \l_@@_rows_seq \l_tmpa_tl }

If the environment uses the option last-row without value (i.e. without saying the number of the
rows), we have now the opportunity to compute that value. We do it, and so, if the token list
\l_@@_code_for_last_row_tl is not empty, we will use directly where it should be.

3467 \int_compare:nNnT { \l_@@_last_row_int } = { -1 }
3468 { \int_set:Nn \l_@@_last_row_int { \seq_count:N \l_@@_rows_seq } }

90

The new value of the body (that is to say after replacement of the separators of rows and columns
by \\ and &) of the environment will be stored in \l_@@_new_body_tl in order to allow the use of
commands such as \hline or \hdottedline with the key light-syntax).

3469 \tl_build_begin:N \l_@@_new_body_tl
3470 \int_zero_new:N \l_@@_nb_cols_int

First, we treat the first row.
3471 \seq_pop_left:NN \l_@@_rows_seq \l_tmpa_tl
3472 \@@_line_with_light_syntax:o \l_tmpa_tl

Now, the other rows (with the same treatment, excepted that we have to insert \\ between the rows).
3473 \seq_map_inline:Nn \l_@@_rows_seq
3474 {
3475 \tl_build_put_right:Nn \l_@@_new_body_tl { \\ }
3476 \@@_line_with_light_syntax:n { ##1 }
3477 }
3478 \tl_build_end:N \l_@@_new_body_tl

3479 \int_compare:nNnT { \l_@@_last_col_int } = { -1 }
3480 {
3481 \int_set:Nn \l_@@_last_col_int
3482 { \l_@@_nb_cols_int - 1 + \l_@@_first_col_int }
3483 }

Now, we can construct the preamble: if the user has used the key last-col, we have the correct
number of columns even though the user has used last-col without value.

3484 \@@_transform_preamble:

The call to \array is in the following command (we have a dedicated macro \@@_array: because of
compatibility with the classes revtex4-1 and revtex4-2).

3485 \@@_array:o \g_@@_array_preamble_tl \l_@@_new_body_tl
3486 }

3487 \cs_new_protected:Npn \@@_line_with_light_syntax:n #1
3488 {
3489 \seq_clear_new:N \l_@@_cells_seq
3490 \seq_set_split:Nnn \l_@@_cells_seq { ~ } { #1 }
3491 \int_set:Nn \l_@@_nb_cols_int
3492 {
3493 \int_max:nn
3494 { \l_@@_nb_cols_int }
3495 { \seq_count:N \l_@@_cells_seq }
3496 }
3497 \seq_pop_left:NN \l_@@_cells_seq \l_tmpa_tl
3498 \tl_build_put_right:No \l_@@_new_body_tl \l_tmpa_tl
3499 \seq_map_inline:Nn \l_@@_cells_seq
3500 { \tl_build_put_right:Nn \l_@@_new_body_tl { & ##1 } }
3501 }
3502 \cs_generate_variant:Nn \@@_line_with_light_syntax:n { o }

The following command is used by the code which detects whether the environment is empty (we
raise a fatal error in this case: it’s only a security). When this command is used, #1 is, in fact, always
\end.

3503 \cs_new_protected:Npn \@@_analyze_end:Nn #1 #2
3504 {
3505 \str_if_eq:eeT { \g_@@_name_env_str } { #2 }
3506 { \@@_fatal:n { empty~environment } }

We reput in the stream the \end{...} we have extracted and the user will have an error for incorrect
nested environments.

3507 \end { #2 }
3508 }

91

The command \@@_create_col_nodes: will construct a special last row. That last row is a false
row used to create the col nodes and to fix the width of the columns (when the array is constructed
with an option which specifies the width of the columns such as columns-width).

3509 \cs_new:Npn \@@_create_col_nodes:
3510 {
3511 \crcr
3512 \int_if_zero:nT { \l_@@_first_col_int }
3513 {
3514 \omit
3515 \hbox_overlap_left:n
3516 {
3517 \bool_if:NT \l_@@_code_before_bool
3518 { \pgfsys@markposition { \@@_env: - col - 0 } }
3519 \pgfpicture
3520 \pgfrememberpicturepositiononpagetrue
3521 \pgfcoordinate { \@@_env: - col - 0 } \pgfpointorigin
3522 \str_if_empty:NF \l_@@_name_str
3523 { \pgfnodealias { \l_@@_name_str - col - 0 } { \@@_env: - col - 0 } }
3524 \endpgfpicture
3525 \skip_horizontal:n { 2 \col@sep + \g_@@_width_first_col_dim }
3526 }
3527 &
3528 }
3529 \omit

The following instruction must be put after the instruction \omit since, of course, it is not expandable.
3530 \bool_gset_true:N \g_@@_row_of_col_done_bool

First, we put a col node on the left of the first column (of course, we have to do that after the
\omit).

3531 \int_if_zero:nTF { \l_@@_first_col_int }
3532 {
3533 \@@_mark_position:n { 1 }
3534 \pgfpicture
3535 \pgfrememberpicturepositiononpagetrue
3536 \pgfcoordinate { \@@_env: - col - 1 }
3537 { \pgfpoint { - 0.5 \arrayrulewidth } \c_zero_dim }
3538 \str_if_empty:NF \l_@@_name_str
3539 { \pgfnodealias { \l_@@_name_str - col - 1 } { \@@_env: - col - 1 } }
3540 \endpgfpicture
3541 }
3542 {
3543 \bool_if:NT \l_@@_code_before_bool
3544 {
3545 \hbox
3546 {
3547 \skip_horizontal:n { 0.5 \arrayrulewidth }
3548 \pgfsys@markposition { \@@_env: - col - 1 }
3549 \skip_horizontal:n { -0.5 \arrayrulewidth }
3550 }
3551 }
3552 \pgfpicture
3553 \pgfrememberpicturepositiononpagetrue
3554 \pgfcoordinate { \@@_env: - col - 1 }
3555 { \pgfpoint { 0.5 \arrayrulewidth } \c_zero_dim }
3556 \@@_node_alias:n { 1 }
3557 \endpgfpicture
3558 }

We compute in \g_tmpa_skip the common width of the columns (it’s a skip and not a dimension).
We use a global variable because we are in a cell of an \halign and because we have to use that
variable in other cells (of the same row). The affectation of \g_tmpa_skip, like all the affectations,
must be done after the \omit of the cell.

92

We give a default value for \g_tmpa_skip (0 pt plus 1 fill) but we will add some dimensions to
it.

3559 \skip_gset:Nn \g_tmpa_skip { 0 pt~plus 1 fill }
3560 \bool_if:NF \l_@@_auto_columns_width_bool
3561 { \dim_compare:nNnT { \l_@@_columns_width_dim } > { \c_zero_dim } }
3562 {
3563 \bool_lazy_and:nnTF
3564 { \l_@@_auto_columns_width_bool }
3565 { \bool_not_p:n \l_@@_block_auto_columns_width_bool }
3566 { \skip_gadd:Nn \g_tmpa_skip \g_@@_max_cell_width_dim }
3567 { \skip_gadd:Nn \g_tmpa_skip \l_@@_columns_width_dim }
3568 \skip_gadd:Nn \g_tmpa_skip { 2 \col@sep }
3569 }
3570 \skip_horizontal:N \g_tmpa_skip
3571 \hbox
3572 {
3573 \@@_mark_position:n { 2 }
3574 \pgfpicture
3575 \pgfrememberpicturepositiononpagetrue
3576 \pgfcoordinate { \@@_env: - col - 2 }
3577 { \pgfpoint { - 0.5 \arrayrulewidth } \c_zero_dim }
3578 \@@_node_alias:n { 2 }
3579 \endpgfpicture
3580 }

We begin a loop over the columns. The integer \g_tmpa_int will be the number of the current
column. This integer is used for the TikZ nodes.

3581 \int_gset_eq:NN \g_tmpa_int \c_one_int
3582 \bool_if:NTF \g_@@_last_col_found_bool
3583 { \prg_replicate:nn { \int_max:nn { \g_@@_col_total_int - 3 } { 0 } } }
3584 { \prg_replicate:nn { \int_max:nn { \g_@@_col_total_int - 2 } { 0 } } }
3585 {
3586 &
3587 \omit
3588 \int_gincr:N \g_tmpa_int

The incrementation of the counter \g_tmpa_int must be done after the \omit of the cell.
3589 \skip_horizontal:N \g_tmpa_skip
3590 \@@_mark_position:n { \int_eval:n { \g_tmpa_int + 1 } }

We create the col node on the right of the current column.
3591 \pgfpicture
3592 \pgfrememberpicturepositiononpagetrue
3593 \pgfcoordinate { \@@_env: - col - \int_eval:n { \g_tmpa_int + 1 } }
3594 { \pgfpoint { - 0.5 \arrayrulewidth } \c_zero_dim }
3595 \@@_node_alias:n { \int_eval:n { \g_tmpa_int + 1 } }
3596 \endpgfpicture
3597 }

If there is only one column (and a potential “last column”), we don’t have to put the following code
(there is only one column and we have put the correct code previously).

3598 \bool_lazy_or:nnF
3599 { \int_compare_p:nNn \g_@@_col_total_int = 1 }
3600 { \int_compare_p:nNn \g_@@_col_total_int = 2 && \g_@@_last_col_found_bool }
3601 {
3602 &
3603 \omit
3604 \skip_horizontal:N \g_tmpa_skip
3605 \int_gincr:N \g_tmpa_int
3606 \bool_lazy_any:nF
3607 {
3608 \g_@@_delims_bool
3609 \l_@@_tabular_bool
3610 { ! \clist_if_empty_p:N \l_@@_vlines_clist }
3611 \l_@@_exterior_arraycolsep_bool

93

3612 \l_@@_bar_at_end_of_pream_bool
3613 }
3614 { \skip_horizontal:n { - \col@sep } }
3615 \bool_if:NT \l_@@_code_before_bool
3616 {
3617 \hbox
3618 {
3619 \skip_horizontal:n { -0.5 \arrayrulewidth }

With an environment {Matrix}, you want to remove the exterior \arraycolsep but we don’t know
the number of columns (since there is no preamble) and that’s why we can’t put @{} at the end of
the preamble. That’s why we remove a \arraycolsep now.

3620 \bool_if:NT \l_@@_NiceMatrix_without_vlines_bool
3621 { \skip_horizontal:n { - \arraycolsep } }
3622 \pgfsys@markposition
3623 { \@@_env: - col - \int_eval:n { \g_tmpa_int + 1 } }
3624 \skip_horizontal:n { 0.5 \arrayrulewidth }
3625 \bool_if:NT \l_@@_NiceMatrix_without_vlines_bool
3626 { \skip_horizontal:N \arraycolsep }
3627 }
3628 }
3629 \pgfpicture
3630 \pgfrememberpicturepositiononpagetrue
3631 \pgfcoordinate { \@@_env: - col - \int_eval:n { \g_tmpa_int + 1 } }
3632 {
3633 \bool_if:NT \l_@@_NiceMatrix_without_vlines_bool
3634 {
3635 \pgfpoint
3636 { - 0.5 \arrayrulewidth - \arraycolsep }
3637 \c_zero_dim
3638 }
3639 { \pgfpoint { - 0.5 \arrayrulewidth } \c_zero_dim }
3640 }
3641 \@@_node_alias:n { \int_eval:n { \g_tmpa_int + 1 } }
3642 \endpgfpicture
3643 }

3644 \bool_if:NT \g_@@_last_col_found_bool
3645 {
3646 \hbox_overlap_right:n
3647 {
3648 \skip_horizontal:N \g_@@_width_last_col_dim
3649 \skip_horizontal:N \col@sep
3650 \bool_if:NT \l_@@_code_before_bool
3651 {
3652 \pgfsys@markposition
3653 { \@@_env: - col - \int_eval:n { \g_@@_col_total_int + 1 } }
3654 }
3655 \pgfpicture
3656 \pgfrememberpicturepositiononpagetrue
3657 \pgfcoordinate
3658 { \@@_env: - col - \int_eval:n { \g_@@_col_total_int + 1 } }
3659 \pgfpointorigin
3660 \@@_node_alias:n { \int_eval:n { \g_@@_col_total_int + 1 } }
3661 \endpgfpicture
3662 }
3663 }
3664 }

3665 \cs_new_protected:Npn \@@_mark_position:n #1
3666 {
3667 \bool_if:NT \l_@@_code_before_bool

94

3668 {
3669 \hbox
3670 {
3671 \skip_horizontal:n { -0.5 \arrayrulewidth }
3672 \pgfsys@markposition { \@@_env: - col - #1 }
3673 \skip_horizontal:n { 0.5 \arrayrulewidth }
3674 }
3675 }
3676 }

3677 \cs_new_protected:Npn \@@_node_alias:n #1
3678 {
3679 \str_if_empty:NF \l_@@_name_str
3680 { \pgfnodealias { \l_@@_name_str - col - #1 } { \@@_env: - col - #1 } }
3681 }

Here is the preamble for the “first column” (if the user uses the key first-col)
3682 \tl_const:Nn \c_@@_preamble_first_col_tl
3683 {
3684 >
3685 {

At the beginning of the cell, we link \CodeAfter to a command which begins with \\ (whereas the
standard version of \CodeAfter begins does not).

3686 \cs_set_eq:NN \CodeAfter \@@_CodeAfter_i:
3687 \bool_gset_true:N \g_@@_after_col_zero_bool
3688 \@@_begin_of_row:
3689 \hbox_set:Nw \l_@@_cell_box
3690 \@@_math_toggle:
3691 \@@_tuning_key_small:

We insert \l_@@_code_for_first_col_tl... but we don’t insert it in the potential “first row” and
in the potential “last row”.

3692 \int_compare:nNnT { \c@iRow } > { \c_zero_int }
3693 {
3694 \bool_lazy_or:nnT
3695 { \int_compare_p:nNn { \l_@@_last_row_int } < { \c_zero_int } }
3696 { \int_compare_p:nNn { \c@iRow } < { \l_@@_last_row_int } }
3697 {
3698 \l_@@_code_for_first_col_tl
3699 \xglobal \colorlet { nicematrix-first-col } { . }
3700 }
3701 }
3702 }

Be careful: despite this letter l the cells of the “first column” are composed in a R manner since they
are composed in a \hbox_overlap_left:n.

3703 l
3704 <
3705 {
3706 \@@_math_toggle:
3707 \hbox_set_end:
3708 \bool_if:NT \g_@@_rotate_bool { \@@_rotate_cell_box: }
3709 \@@_adjust_size_box:
3710 \@@_update_for_first_and_last_row:

We actualise the width of the “first column” because we will use this width after the construction of
the array.

3711 \dim_gset:Nn \g_@@_width_first_col_dim
3712 { \dim_max:nn { \g_@@_width_first_col_dim } { \box_wd:N \l_@@_cell_box } }

The content of the cell is inserted in an overlapping position.
3713 \hbox_overlap_left:n
3714 {

95

3715 \dim_compare:nNnTF { \box_wd:N \l_@@_cell_box } > { \c_zero_dim }
3716 { \@@_node_cell: }
3717 { \box_use_drop:N \l_@@_cell_box }
3718 \skip_horizontal:N \l_@@_left_delim_dim
3719 \skip_horizontal:N \l_@@_left_margin_dim
3720 \skip_horizontal:N \l_@@_extra_left_margin_dim
3721 }
3722 \bool_gset_false:N \g_@@_empty_cell_bool
3723 \skip_horizontal:n { -2 \col@sep }
3724 }
3725 }

Here is the preamble for the “last column” (if the user uses the key last-col).
3726 \tl_const:Nn \c_@@_preamble_last_col_tl
3727 {
3728 >
3729 {
3730 \bool_set_true:N \l_@@_in_last_col_bool

At the beginning of the cell, we link \CodeAfter to a command which begins with \\ (whereas the
standard version of \CodeAfter begins does not).

3731 \cs_set_eq:NN \CodeAfter \@@_CodeAfter_i:

With the flag \g_@@_last_col_found_bool, we will know that the “last column” is really used.
3732 \bool_gset_true:N \g_@@_last_col_found_bool
3733 \int_gincr:N \c@jCol
3734 \int_gset_eq:NN \g_@@_col_total_int \c@jCol
3735 \hbox_set:Nw \l_@@_cell_box
3736 \@@_math_toggle:
3737 \@@_tuning_key_small:

We insert \l_@@_code_for_last_col_tl... but we don’t insert it in the potential “first row” and in
the potential “last row”.

3738 \int_compare:nNnT { \c@iRow } > { \c_zero_int }
3739 {
3740 \bool_lazy_or:nnT
3741 { \int_compare_p:nNn { \l_@@_last_row_int } < { \c_zero_int } }
3742 { \int_compare_p:nNn { \c@iRow } < { \l_@@_last_row_int } }
3743 {
3744 \l_@@_code_for_last_col_tl
3745 \xglobal \colorlet { nicematrix-last-col } { . }
3746 }
3747 }
3748 }
3749 l
3750 <
3751 {
3752 \@@_math_toggle:
3753 \hbox_set_end:
3754 \bool_if:NT \g_@@_rotate_bool { \@@_rotate_cell_box: }
3755 \@@_adjust_size_box:
3756 \@@_update_for_first_and_last_row:

We actualise the width of the “last column” because we will use this width after the construction of
the array.

3757 \dim_gset:Nn \g_@@_width_last_col_dim
3758 { \dim_max:nn { \g_@@_width_last_col_dim } { \box_wd:N \l_@@_cell_box } }
3759 \skip_horizontal:n { -2 \col@sep }

The content of the cell is inserted in an overlapping position.
3760 \hbox_overlap_right:n
3761 {
3762 \dim_compare:nNnT { \box_wd:N \l_@@_cell_box } > { \c_zero_dim }
3763 {
3764 \skip_horizontal:N \l_@@_right_delim_dim
3765 \skip_horizontal:N \l_@@_right_margin_dim

96

3766 \skip_horizontal:N \l_@@_extra_right_margin_dim
3767 \@@_node_cell:
3768 }
3769 }
3770 \bool_gset_false:N \g_@@_empty_cell_bool
3771 }
3772 }

The environment {NiceArray} is constructed upon the environment {NiceArrayWithDelims}.
3773 \NewDocumentEnvironment { NiceArray } { }
3774 {
3775 \bool_gset_false:N \g_@@_delims_bool
3776 \str_if_empty:NT \g_@@_name_env_str
3777 { \str_gset:Nn \g_@@_name_env_str { NiceArray } }

We put . and . for the delimiters but, in fact, that doesn’t matter because these arguments won’t be
used in {NiceArrayWithDelims} (because the flag \g_@@_delims_bool is set to false).

3778 \NiceArrayWithDelims . .
3779 }
3780 { \endNiceArrayWithDelims }

We create the variants of the environment {NiceArrayWithDelims}.
3781 \cs_new_protected:Npn \@@_def_env:NNN #1 #2 #3
3782 {
3783 \NewDocumentEnvironment { #1 NiceArray } { }
3784 {
3785 \bool_gset_true:N \g_@@_delims_bool
3786 \str_if_empty:NT \g_@@_name_env_str
3787 { \str_gset:Nn \g_@@_name_env_str { #1 NiceArray } }
3788 \@@_test_if_math_mode:
3789 \NiceArrayWithDelims #2 #3
3790 }
3791 { \endNiceArrayWithDelims }
3792 }

3793 \@@_def_env:NNN p ()
3794 \@@_def_env:NNN b []
3795 \@@_def_env:NNN B \{ \}
3796 \@@_def_env:NNN v \vert \vert
3797 \@@_def_env:NNN V \Vert \Vert

13 The environment {NiceMatrix} and its variants

3798 \cs_new_protected:Npn \@@_begin_of_NiceMatrix:nn #1 #2
3799 {
3800 \bool_set_false:N \l_@@_preamble_bool
3801 \tl_clear:N \l_tmpa_tl
3802 \bool_if:NT \l_@@_NiceMatrix_without_vlines_bool
3803 { \tl_set:Nn \l_tmpa_tl { @ { } } }
3804 \tl_put_right:Nn \l_tmpa_tl
3805 {
3806 *
3807 {
3808 \int_case:nnF \l_@@_last_col_int
3809 {
3810 { -2 } { \c@MaxMatrixCols }
3811 { -1 } { \int_eval:n { \c@MaxMatrixCols + 1 } }

97

The value 0 can’t occur here since we are in a matrix (which is an environment without preamble).
3812 }
3813 { \int_eval:n { \l_@@_last_col_int - 1 } }
3814 }
3815 { #2 }
3816 }
3817 \tl_set:Nn \l_tmpb_tl { \use:c { #1 NiceArray } }
3818 \exp_args:No \l_tmpb_tl \l_tmpa_tl
3819 }
3820 \cs_generate_variant:Nn \@@_begin_of_NiceMatrix:nn { n o }

3821 \clist_map_inline:nn { p , b , B , v , V }
3822 {
3823 \NewDocumentEnvironment { #1 NiceMatrix } { ! O { } }
3824 {
3825 \bool_gset_true:N \g_@@_delims_bool
3826 \str_gset:Nn \g_@@_name_env_str { #1 NiceMatrix }
3827 \int_if_zero:nT { \l_@@_last_col_int }
3828 {
3829 \bool_set_true:N \l_@@_last_col_without_value_bool
3830 \int_set:Nn \l_@@_last_col_int { -1 }
3831 }
3832 \keys_set:nn { nicematrix / NiceMatrix } { ##1 }
3833 \@@_begin_of_NiceMatrix:no { #1 } { \l_@@_columns_type_tl }
3834 }
3835 { \use:c { end #1 NiceArray } }
3836 }

We define also an environment {NiceMatrix}
3837 \NewDocumentEnvironment { NiceMatrix } { ! O { } }
3838 {
3839 \str_gset:Nn \g_@@_name_env_str { NiceMatrix }
3840 \int_if_zero:nT { \l_@@_last_col_int }
3841 {
3842 \bool_set_true:N \l_@@_last_col_without_value_bool
3843 \int_set:Nn \l_@@_last_col_int { -1 }
3844 }
3845 \keys_set:nn { nicematrix / NiceMatrix } { #1 }
3846 \bool_lazy_or:nnT
3847 { \clist_if_empty_p:N \l_@@_vlines_clist }
3848 { \l_@@_except_borders_bool }
3849 { \bool_set_true:N \l_@@_NiceMatrix_without_vlines_bool }
3850 \@@_begin_of_NiceMatrix:no { } { \l_@@_columns_type_tl }
3851 }
3852 { \endNiceArray }

The following command will be linked to \NotEmpty in the environments of nicematrix.
3853 \cs_new_protected:Npn \@@_NotEmpty:
3854 { \bool_gset_true:N \g_@@_not_empty_cell_bool }

14 {NiceTabular}, {NiceTabularX} and {NiceTabular*}

3855 \NewDocumentEnvironment { NiceTabular } { O { } m ! O { } }
3856 {

If the dimension \l_@@_width_dim is equal to 0 pt, that means that it has not been set by a previous
use of \NiceMatrixOptions.

3857 \dim_compare:nNnT { \l_@@_width_dim } = { \c_zero_dim }
3858 { \dim_set_eq:NN \l_@@_width_dim \linewidth }
3859 \str_gset:Nn \g_@@_name_env_str { NiceTabular }
3860 \keys_set:nn { nicematrix / NiceTabular } { #1 , #3 }
3861 \tl_if_empty:NF \l_@@_short_caption_tl

98

3862 {
3863 \tl_if_empty:NT \l_@@_caption_tl
3864 {
3865 \@@_error_or_warning:n { short-caption~without~caption }
3866 \tl_set_eq:NN \l_@@_caption_tl \l_@@_short_caption_tl
3867 }
3868 }
3869 \tl_if_empty:NF \l_@@_label_tl
3870 {
3871 \tl_if_empty:NT \l_@@_caption_tl
3872 { \@@_error_or_warning:n { label~without~caption } }
3873 }
3874 \NewDocumentEnvironment { TabularNote } { b }
3875 {
3876 \bool_if:NTF \l_@@_in_code_after_bool
3877 { \@@_error_or_warning:n { TabularNote~in~CodeAfter } }
3878 {
3879 \tl_if_empty:NF \g_@@_tabularnote_tl
3880 { \tl_gput_right:Nn \g_@@_tabularnote_tl { \par } }
3881 \tl_gput_right:Nn \g_@@_tabularnote_tl { ##1 }
3882 }
3883 }
3884 { }
3885 \@@_settings_for_tabular:
3886 \NiceArray { #2 }
3887 }
3888 { \endNiceArray }

3889 \cs_new_protected:Npn \@@_settings_for_tabular:
3890 {
3891 \bool_set_true:N \l_@@_tabular_bool
3892 \cs_set_eq:NN \@@_math_toggle: \prg_do_nothing:
3893 \cs_set_eq:NN \@@_tuning_not_tabular_begin: \prg_do_nothing:
3894 \cs_set_eq:NN \@@_tuning_not_tabular_end: \prg_do_nothing:
3895 }

3896 \NewDocumentEnvironment { NiceTabularX } { m O { } m ! O { } }
3897 {
3898 \str_gset:Nn \g_@@_name_env_str { NiceTabularX }
3899 \dim_set:Nn \l_@@_width_dim { #1 }
3900 \keys_set:nn { nicematrix / NiceTabular } { #2 , #4 }
3901 \@@_settings_for_tabular:
3902 \NiceArray { #3 }
3903 }
3904 {
3905 \endNiceArray
3906 \fp_compare:nNnT { \g_@@_total_X_weight_fp } = { \c_zero_fp }
3907 { \@@_error:n { NiceTabularX~without~X } }
3908 }

3909 \NewDocumentEnvironment { NiceTabular* } { m O { } m ! O { } }
3910 {
3911 \str_gset:Nn \g_@@_name_env_str { NiceTabular* }
3912 \dim_set:Nn \l_@@_tabular_width_dim { #1 }
3913 \keys_set:nn { nicematrix / NiceTabular } { #2 , #4 }
3914 \@@_settings_for_tabular:
3915 \NiceArray { #3 }
3916 }
3917 { \endNiceArray }

99

15 After the construction of the array

The following command will be used when the key rounded-corners is in force (this is the key
rounded-corners for the whole environment and not the key rounded-corners of a command
\Block).

3918 \cs_new_protected:Npn \@@_deal_with_rounded_corners:
3919 {
3920 \bool_lazy_all:nT
3921 {
3922 { \dim_compare_p:nNn { \l_@@_tab_rounded_corners_dim } > { \c_zero_dim } }
3923 { \l_@@_hvlines_bool }
3924 { ! \g_@@_delims_bool }
3925 { ! \l_@@_except_borders_bool }
3926 }
3927 {
3928 \bool_set_true:N \l_@@_except_borders_bool
3929 \clist_if_empty:NF \l_@@_corners_clist
3930 { \@@_error:n { hvlines,~rounded-corners~and~corners } }
3931 \tl_gput_right:Nn \g_@@_pre_code_after_tl
3932 {
3933 \@@_stroke_block:nnn
3934 {
3935 rounded-corners = \dim_use:N \l_@@_tab_rounded_corners_dim ,
3936 draw = \l_@@_rules_color_tl
3937 }
3938 { 1-1 }
3939 { \int_use:N \c@iRow - \int_use:N \c@jCol }
3940 }
3941 }
3942 }

3943 \cs_new_protected:Npn \@@_after_array:
3944 {

There was a \hook_gput_code:nnn { env / tabular / begin } { nicematrix } in the com-
mand \@@_pre_array_after_CodeBefore: in order to come back to the standard definition of
\multicolumn (in the tabulars used by the final user in the cells of our array of nicematrix) and
maybe another linked to colortbl.

3945 \hook_gremove_code:nn { env / tabular / begin } { nicematrix }
3946 \group_begin:

When the option last-col is used in the environments with explicit preambles (like {NiceArray},
{pNiceArray}, etc.) a special type of column is used at the end of the preamble in order to compose
the cells in an overlapping position (with \hbox_overlap_right:n) but (if last-col has been used),
we don’t have the number of that last column. However, we have to know that number for the
color of the potential \Vdots drawn in that last column. That’s why we fix the correct value of
\l_@@_last_col_int in that case.

3947 \bool_if:NT \g_@@_last_col_found_bool
3948 { \int_set_eq:NN \l_@@_last_col_int \g_@@_col_total_int }

If we are in an environment without preamble (like {NiceMatrix} or {pNiceMatrix}) and if the
option last-col has been used without value we also fix the real value of \l_@@_last_col_int.

3949 \bool_if:NT \l_@@_last_col_without_value_bool
3950 { \int_set_eq:NN \l_@@_last_col_int \g_@@_col_total_int }

It’s also time to give to \l_@@_last_row_int its real value.
3951 \bool_if:NT \l_@@_last_row_without_value_bool
3952 { \int_set_eq:NN \l_@@_last_row_int \g_@@_row_total_int }

100

3953 \tl_gput_right:Ne \g_@@_aux_tl
3954 {
3955 \seq_gset_from_clist:Nn \exp_not:N \g_@@_size_seq
3956 {
3957 \int_use:N \l_@@_first_row_int ,
3958 \int_use:N \c@iRow ,
3959 \int_use:N \g_@@_row_total_int ,
3960 \int_use:N \l_@@_first_col_int ,
3961 \int_use:N \c@jCol ,
3962 \int_use:N \g_@@_col_total_int
3963 }
3964 }

3965 \clist_if_empty:NF \g_@@_cbic_clist { \@@_cbic: }

We write also the potential content of \g_@@_pos_of_blocks_seq. It will be used to recreate the
blocks with a name in the \CodeBefore and also if the command \rowcolors is used with the key
respect-blocks).

3966 \seq_if_empty:NF \g_@@_pos_of_blocks_seq
3967 {
3968 \tl_gput_right:Ne \g_@@_aux_tl
3969 {
3970 \seq_gset_from_clist:Nn \exp_not:N \g_@@_pos_of_blocks_seq
3971 { \seq_use:Nn \g_@@_pos_of_blocks_seq { , } }
3972 }
3973 }
3974 \seq_if_empty:NF \g_@@_multicolumn_cells_seq
3975 {
3976 \tl_gput_right:Ne \g_@@_aux_tl
3977 {
3978 \seq_gset_from_clist:Nn \exp_not:N \g_@@_multicolumn_cells_seq
3979 { \seq_use:Nn \g_@@_multicolumn_cells_seq { , } }
3980 \seq_gset_from_clist:Nn \exp_not:N \g_@@_multicolumn_sizes_seq
3981 { \seq_use:Nn \g_@@_multicolumn_sizes_seq { , } }
3982 }
3983 }

Now, you create the diagonal nodes by using the row nodes and the col nodes.
3984 \@@_create_diag_nodes:

We create the aliases using last for the nodes of the cells in the last row and the last column.
3985 \pgfpicture
3986 \@@_create_aliases_last:
3987 \str_if_empty:NF \l_@@_name_str { \@@_create_alias_nodes: }
3988 \endpgfpicture

By default, the diagonal lines will be parallelized12. There are two types of diagonals lines: the
\Ddots diagonals and the \Iddots diagonals. We have to count both types in order to know whether
a diagonal is the first of its type in the current {NiceArray} environment.

3989 \bool_if:NT \l_@@_parallelize_diags_bool
3990 {
3991 \int_gzero:N \g_@@_ddots_int
3992 \int_gzero:N \g_@@_iddots_int

The dimensions \g_@@_delta_x_one_dim and \g_@@_delta_y_one_dim will contain the ∆x and ∆y

of the first \Ddots diagonal. We have to store these values in order to draw the others \Ddots
diagonals parallel to the first one. Similarly \g_@@_delta_x_two_dim and \g_@@_delta_y_two_dim
are the ∆x and ∆y of the first \Iddots diagonal.

3993 \dim_gzero:N \g_@@_delta_x_one_dim
3994 \dim_gzero:N \g_@@_delta_y_one_dim
3995 \dim_gzero:N \g_@@_delta_x_two_dim

12It’s possible to use the option parallelize-diags to disable this parallelization.

101

3996 \dim_gzero:N \g_@@_delta_y_two_dim
3997 }

3998 \bool_set_false:N \l_@@_initial_open_bool
3999 \bool_set_false:N \l_@@_final_open_bool

If the option small is used, the values \l_@@_xdots_radius_dim and \l_@@_xdots_inter_dim (used
to draw the dotted lines created by \hdottedline and \vdottedline and also for all the other dotted
lines when line-style is equal to standard, which is the initial value) are changed.

4000 \bool_if:NT \l_@@_small_bool { \@@_tuning_key_small_for_dots: }

Now, we actually draw the dotted lines (specified by \Cdots, \Vdots, etc.).
4001 \@@_draw_dotted_lines:

The following computes the “corners” (made up of empty cells) but if there is no corner to compute,
it won’t do anything. The corners are computed in \l_@@_corners_cells_clist which will contain
all the cells which are empty (and not in a block) considered in the corners of the array.

4002 \clist_if_empty:NF \l_@@_corners_clist
4003 {
4004 \bool_if:NTF \l_@@_no_cell_nodes_bool
4005 { \@@_error:n { corners~with~no-cell-nodes } }
4006 { \@@_compute_corners: }
4007 }

By design, we have computed the corners before the adjonction of \g_@@_future_pos_of_blocks_seq
is used by \EmptyRow and \EmptyColumn in the \CodeBefore.

4008 \seq_gconcat:NNN \g_@@_pos_of_blocks_seq
4009 \g_@@_pos_of_blocks_seq
4010 \g_@@_future_pos_of_blocks_seq
4011 \seq_gclear:N \g_@@_future_pos_of_blocks_seq

The sequence \g_@@_pos_of_blocks_seq must be “adjusted” (for the case where the user have
written something like \Block{1-*}).

4012 \@@_adjust_pos_of_blocks_seq:

4013 \@@_deal_with_rounded_corners:
4014 \clist_if_empty:NF \l_@@_hlines_clist { \@@_draw_hlines: }
4015 \clist_if_empty:NF \l_@@_vlines_clist { \@@_draw_vlines: }

Now, the pre-code-after and then, the \CodeAfter.
4016 \IfPackageLoadedT { tikz }
4017 {
4018 \tikzset
4019 {
4020 every~picture / .style =
4021 {
4022 overlay ,
4023 remember~picture ,
4024 name~prefix = \@@_env: -
4025 }
4026 }
4027 }
4028 \cs_set_eq:NN \ar@ialign \@@_old_ar@ialign:
4029 \cs_set_eq:NN \SubMatrix \@@_SubMatrix
4030 \cs_set_eq:NN \UnderBrace \@@_UnderBrace
4031 \cs_set_eq:NN \OverBrace \@@_OverBrace
4032 \cs_set_eq:NN \ShowCellNames \@@_ShowCellNames
4033 \cs_set_eq:NN \TikzEveryCell \@@_TikzEveryCell
4034 \cs_set_eq:NN \line \@@_line

102

The LaTeX-style boolean \ifmeasuring@ is used by amsmath during the phase of measure in envi-
ronments such as {align}, etc.

4035 \legacy_if:nF { measuring@ } { \g_@@_pre_code_after_tl }
4036 \tl_gclear:N \g_@@_pre_code_after_tl

When light-syntax is used, we insert systematically a \CodeAfter in the flow. Thus, it’s possible
to have two instructions \CodeAfter and the second may be in \g_nicematrix_code_after_tl.
That’s why we set \CodeAfter to be no-op now.

4037 \cs_set_eq:NN \CodeAfter \prg_do_nothing:

We clear the list of the names of the potential \SubMatrix that will appear in the \CodeAfter
(unfortunately, that list has to be global).

4038 \seq_gclear:N \g_@@_submatrix_names_seq

The following code is a security for the case the user has used babel with the option spanish: in that
case, the characters > and < are activated and TikZ is not able to solve the problem (even with the
TikZ library babel).

4039 \int_compare:nNnT { \char_value_catcode:n { 60 } } = { 13 }
4040 { \@@_rescan_for_spanish:N \g_nicematrix_code_after_tl }

And here’s the \CodeAfter. Since the \CodeAfter may begin with an “argument” between
square brackets of the options, we extract and treat that potential “argument” with the command
\@@_CodeAfter_keys:.

4041 \bool_set_true:N \l_@@_in_code_after_bool
4042 \exp_last_unbraced:No \@@_CodeAfter_keys: \g_nicematrix_code_after_tl
4043 \scan_stop:
4044 \tl_gclear:N \g_nicematrix_code_after_tl
4045 \group_end:

\g_@@_pre_code_before_tl is for instructions in the cells of the array such as \rowcolor and
\cellcolor. These instructions will be written on the aux file to be added to the code-before
in the next run.

4046 \seq_if_empty:NF \g_@@_rowlistcolors_seq { \@@_clear_rowlistcolors_seq: }
4047 \tl_if_empty:NF \g_@@_pre_code_before_tl
4048 {
4049 \tl_gput_right:Ne \g_@@_aux_tl
4050 {
4051 \tl_gset:Nn \exp_not:N \g_@@_pre_code_before_tl
4052 { \exp_not:o \g_@@_pre_code_before_tl }
4053 }
4054 \tl_gclear:N \g_@@_pre_code_before_tl
4055 }
4056 \tl_if_empty:NF \g_nicematrix_code_before_tl
4057 {
4058 \tl_gput_right:Ne \g_@@_aux_tl
4059 {
4060 \tl_gset:Nn \exp_not:N \g_@@_code_before_tl
4061 { \exp_not:o \g_nicematrix_code_before_tl }
4062 }
4063 \tl_gclear:N \g_nicematrix_code_before_tl
4064 }

4065 \str_gclear:N \g_@@_name_env_str
4066 \@@_restore_iRow_jCol:

The command \CT@arc@ contains the instruction of color for the rules of the array13. This command
is used by \CT@arc@ but we use it also for compatibility with colortbl. But we want also to be able
to use color for the rules of the array when colortbl is not loaded. That’s why we do the following
instruction which is in the patch of the end of arrays done by colortbl.

4067 \cs_gset_eq:NN \CT@arc@ \@@_old_CT@arc@
4068 }

13e.g. \color[rgb]{0.5,0.5,0}

103

4069 \cs_new_protected:Npn \@@_tuning_key_small_for_dots:
4070 {
4071 \dim_set:Nn \l_@@_xdots_radius_dim { 0.7 \l_@@_xdots_radius_dim }
4072 \dim_set:Nn \l_@@_xdots_inter_dim { 0.55 \l_@@_xdots_inter_dim }

The dimensions \l_@@_xdots_shorten_start_dim and \l_@@_xdots_shorten_start_dim corre-
spond to the options xdots/shorten-start and xdots/shorten-end available to the user.

4073 \dim_set:Nn \l_@@_xdots_shorten_start_dim
4074 { 0.6 \l_@@_xdots_shorten_start_dim }
4075 \dim_set:Nn \l_@@_xdots_shorten_end_dim
4076 { 0.6 \l_@@_xdots_shorten_end_dim }
4077 }

The following command will extract the potential options (between square brackets) at the begin-
ning of the \CodeAfter (that is to say, when \CodeAfter is used, the options of that “command”
\CodeAfter). Idem for the \CodeBefore.

4078 \NewDocumentCommand \@@_CodeAfter_keys: { O { } }
4079 { \keys_set:nn { nicematrix / CodeAfter } { #1 } }

4080 \cs_new_protected:Npn \@@_create_alias_nodes:
4081 {
4082 \int_step_inline:nn { \c@iRow }
4083 {
4084 \pgfnodealias
4085 { \l_@@_name_str - ##1 - last }
4086 { \@@_env: - ##1 - \int_use:N \c@jCol }
4087 }
4088 \int_step_inline:nn { \c@jCol }
4089 {
4090 \pgfnodealias
4091 { \l_@@_name_str - last - ##1 }
4092 { \@@_env: - \int_use:N \c@iRow - ##1 }
4093 }
4094 \pgfnodealias
4095 { \l_@@_name_str - last - last }
4096 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol }
4097 }

We remind that the first mandatory argument of the command \Block is the size of the block with
the special format i-j. However, the user is allowed to omit i or j (or both). This will be interpreted
as: the last row (resp. column) of the block will be the last row (resp. column) of the block
(without the potential exterior row—resp. column—of the array). By convention, this is stored in
\g_@@_pos_of_blocks_seq (and \g_@@_blocks_seq) as a number of rows (resp. columns) for the
block equal to 100. It’s possible, after the construction of the array, to replace these values by the
correct ones (since we know the number of rows and columns of the array).

4098 \cs_new_protected:Npn \@@_adjust_pos_of_blocks_seq:
4099 {
4100 \seq_gset_map_e:NNn \g_@@_pos_of_blocks_seq \g_@@_pos_of_blocks_seq
4101 { \@@_adjust_pos_of_blocks_seq_i:nnnnn ##1 }
4102 }

The following command must not be protected.
4103 \cs_new:Npn \@@_adjust_pos_of_blocks_seq_i:nnnnn #1 #2 #3 #4 #5
4104 {
4105 { #1 }
4106 { #2 }
4107 {
4108 \int_compare:nNnTF { #3 } > { 98 }
4109 { \int_use:N \c@iRow }
4110 { #3 }
4111 }

104

4112 {
4113 \int_compare:nNnTF { #4 } > { 98 }
4114 { \int_use:N \c@jCol }
4115 { #4 }
4116 }
4117 { #5 }
4118 }

We recall that, when externalization is used, \tikzpicture and \endtikzpicture (or \pgfpicture
and \endpgfpicture) must be directly “visible”. That’s why we have to define the adequate version
of \@@_draw_dotted_lines: whether TikZ is loaded or not (in that case, only pgf is loaded).

4119 \hook_gput_code:nnn { begindocument } { . }
4120 {
4121 \cs_new_protected:Npe \@@_draw_dotted_lines:
4122 {
4123 \c_@@_pgfortikzpicture_tl
4124 \@@_draw_dotted_lines_i:
4125 \c_@@_endpgfortikzpicture_tl
4126 }
4127 }

The following command must be protected because it will appear in the construction of the command
\@@_draw_dotted_lines:.

4128 \cs_new_protected:Npn \@@_draw_dotted_lines_i:
4129 {
4130 \pgfrememberpicturepositiononpagetrue
4131 \pgf@relevantforpicturesizefalse
4132 \g_@@_HVdotsfor_lines_tl
4133 \g_@@_Vdots_lines_tl
4134 \g_@@_Ddots_lines_tl
4135 \g_@@_Iddots_lines_tl
4136 \g_@@_Cdots_lines_tl
4137 \g_@@_Ldots_lines_tl
4138 }

4139 \cs_new_protected:Npn \@@_restore_iRow_jCol:
4140 {
4141 \cs_if_exist:NT \theiRow { \int_gset_eq:NN \c@iRow \l_@@_old_iRow_int }
4142 \cs_if_exist:NT \thejCol { \int_gset_eq:NN \c@jCol \l_@@_old_jCol_int }
4143 }

We define a new pgf shape for the diag nodes because we want to provide an anchor called .5 for
those nodes.

4144 \pgfdeclareshape { @@_diag_node }
4145 {
4146 \savedanchor { \five }
4147 {
4148 \dim_gset_eq:NN \pgf@x \l_tmpa_dim
4149 \dim_gset_eq:NN \pgf@y \l_tmpb_dim
4150 }
4151 \anchor { 5 } { \five }
4152 \anchor { center } { \pgfpointorigin }
4153 \anchor { 1 } { \five \pgf@x = 0.2 \pgf@x \pgf@y = 0.2 \pgf@y }
4154 \anchor { 2 } { \five \pgf@x = 0.4 \pgf@x \pgf@y = 0.4 \pgf@y }
4155 \anchor { 25 } { \five \pgf@x = 0.5 \pgf@x \pgf@y = 0.5 \pgf@y }
4156 \anchor { 3 } { \five \pgf@x = 0.6 \pgf@x \pgf@y = 0.6 \pgf@y }
4157 \anchor { 4 } { \five \pgf@x = 0.8 \pgf@x \pgf@y = 0.8 \pgf@y }
4158 \anchor { 6 } { \five \pgf@x = 1.2 \pgf@x \pgf@y = 1.2 \pgf@y }
4159 \anchor { 7 } { \five \pgf@x = 1.4 \pgf@x \pgf@y = 1.4 \pgf@y }
4160 \anchor { 75 } { \five \pgf@x = 1.5 \pgf@x \pgf@y = 1.5 \pgf@y }
4161 \anchor { 8 } { \five \pgf@x = 1.6 \pgf@x \pgf@y = 1.6 \pgf@y }
4162 \anchor { 9 } { \five \pgf@x = 1.8 \pgf@x \pgf@y = 1.8 \pgf@y }
4163 }

105

The following command creates the diagonal nodes (in fact, if the matrix is not a square matrix, not
all the nodes are on the diagonal).

4164 \cs_new_protected:Npn \@@_create_diag_nodes:
4165 {
4166 \pgfpicture
4167 \pgfrememberpicturepositiononpagetrue
4168 \int_step_inline:nn { \int_max:nn { \c@iRow } { \c@jCol } }
4169 {
4170 \@@_qpoint:n { col - \int_min:nn { ##1 } { \c@jCol + 1 } }
4171 \dim_set_eq:NN \l_tmpa_dim \pgf@x
4172 \@@_qpoint:n { row - \int_min:nn { ##1 } { \c@iRow + 1 } }
4173 \dim_set_eq:NN \l_tmpb_dim \pgf@y
4174 \@@_qpoint:n { col - \int_min:nn { ##1 + 1 } { \c@jCol + 1 } }
4175 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@x
4176 \@@_qpoint:n { row - \int_min:nn { ##1 + 1 } { \c@iRow + 1 } }
4177 \dim_set_eq:NN \l_@@_tmpd_dim \pgf@y
4178 \pgftransformshift { \pgfpoint \l_tmpa_dim \l_tmpb_dim }

Now, \l_tmpa_dim and \l_tmpb_dim become the width and the height of the node (of shape
@@_diag_node) that we will construct.

4179 \dim_set:Nn \l_tmpa_dim { (\l_@@_tmpc_dim - \l_tmpa_dim) / 2 }
4180 \dim_set:Nn \l_tmpb_dim { (\l_@@_tmpd_dim - \l_tmpb_dim) / 2 }
4181 \pgfnode { @@_diag_node } { center } { } { \@@_env: - ##1 } { }
4182 \str_if_empty:NF \l_@@_name_str
4183 { \pgfnodealias { \l_@@_name_str - ##1 } { \@@_env: - ##1 } }
4184 }

Now, the last node. Of course, that is only a coordinate because there is not .5 anchor for that
node.

4185 \int_set:Nn \l_tmpa_int { \int_max:nn { \c@iRow } { \c@jCol } + 1 }
4186 \@@_qpoint:n { row - \int_min:nn { \l_tmpa_int } { \c@iRow + 1 } }
4187 \dim_set_eq:NN \l_tmpa_dim \pgf@y
4188 \@@_qpoint:n { col - \int_min:nn { \l_tmpa_int } { \c@jCol + 1 } }
4189 \pgfcoordinate
4190 { \@@_env: - \int_use:N \l_tmpa_int } { \pgfpoint \pgf@x \l_tmpa_dim }
4191 \pgfnodealias
4192 { \@@_env: - last }
4193 { \@@_env: - \int_eval:n { \int_max:nn { \c@iRow } { \c@jCol } + 1 } }
4194 \str_if_empty:NF \l_@@_name_str
4195 {
4196 \pgfnodealias
4197 { \l_@@_name_str - \int_use:N \l_tmpa_int }
4198 { \@@_env: - \int_use:N \l_tmpa_int }
4199 \pgfnodealias
4200 { \l_@@_name_str - last }
4201 { \@@_env: - last }
4202 }
4203 \endpgfpicture
4204 }

16 We draw the dotted lines

A dotted line will be said open in one of its extremities when it stops on the edge of the matrix and
closed otherwise. In the following matrix, the dotted line is closed on its left extremity and open on
its right. a+ b+ c a+ b a

a
a a+ b a+ b+ c



106

The command \@@_find_extremities:nnnn takes four arguments:

• the first argument is the row of the cell where the command was issued;

• the second argument is the column of the cell where the command was issued;

• the third argument is the x-value of the orientation vector of the line;

• the fourth argument is the y-value of the orientation vector of the line.

This command computes:

• \l_@@_initial_i_int and \l_@@_initial_j_int which are the coordinates of one extremity
of the line;

• \l_@@_final_i_int and \l_@@_final_j_int which are the coordinates of the other extremity
of the line;

• \l_@@_initial_open_bool and \l_@@_final_open_bool to indicate whether the extremities
are open or not.

We provide first a version in the L3 syntax, and, then a version slightly more efficient.

\cs_new_protected:Npn \@@_find_extremities:nnnn #1 #2 #3 #4
{
\cs_set:cpn { @@ _ dotted _ #1 - #2 } { }
\int_set:Nn \l_@@_initial_i_int { #1 }
\int_set:Nn \l_@@_initial_j_int { #2 }
\int_set:Nn \l_@@_final_i_int { #1 }
\int_set:Nn \l_@@_final_j_int { #2 }
\bool_set_false:N \l_@@_stop_loop_bool
\bool_do_until:Nn \l_@@_stop_loop_bool
{

\int_add:Nn \l_@@_final_i_int { #3 }
\int_add:Nn \l_@@_final_j_int { #4 }
\bool_set_false:N \l_@@_final_open_bool
\int_compare:nNnTF { \l_@@_final_i_int } > { \l_@@_row_max_int }

{
\int_compare:nNnTF { #3 } = { 1 }
{ \bool_set_true:N \l_@@_final_open_bool }
{

\int_compare:nNnT { \l_@@_final_j_int } > { \l_@@_col_max_int }
{ \bool_set_true:N \l_@@_final_open_bool }

}
}
{
\int_compare:nNnTF \l_@@_final_j_int < \l_@@_col_min_int
{

\int_compare:nNnT { #4 } = { -1 }
{ \bool_set_true:N \l_@@_final_open_bool }

}
{

\int_compare:nNnT { \l_@@_final_j_int } > { \l_@@_col_max_int }
{
\int_compare:nNnT { #4 } = { 1 }

{ \bool_set_true:N \l_@@_final_open_bool }
}

}
}

\bool_if:NTF \l_@@_final_open_bool
{
\int_sub:Nn \l_@@_final_i_int { #3 }
\int_sub:Nn \l_@@_final_j_int { #4 }
\bool_set_true:N \l_@@_stop_loop_bool

}

107

{
\cs_if_exist:cTF
{

@@ _ dotted _
\int_use:N \l_@@_final_i_int -
\int_use:N \l_@@_final_j_int

}
{

\int_sub:Nn \l_@@_final_i_int { #3 }
\int_sub:Nn \l_@@_final_j_int { #4 }
\bool_set_true:N \l_@@_final_open_bool
\bool_set_true:N \l_@@_stop_loop_bool

}
{

\cs_if_exist:cTF
{
pgf @ sh @ ns @ \@@_env:
- \int_use:N \l_@@_final_i_int
- \int_use:N \l_@@_final_j_int

}
{ \bool_set_true:N \l_@@_stop_loop_bool }
{
\cs_set_nopar:cpn

{
@@ _ dotted _
\int_use:N \l_@@_final_i_int -
\int_use:N \l_@@_final_j_int

}
{ }

}
}

}
}

\bool_set_false:N \l_@@_stop_loop_bool
\int_set:Nn \l_tmpa_int { \l_@@_col_min_int - 1 }
\bool_do_until:Nn \l_@@_stop_loop_bool
{

\int_sub:Nn \l_@@_initial_i_int { #3 }
\int_sub:Nn \l_@@_initial_j_int { #4 }
\bool_set_false:N \l_@@_initial_open_bool
\int_compare:nNnTF { \l_@@_initial_i_int } < { \l_@@_row_min_int }

{
\int_compare:nNnTF { #3} = { 1 }
{ \bool_set_true:N \l_@@_initial_open_bool }
{

\int_compare:nNnT { \l_@@_initial_j_int } = { \l_tmpa_int }
{ \bool_set_true:N \l_@@_initial_open_bool }

}
}
{
\int_compare:nNnTF { \l_@@_initial_j_int } < { \l_@@_col_min_int }
{

\int_compare:nNnT { #4 } = { 1 }
{ \bool_set_true:N \l_@@_initial_open_bool }

}
{

\int_compare:nNnT { \l_@@_initial_j_int } > { \l_@@_col_max_int }
{
\int_compare:nNnT { #4 } = { -1 }

{ \bool_set_true:N \l_@@_initial_open_bool }
}

}
}

108

\bool_if:NTF \l_@@_initial_open_bool
{
\int_add:Nn \l_@@_initial_i_int { #3 }
\int_add:Nn \l_@@_initial_j_int { #4 }
\bool_set_true:N \l_@@_stop_loop_bool

}
{
\cs_if_exist:cTF
{

@@ _ dotted _
\int_use:N \l_@@_initial_i_int -
\int_use:N \l_@@_initial_j_int

}
{

\int_add:Nn \l_@@_initial_i_int { #3 }
\int_add:Nn \l_@@_initial_j_int { #4 }
\bool_set_true:N \l_@@_initial_open_bool
\bool_set_true:N \l_@@_stop_loop_bool

}
{

\cs_if_exist:cTF
{
pgf @ sh @ ns @ \@@_env:
- \int_use:N \l_@@_initial_i_int
- \int_use:N \l_@@_initial_j_int

}
{ \bool_set_true:N \l_@@_stop_loop_bool }
{
\cs_set_nopar:cpn

{
@@ _ dotted _
\int_use:N \l_@@_initial_i_int -
\int_use:N \l_@@_initial_j_int

}
{ }

}
}

}
}

\seq_gput_right:Ne \g_@@_pos_of_xdots_seq
{

{ \int_use:N \l_@@_initial_i_int }
{ \int_min:nn { \l_@@_initial_j_int } { \l_@@_final_j_int } }
{ \int_use:N \l_@@_final_i_int }
{ \int_max:nn { \l_@@_initial_j_int } { \l_@@_final_j_int } }
{ }

}
}

The following version is slightly more efficient.
4205 \cs_new_protected:Npn \@@_find_extremities:nnnn #1 #2 #3 #4
4206 {

First, we declare the current cell as “dotted” because we forbide intersections of dotted lines.
4207 \cs_set_nopar:cpn { @@ _ dotted _ #1 - #2 } { }

Initialization of variables.
4208 \l_@@_initial_i_int = #1
4209 \l_@@_initial_j_int = #2
4210 \l_@@_final_i_int = #1
4211 \l_@@_final_j_int = #2

109

We will do two loops: one when determining the initial cell and the other when determining the final
cell. The boolean \l_@@_stop_loop_bool will be used to control these loops. In the first loop, we
search the “final” extremity of the line.

4212 \let \l_@@_stop_loop_bool \c_false_bool
4213 \bool_do_until:Nn \l_@@_stop_loop_bool
4214 {

We test if we are still in the matrix.
4215 \advance \l_@@_final_i_int by #3
4216 \advance \l_@@_final_j_int by #4
4217 \let \l_@@_final_open_bool \c_false_bool
4218 \if_int_compare:w \l_@@_final_i_int > \l_@@_row_max_int
4219 \if_int_compare:w #3 = \c_one_int
4220 \let \l_@@_final_open_bool \c_true_bool
4221 \else:
4222 \if_int_compare:w \l_@@_final_j_int > \l_@@_col_max_int
4223 \let \l_@@_final_open_bool \c_true_bool
4224 \fi:
4225 \fi:
4226 \else:
4227 \if_int_compare:w \l_@@_final_j_int < \l_@@_col_min_int
4228 \if_int_compare:w #4 = -1
4229 \let \l_@@_final_open_bool \c_true_bool
4230 \fi:
4231 \else:
4232 \if_int_compare:w \l_@@_final_j_int > \l_@@_col_max_int
4233 \if_int_compare:w #4 = \c_one_int
4234 \let \l_@@_final_open_bool \c_true_bool
4235 \fi:
4236 \fi:
4237 \fi:
4238 \fi:
4239 \bool_if:NTF \l_@@_final_open_bool

If we are outside the matrix, we have found the extremity of the dotted line and it’s an open extremity.
4240 {

We do a step backwards.
4241 \advance \l_@@_final_i_int by - #3
4242 \advance \l_@@_final_j_int by - #4
4243 \let \l_@@_stop_loop_bool \c_true_bool
4244 }

If we are in the matrix, we test whether the cell is empty. If it’s not the case, we stop the loop because
we have found the correct values for \l_@@_final_i_int and \l_@@_final_j_int.

4245 {
4246 \cs_if_exist:cTF
4247 {
4248 @@ _ dotted _
4249 \int_use:N \l_@@_final_i_int -
4250 \int_use:N \l_@@_final_j_int
4251 }
4252 {
4253 \advance \l_@@_final_i_int by - #3
4254 \advance \l_@@_final_j_int by - #4
4255 \let \l_@@_final_open_bool \c_true_bool
4256 \let \l_@@_stop_loop_bool \c_true_bool
4257 }
4258 {
4259 \cs_if_exist:cTF
4260 {
4261 pgf @ sh @ ns @ \@@_env:
4262 - \int_use:N \l_@@_final_i_int
4263 - \int_use:N \l_@@_final_j_int
4264 }

110

4265 { \let \l_@@_stop_loop_bool \c_true_bool }

If the case is empty, we declare that the cell as non-empty. Indeed, we will draw a dotted line and the
cell will be on that dotted line. All the cells of a dotted line have to be marked as “dotted” because
we don’t want intersections between dotted lines. We recall that the research of the extremities of
the lines are all done in the same TeX group (the group of the environment), even though, when the
extremities are found, each line is drawn in a TeX group that we will open for the options of the line.

4266 {
4267 \cs_set_nopar:cpn
4268 {
4269 @@ _ dotted _
4270 \int_use:N \l_@@_final_i_int -
4271 \int_use:N \l_@@_final_j_int
4272 }
4273 { }
4274 }
4275 }
4276 }
4277 }

For \l_@@_initial_i_int and \l_@@_initial_j_int the programmation is similar to the previous
one.

4278 \let \l_@@_stop_loop_bool \c_false_bool

The following line of code is only for efficiency in the following loop.
4279 \l_tmpa_int = \l_@@_col_min_int
4280 \advance \l_tmpa_int by -1

4281 \bool_do_until:Nn \l_@@_stop_loop_bool
4282 {
4283 \advance \l_@@_initial_i_int by - #3
4284 \advance \l_@@_initial_j_int by - #4
4285 \let \l_@@_initial_open_bool \c_false_bool

We test if we are still in the matrix. Since this is the core of the loop, we optimize the code by using
a TeX-style of conditionals.

4286 \if_int_compare:w \l_@@_initial_i_int < \l_@@_row_min_int
4287 \if_int_compare:w #3 = \c_one_int
4288 \let \l_@@_initial_open_bool \c_true_bool
4289 \else:

\l_tmpa_int contains \l_@@_col_min_int - 1 (only for efficiency).
4290 \if_int_compare:w \l_@@_initial_j_int = \l_tmpa_int
4291 \let \l_@@_initial_open_bool \c_true_bool
4292 \fi:
4293 \fi:
4294 \else:
4295 \if_int_compare:w \l_@@_initial_j_int < \l_@@_col_min_int
4296 \if_int_compare:w #4 = \c_one_int
4297 \let \l_@@_initial_open_bool \c_true_bool
4298 \fi:
4299 \else:
4300 \if_int_compare:w \l_@@_initial_j_int > \l_@@_col_max_int
4301 \if_int_compare:w #4 = -1
4302 \let \l_@@_initial_open_bool \c_true_bool
4303 \fi:
4304 \fi:
4305 \fi:
4306 \fi:

4307 \bool_if:NTF \l_@@_initial_open_bool
4308 {
4309 \advance \l_@@_initial_i_int by #3
4310 \advance \l_@@_initial_j_int by #4

111

4311 \let \l_@@_stop_loop_bool \c_true_bool
4312 }
4313 {
4314 \cs_if_exist:cTF
4315 {
4316 @@ _ dotted _
4317 \int_use:N \l_@@_initial_i_int -
4318 \int_use:N \l_@@_initial_j_int
4319 }
4320 {
4321 \advance \l_@@_initial_i_int by #3
4322 \advance \l_@@_initial_j_int by #4
4323 \let \l_@@_initial_open_bool \c_true_bool
4324 \let \l_@@_stop_loop_bool \c_true_bool
4325 }
4326 {
4327 \cs_if_exist:cTF
4328 {
4329 pgf @ sh @ ns @ \@@_env:
4330 - \int_use:N \l_@@_initial_i_int
4331 - \int_use:N \l_@@_initial_j_int
4332 }
4333 { \let \l_@@_stop_loop_bool \c_true_bool }
4334 {
4335 \cs_set_nopar:cpn
4336 {
4337 @@ _ dotted _
4338 \int_use:N \l_@@_initial_i_int -
4339 \int_use:N \l_@@_initial_j_int
4340 }
4341 { }
4342 }
4343 }
4344 }
4345 }

We remind the rectangle described by all the dotted lines in order to respect the corresponding virtual
“block” when drawing the horizontal and vertical rules.

4346 \seq_gput_right:Ne \g_@@_pos_of_xdots_seq
4347 {
4348 { \int_use:N \l_@@_initial_i_int }

Be careful: with \Iddots, \l_@@_final_j_int is inferior to \l_@@_initial_j_int. That’s why we
use \int_min:nn and \int_max:nn.

4349 { \int_min:nn { \l_@@_initial_j_int } { \l_@@_final_j_int } }
4350 { \int_use:N \l_@@_final_i_int }
4351 { \int_max:nn { \l_@@_initial_j_int } { \l_@@_final_j_int } }
4352 { }
4353 }
4354 }

If the final user uses the key xdots/shorten in \NiceMatrixOptions or at the level of an environment
(such as {pNiceMatrix}, etc.), only the so called “closed extremities” will be shortened by that key.
The following command will be used after the detection of the extremities of a dotted line (hence
at a time when we known whether the extremities are closed or open) but before the analysis of
the keys of the individual command \Cdots, \Vdots. Hence, the keys shorten, shorten-start and
shorten-end of that individual command will be applied.

4355 \cs_new_protected:Npn \@@_open_shorten:
4356 {
4357 \bool_if:NT \l_@@_initial_open_bool
4358 { \dim_zero:N \l_@@_xdots_shorten_start_dim }
4359 \bool_if:NT \l_@@_final_open_bool
4360 { \dim_zero:N \l_@@_xdots_shorten_end_dim }
4361 }

112

The following command (when it will be written) will set the four counters \l_@@_row_min_int,
\l_@@_row_max_int, \l_@@_col_min_int and \l_@@_col_max_int to the intersections of the sub-
matrices which contains the cell of row #1 and column #2. As of now, it’s only the whole array
(excepted exterior rows and columns).

4362 \cs_new_protected:Npn \@@_adjust_to_submatrix:nn #1 #2
4363 {
4364 \int_set_eq:NN \l_@@_row_min_int \c_one_int
4365 \int_set_eq:NN \l_@@_col_min_int \c_one_int
4366 \int_set_eq:NN \l_@@_row_max_int \c@iRow
4367 \int_set_eq:NN \l_@@_col_max_int \c@jCol

We do a loop over all the submatrices specified in the code-before. We have stored the position of
all those submatrices in \g_@@_submatrix_seq.

4368 \seq_if_empty:NF \g_@@_submatrix_seq
4369 {
4370 \seq_map_inline:Nn \g_@@_submatrix_seq
4371 { \@@_adjust_to_submatrix:nnnnnn { #1 } { #2 } ##1 }
4372 }
4373 }

#1 and #2 are the numbers of row and columns of the cell where the command of dotted line (ex.:
\Vdots) has been issued. #3, #4, #5 and #6 are the specification (in i and j) of the submatrix we are
analyzing.
Here is the programmation of that command with the the standard syntax of L3.

\cs_new_protected:Npn \@@_adjust_to_submatrix:nnnnnn #1 #2 #3 #4 #5 #6
{
\bool_if:nT
{

\int_compare_p:n { #3 <= #1 <= #5 }
&&
\int_compare_p:n { #4 <= #2 <= #6 }

}
{

\int_set:Nn \l_@@_row_min_int { \int_max:nn \l_@@_row_min_int { #3 } }
\int_set:Nn \l_@@_col_min_int { \int_max:nn \l_@@_col_min_int { #4 } }
\int_set:Nn \l_@@_row_max_int { \int_min:nn \l_@@_row_max_int { #5 } }
\int_set:Nn \l_@@_col_max_int { \int_min:nn \l_@@_col_max_int { #6 } }

}
}

However, for efficiency, we will use the following version.
4374 \cs_new_protected:Npn \@@_adjust_to_submatrix:nnnnnn #1 #2 #3 #4 #5 #6
4375 {
4376 \if_int_compare:w #3 > #1
4377 \else:
4378 \if_int_compare:w #1 > #5
4379 \else:
4380 \if_int_compare:w #4 > #2
4381 \else:
4382 \if_int_compare:w #2 > #6
4383 \else:
4384 \if_int_compare:w \l_@@_row_min_int < #3 \l_@@_row_min_int = #3 \fi:
4385 \if_int_compare:w \l_@@_col_min_int < #4 \l_@@_col_min_int = #4 \fi:
4386 \if_int_compare:w \l_@@_row_max_int > #5 \l_@@_row_max_int = #5 \fi:
4387 \if_int_compare:w \l_@@_col_max_int > #6 \l_@@_col_max_int = #6 \fi:
4388 \fi:
4389 \fi:
4390 \fi:
4391 \fi:
4392 }

113

4393 \cs_new_protected:Npn \@@_set_initial_coords:
4394 {
4395 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
4396 \dim_set_eq:NN \l_@@_y_initial_dim \pgf@y
4397 }
4398 \cs_new_protected:Npn \@@_set_final_coords:
4399 {
4400 \dim_set_eq:NN \l_@@_x_final_dim \pgf@x
4401 \dim_set_eq:NN \l_@@_y_final_dim \pgf@y
4402 }
4403 \cs_new_protected:Npn \@@_set_initial_coords_from_anchor:n #1
4404 {
4405 \pgfpointanchor
4406 {
4407 \@@_env:
4408 - \int_use:N \l_@@_initial_i_int
4409 - \int_use:N \l_@@_initial_j_int
4410 }
4411 { #1 }
4412 \@@_set_initial_coords:
4413 }
4414 \cs_new_protected:Npn \@@_set_final_coords_from_anchor:n #1
4415 {
4416 \pgfpointanchor
4417 {
4418 \@@_env:
4419 - \int_use:N \l_@@_final_i_int
4420 - \int_use:N \l_@@_final_j_int
4421 }
4422 { #1 }
4423 \@@_set_final_coords:
4424 }

4425 \cs_new_protected:Npn \@@_open_x_initial_dim:
4426 {
4427 \dim_set_eq:NN \l_@@_x_initial_dim \c_max_dim
4428 \int_step_inline:nnn { \l_@@_first_row_int } { \g_@@_row_total_int }
4429 {
4430 \cs_if_exist:cT
4431 { pgf @ sh @ ns @ \@@_env: - ##1 - \int_use:N \l_@@_initial_j_int }
4432 {
4433 \pgfpointanchor
4434 { \@@_env: - ##1 - \int_use:N \l_@@_initial_j_int }
4435 { west }
4436 \dim_set:Nn \l_@@_x_initial_dim
4437 { \dim_min:nn { \l_@@_x_initial_dim } { \pgf@x } }
4438 }
4439 }

If, in fact, all the cells of the column are empty (no PGF/TikZ nodes in those cells).
4440 \dim_compare:nNnT { \l_@@_x_initial_dim } = { \c_max_dim }
4441 {
4442 \@@_qpoint:n { col - \int_use:N \l_@@_initial_j_int }
4443 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
4444 \dim_add:Nn \l_@@_x_initial_dim \col@sep
4445 }
4446 }

4447 \cs_new_protected:Npn \@@_open_x_final_dim:
4448 {
4449 \dim_set:Nn \l_@@_x_final_dim { - \c_max_dim }
4450 \int_step_inline:nnn { \l_@@_first_row_int } { \g_@@_row_total_int }
4451 {
4452 \cs_if_exist:cT
4453 { pgf @ sh @ ns @ \@@_env: - ##1 - \int_use:N \l_@@_final_j_int }

114

4454 {
4455 \pgfpointanchor
4456 { \@@_env: - ##1 - \int_use:N \l_@@_final_j_int }
4457 { east }
4458 \dim_compare:nNnT { \pgf@x } > { \l_@@_x_final_dim }
4459 { \dim_set_eq:NN \l_@@_x_final_dim \pgf@x }
4460 }
4461 }

If, in fact, all the cells of the columns are empty (no PGF/TikZ nodes in those cells).
4462 \dim_compare:nNnT { \l_@@_x_final_dim } = { - \c_max_dim }
4463 {
4464 \@@_qpoint:n { col - \int_eval:n { \l_@@_final_j_int + 1 } }
4465 \dim_set_eq:NN \l_@@_x_final_dim \pgf@x
4466 \dim_sub:Nn \l_@@_x_final_dim \col@sep
4467 }
4468 }

The first and the second arguments are the coordinates of the cell where the command has been
issued. The third argument is the list of the options.

4469 \cs_new_protected:Npn \@@_draw_Ldots:nnn #1 #2 #3
4470 {
4471 \@@_adjust_to_submatrix:nn { #1 } { #2 }
4472 \cs_if_free:cT { @@ _ dotted _ #1 - #2 }
4473 {
4474 \@@_find_extremities:nnnn { #1 } { #2 } 0 1

The previous command may have changed the current environment by marking some cells as “dotted”,
but, fortunately, it is outside the group for the options of the line.

4475 \bool_if:NT \g_@@_aux_found_bool
4476 {
4477 \group_begin:
4478 \@@_open_shorten:
4479 \int_if_zero:nTF { #1 }
4480 { \color { nicematrix-first-row } }
4481 {

We remind that, when there is a “last row” \l_@@_last_row_int will always be (after the construction
of the array) the number of that “last row” even if the option last-row has been used without value.

4482 \int_compare:nNnT { #1 } = { \l_@@_last_row_int }
4483 { \color { nicematrix-last-row } }
4484 }
4485 \keys_set:nn { nicematrix / xdots } { #3 }
4486 \@@_color:o \l_@@_xdots_color_tl
4487 \@@_actually_draw_Ldots:
4488 \group_end:
4489 }
4490 }
4491 }

The command \@@_actually_draw_Ldots: has the following implicit arguments:

• \l_@@_initial_i_int

• \l_@@_initial_j_int

• \l_@@_initial_open_bool

• \l_@@_final_i_int

• \l_@@_final_j_int

• \l_@@_final_open_bool.

115

The following function is also used by \Hdotsfor.
4492 \cs_new_protected:Npn \@@_actually_draw_Ldots:
4493 {
4494 \bool_if:NTF \l_@@_initial_open_bool
4495 {
4496 \@@_open_x_initial_dim:
4497 \@@_qpoint:n { row - \int_use:N \l_@@_initial_i_int - base }
4498 \dim_set_eq:NN \l_@@_y_initial_dim \pgf@y
4499 }
4500 { \@@_set_initial_coords_from_anchor:n { base~east } }
4501 \bool_if:NTF \l_@@_final_open_bool
4502 {
4503 \@@_open_x_final_dim:
4504 \@@_qpoint:n { row - \int_use:N \l_@@_final_i_int - base }
4505 \dim_set_eq:NN \l_@@_y_final_dim \pgf@y
4506 }
4507 { \@@_set_final_coords_from_anchor:n { base~west } }

Now the case of a \Hdotsfor (or when there is only a \Ldots) in the “last row” (that case will
probably arise when the final user draws an arrow to indicate the number of columns of the matrix).
In the “first row”, we don’t need any adjustment.

4508 \bool_lazy_all:nTF
4509 {
4510 \l_@@_initial_open_bool
4511 \l_@@_final_open_bool
4512 { \int_compare_p:nNn { \l_@@_initial_i_int } = { \l_@@_last_row_int } }
4513 }
4514 {
4515 \dim_add:Nn \l_@@_y_initial_dim \c_@@_shift_Ldots_last_row_dim
4516 \dim_add:Nn \l_@@_y_final_dim \c_@@_shift_Ldots_last_row_dim
4517 }

We raise the line of a quantity equal to the radius of the dots because we want the dots really “on”
the line of texte. Of course, maybe we should not do that when the option line-style is used (?).

4518 {
4519 \dim_add:Nn \l_@@_y_initial_dim \l_@@_xdots_radius_dim
4520 \dim_add:Nn \l_@@_y_final_dim \l_@@_xdots_radius_dim
4521 }
4522 \@@_draw_line:
4523 }

The first and the second arguments are the coordinates of the cell where the command has been
issued. The third argument is the list of the options.

4524 \cs_new_protected:Npn \@@_draw_Cdots:nnn #1 #2 #3
4525 {
4526 \@@_adjust_to_submatrix:nn { #1 } { #2 }
4527 \cs_if_free:cT { @@ _ dotted _ #1 - #2 }
4528 {
4529 \@@_find_extremities:nnnn { #1 } { #2 } { 0 } { 1 }

The previous command may have changed the current environment by marking some cells as “dotted”,
but, fortunately, it is outside the group for the options of the line.

4530 \bool_if:NT \g_@@_aux_found_bool
4531 {
4532 \group_begin:
4533 \@@_open_shorten:
4534 \int_if_zero:nTF { #1 }
4535 { \color { nicematrix-first-row } }
4536 {

We remind that, when there is a “last row” \l_@@_last_row_int will always be (after the construction
of the array) the number of that “last row” even if the option last-row has been used without value.

4537 \int_compare:nNnT { #1 } = { \l_@@_last_row_int }

116

4538 { \color { nicematrix-last-row } }
4539 }
4540 \keys_set:nn { nicematrix / xdots } { #3 }
4541 \@@_color:o \l_@@_xdots_color_tl
4542 \@@_actually_draw_Cdots:
4543 \group_end:
4544 }
4545 }
4546 }

The command \@@_actually_draw_Cdots: has the following implicit arguments:

• \l_@@_initial_i_int

• \l_@@_initial_j_int

• \l_@@_initial_open_bool

• \l_@@_final_i_int

• \l_@@_final_j_int

• \l_@@_final_open_bool.

4547 \cs_new_protected:Npn \@@_actually_draw_Cdots:
4548 {
4549 \bool_if:NTF \l_@@_initial_open_bool
4550 { \@@_open_x_initial_dim: }
4551 { \@@_set_initial_coords_from_anchor:n { mid~east } }
4552 \bool_if:NTF \l_@@_final_open_bool
4553 { \@@_open_x_final_dim: }
4554 { \@@_set_final_coords_from_anchor:n { mid~west } }
4555 \bool_lazy_and:nnTF
4556 { \l_@@_initial_open_bool }
4557 { \l_@@_final_open_bool }
4558 {
4559 \@@_qpoint:n { row - \int_use:N \l_@@_initial_i_int }
4560 \dim_set_eq:NN \l_tmpa_dim \pgf@y
4561 \@@_qpoint:n { row - \int_eval:n { \l_@@_initial_i_int + 1 } }
4562 \dim_set:Nn \l_@@_y_initial_dim { (\l_tmpa_dim + \pgf@y) / 2 }
4563 \dim_set_eq:NN \l_@@_y_final_dim \l_@@_y_initial_dim
4564 }
4565 {
4566 \bool_if:NT \l_@@_initial_open_bool
4567 { \dim_set_eq:NN \l_@@_y_initial_dim \l_@@_y_final_dim }
4568 \bool_if:NT \l_@@_final_open_bool
4569 { \dim_set_eq:NN \l_@@_y_final_dim \l_@@_y_initial_dim }
4570 }
4571 \@@_draw_line:
4572 }

4573 \cs_new_protected:Npn \@@_open_y_initial_dim:
4574 {
4575 \dim_set:Nn \l_@@_y_initial_dim { - \c_max_dim }
4576 \int_step_inline:nnn { \l_@@_first_col_int } { \g_@@_col_total_int }
4577 {
4578 \cs_if_exist:cT
4579 { pgf @ sh @ ns @ \@@_env: - \int_use:N \l_@@_initial_i_int - ##1 }
4580 {
4581 \pgfpointanchor
4582 { \@@_env: - \int_use:N \l_@@_initial_i_int - ##1 }
4583 { north }
4584 \dim_compare:nNnT { \pgf@y } > { \l_@@_y_initial_dim }
4585 { \dim_set_eq:NN \l_@@_y_initial_dim \pgf@y }
4586 }
4587 }

117

4588 \dim_compare:nNnT { \l_@@_y_initial_dim } = { - \c_max_dim }
4589 {
4590 \@@_qpoint:n { row - \int_use:N \l_@@_initial_i_int - base }
4591 \dim_set:Nn \l_@@_y_initial_dim
4592 {
4593 \fp_to_dim:n
4594 {
4595 \pgf@y
4596 + (\box_ht:N \strutbox + \extrarowheight) * \arraystretch
4597 }
4598 }
4599 }
4600 }

4601 \cs_new_protected:Npn \@@_open_y_final_dim:
4602 {
4603 \dim_set_eq:NN \l_@@_y_final_dim \c_max_dim
4604 \int_step_inline:nnn { \l_@@_first_col_int } { \g_@@_col_total_int }
4605 {
4606 \cs_if_exist:cT
4607 { pgf @ sh @ ns @ \@@_env: - \int_use:N \l_@@_final_i_int - ##1 }
4608 {
4609 \pgfpointanchor
4610 { \@@_env: - \int_use:N \l_@@_final_i_int - ##1 }
4611 { south }
4612 \dim_compare:nNnT { \pgf@y } < { \l_@@_y_final_dim }
4613 { \dim_set_eq:NN \l_@@_y_final_dim \pgf@y }
4614 }
4615 }
4616 \dim_compare:nNnT { \l_@@_y_final_dim } = { \c_max_dim }
4617 {
4618 \@@_qpoint:n { row - \int_use:N \l_@@_final_i_int - base }
4619 \dim_set:Nn \l_@@_y_final_dim
4620 { \fp_to_dim:n { \pgf@y - (\box_dp:N \strutbox) * \arraystretch } }
4621 }
4622 }

The first and the second arguments are the coordinates of the cell where the command has been
issued. The third argument is the list of the options.

4623 \cs_new_protected:Npn \@@_draw_Vdots:nnn #1 #2 #3
4624 {
4625 \@@_adjust_to_submatrix:nn { #1 } { #2 }
4626 \cs_if_free:cT { @@ _ dotted _ #1 - #2 }
4627 {
4628 \@@_find_extremities:nnnn { #1 } { #2 } { 1 } { 0 }

The previous command may have changed the current environment by marking some cells as “dotted”,
but, fortunately, it is outside the group for the options of the line.

4629 \bool_if:NT \g_@@_aux_found_bool
4630 {
4631 \group_begin:
4632 \@@_open_shorten:
4633 \int_if_zero:nTF { #2 }
4634 { \color { nicematrix-first-col } }
4635 {
4636 \int_compare:nNnT { #2 } = { \l_@@_last_col_int }
4637 { \color { nicematrix-last-col } }
4638 }
4639 \keys_set:nn { nicematrix / xdots } { #3 }
4640 \@@_color:o \l_@@_xdots_color_tl
4641 \bool_if:NTF \l_@@_Vbrace_bool
4642 { \@@_actually_draw_Vbrace: }
4643 { \@@_actually_draw_Vdots: }
4644 \group_end:
4645 }

118

4646 }
4647 }

The following function is used by regular calls of \Vdots or \Vdotsfor but not by \Vbrace.
The command \@@_actually_draw_Vdots: has the following implicit arguments:

• \l_@@_initial_i_int

• \l_@@_initial_j_int

• \l_@@_initial_open_bool

• \l_@@_final_i_int

• \l_@@_final_j_int

• \l_@@_final_open_bool.

4648 \cs_new_protected:Npn \@@_actually_draw_Vdots:
4649 {
4650 \bool_lazy_and:nnTF { \l_@@_initial_open_bool } { \l_@@_final_open_bool }
4651 { \@@_actually_draw_Vdots_i: }
4652 { \@@_actually_draw_Vdots_ii: }
4653 \dim_set_eq:NN \l_@@_x_final_dim \l_@@_x_initial_dim
4654 \@@_draw_line:
4655 }

First, the case of a dotted line open on both sides.
4656 \cs_new_protected:Npn \@@_actually_draw_Vdots_i:
4657 {
4658 \@@_open_y_initial_dim:
4659 \@@_open_y_final_dim:
4660 \int_if_zero:nTF { \l_@@_initial_j_int }

We have a dotted line open on both sides in the “first column”.
4661 {
4662 \@@_qpoint:n { col - 1 }
4663 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
4664 \dim_sub:Nn \l_@@_x_initial_dim
4665 { \@@_colsep: + \l_@@_left_margin_dim + \l_@@_extra_left_margin_dim }
4666 }
4667 {
4668 \bool_lazy_and:nnTF
4669 { \int_compare_p:nNn { \l_@@_last_col_int } > { -2 } }
4670 {
4671 \int_compare_p:nNn
4672 { \l_@@_initial_j_int } = { \g_@@_col_total_int }
4673 }

We have a dotted line open on both sides and which is in the “last column”.
4674 {
4675 \@@_qpoint:n { col - \int_use:N \l_@@_initial_j_int }
4676 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
4677 \dim_add:Nn \l_@@_x_initial_dim
4678 { \@@_colsep: + \l_@@_right_margin_dim + \l_@@_extra_right_margin_dim }
4679 }

We have a dotted line open on both sides which is not in an exterior column.
4680 {
4681 \@@_qpoint:n { col - \int_use:N \l_@@_initial_j_int }
4682 \dim_set_eq:NN \l_tmpa_dim \pgf@x
4683 \@@_qpoint:n { col - \int_eval:n { \l_@@_initial_j_int + 1 } }
4684 \dim_set:Nn \l_@@_x_initial_dim { (\pgf@x + \l_tmpa_dim) / 2 }
4685 }
4686 }
4687 }

119

The command \@@_draw_line: is in \@@_actually_draw_Vdots:

Now, the dotted line is not open on both sides (maybe open on only one side).
The main task is to determine the x-value of the dotted line to draw.
The boolean \l_tmpa_bool will indicate whether the column is of type l or may be considered as if.

4688 \cs_new_protected:Npn \@@_actually_draw_Vdots_ii:
4689 {
4690 \bool_set_false:N \l_tmpa_bool
4691 \bool_if:NF \l_@@_initial_open_bool
4692 {
4693 \bool_if:NF \l_@@_final_open_bool
4694 {
4695 \@@_set_initial_coords_from_anchor:n { south~west }
4696 \@@_set_final_coords_from_anchor:n { north~west }
4697 \bool_set:Nn \l_tmpa_bool
4698 {
4699 \dim_compare_p:nNn
4700 { \l_@@_x_initial_dim } = { \l_@@_x_final_dim }
4701 }
4702 }
4703 }

Now, we try to determine whether the column is of type c or may be considered as if.
4704 \bool_if:NTF \l_@@_initial_open_bool
4705 {
4706 \@@_open_y_initial_dim:
4707 \@@_set_final_coords_from_anchor:n { north }
4708 \dim_set_eq:NN \l_@@_x_initial_dim \l_@@_x_final_dim
4709 }
4710 {
4711 \@@_set_initial_coords_from_anchor:n { south }
4712 \bool_if:NTF \l_@@_final_open_bool
4713 { \@@_open_y_final_dim: }

Now the case where both extremities are closed. The first conditional tests whether the column is of
type c or may be considered as if.

4714 {
4715 \@@_set_final_coords_from_anchor:n { north }
4716 \dim_compare:nNnF { \l_@@_x_initial_dim } = { \l_@@_x_final_dim }
4717 {
4718 \dim_set:Nn \l_@@_x_initial_dim
4719 {
4720 \bool_if:NTF \l_tmpa_bool { \dim_min:nn } { \dim_max:nn }
4721 \l_@@_x_initial_dim \l_@@_x_final_dim
4722 }
4723 }
4724 }
4725 }
4726 }

The following function is used by \Vbrace but not by regular uses of \Vdots or \Vdotsfor.
The command \@@_actually_draw_Vbrace: has the following implicit arguments:

• \l_@@_initial_i_int

• \l_@@_initial_j_int

• \l_@@_initial_open_bool

• \l_@@_final_i_int

• \l_@@_final_j_int

• \l_@@_final_open_bool.

120

4727 \cs_new_protected:Npn \@@_actually_draw_Vbrace:
4728 {
4729 \bool_if:NTF \l_@@_initial_open_bool
4730 { \@@_open_y_initial_dim: }
4731 { \@@_set_initial_coords_from_anchor:n { south } }
4732 \bool_if:NTF \l_@@_final_open_bool
4733 { \@@_open_y_final_dim: }
4734 { \@@_set_final_coords_from_anchor:n { north } }

Now, we have the correct values for the y-values of both extremities of the brace. We have to compute
the x-value (there is only one x-value since, of course, the brace is vertical).

If we are in the first (exterior) column, the brace must be drawn right flush.
4735 \int_if_zero:nTF { \l_@@_initial_j_int }
4736 {
4737 \@@_qpoint:n { col - 1 }
4738 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
4739 \dim_sub:Nn \l_@@_x_initial_dim
4740 { \@@_colsep: + \l_@@_left_margin_dim + \l_@@_extra_left_margin_dim }
4741 }

Elsewhere, the brace must be drawn left flush.
4742 {
4743 \@@_qpoint:n { col - \int_use:N \l_@@_initial_j_int }
4744 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
4745 \dim_add:Nn \l_@@_x_initial_dim
4746 { \@@_colsep: + \l_@@_right_margin_dim + \l_@@_extra_right_margin_dim }
4747 }

We draw a vertical rule and that’s why, of course, both x-values are equal.
4748 \dim_set_eq:NN \l_@@_x_final_dim \l_@@_x_initial_dim
4749 \@@_draw_line:
4750 }

4751 \cs_new:Npn \@@_colsep:
4752 { \bool_if:NTF \l_@@_tabular_bool { \tabcolsep } { \arraycolsep } }

For the diagonal lines, the situation is a bit more complicated because, by default, we parallelize
the diagonals lines. The first diagonal line is drawn and then, all the other diagonal lines are drawn
parallel to the first one.
The first and the second arguments are the coordinates of the cell where the command has been
issued. The third argument is the list of the options.

4753 \cs_new_protected:Npn \@@_draw_Ddots:nnn #1 #2 #3
4754 {
4755 \@@_adjust_to_submatrix:nn { #1 } { #2 }
4756 \cs_if_free:cT { @@ _ dotted _ #1 - #2 }
4757 {
4758 \@@_find_extremities:nnnn { #1 } { #2 } { 1 } { 1 }

The previous command may have changed the current environment by marking some cells as “dotted”,
but, fortunately, it is outside the group for the options of the line.

4759 \bool_if:NT \g_@@_aux_found_bool
4760 {
4761 \group_begin:
4762 \@@_open_shorten:
4763 \keys_set:nn { nicematrix / xdots } { #3 }
4764 \@@_color:o \l_@@_xdots_color_tl
4765 \@@_actually_draw_Ddots:
4766 \group_end:
4767 }
4768 }
4769 }

121

The command \@@_actually_draw_Ddots: has the following implicit arguments:

• \l_@@_initial_i_int

• \l_@@_initial_j_int

• \l_@@_initial_open_bool

• \l_@@_final_i_int

• \l_@@_final_j_int

• \l_@@_final_open_bool.

4770 \cs_new_protected:Npn \@@_actually_draw_Ddots:
4771 {
4772 \bool_if:NTF \l_@@_initial_open_bool
4773 {
4774 \@@_open_y_initial_dim:
4775 \@@_open_x_initial_dim:
4776 }
4777 { \@@_set_initial_coords_from_anchor:n { south~east } }
4778 \bool_if:NTF \l_@@_final_open_bool
4779 {
4780 \@@_open_x_final_dim:
4781 \dim_set_eq:NN \l_@@_x_final_dim \pgf@x
4782 }
4783 { \@@_set_final_coords_from_anchor:n { north~west } }

We have retrieved the coordinates in the usual way (they are stored in \l_@@_x_initial_dim, etc.).
If the parallelization of the diagonals is set, we will have (maybe) to adjust the fourth coordinate.

4784 \bool_if:NT \l_@@_parallelize_diags_bool
4785 {
4786 \int_gincr:N \g_@@_ddots_int

We test if the diagonal line is the first one (the counter \g_@@_ddots_int is created for this usage).
4787 \int_compare:nNnTF { \g_@@_ddots_int } = { \c_one_int }

If the diagonal line is the first one, we have no adjustment of the line to do but we store the ∆x and
the ∆y of the line because these values will be used to draw the others diagonal lines parallels to the
first one.

4788 {
4789 \dim_gset:Nn \g_@@_delta_x_one_dim
4790 { \l_@@_x_final_dim - \l_@@_x_initial_dim }
4791 \dim_gset:Nn \g_@@_delta_y_one_dim
4792 { \l_@@_y_final_dim - \l_@@_y_initial_dim }
4793 }

If the diagonal line is not the first one, we have to adjust the second extremity of the line by modifying
the coordinate \l_@@_x_initial_dim.

4794 {
4795 \dim_compare:nNnF { \g_@@_delta_x_one_dim } = { \c_zero_dim }
4796 {
4797 \dim_set:Nn \l_@@_y_final_dim
4798 {
4799 \l_@@_y_initial_dim +
4800 (\l_@@_x_final_dim - \l_@@_x_initial_dim) *
4801 \dim_ratio:nn \g_@@_delta_y_one_dim \g_@@_delta_x_one_dim
4802 }
4803 }
4804 }
4805 }
4806 \@@_draw_line:
4807 }

122

We draw the \Iddots diagonals in the same way.
The first and the second arguments are the coordinates of the cell where the command has been
issued. The third argument is the list of the options.

4808 \cs_new_protected:Npn \@@_draw_Iddots:nnn #1 #2 #3
4809 {
4810 \@@_adjust_to_submatrix:nn { #1 } { #2 }
4811 \cs_if_free:cT { @@ _ dotted _ #1 - #2 }
4812 {
4813 \@@_find_extremities:nnnn { #1 } { #2 } { 1 } { -1 }

The previous command may have changed the current environment by marking some cells as “dotted”,
but, fortunately, it is outside the group for the options of the line.

4814 \bool_if:NT \g_@@_aux_found_bool
4815 {
4816 \group_begin:
4817 \@@_open_shorten:
4818 \keys_set:nn { nicematrix / xdots } { #3 }
4819 \@@_color:o \l_@@_xdots_color_tl
4820 \@@_actually_draw_Iddots:
4821 \group_end:
4822 }
4823 }
4824 }

The command \@@_actually_draw_Iddots: has the following implicit arguments:

• \l_@@_initial_i_int

• \l_@@_initial_j_int

• \l_@@_initial_open_bool

• \l_@@_final_i_int

• \l_@@_final_j_int

• \l_@@_final_open_bool.

4825 \cs_new_protected:Npn \@@_actually_draw_Iddots:
4826 {
4827 \bool_if:NTF \l_@@_initial_open_bool
4828 {
4829 \@@_open_y_initial_dim:
4830 \@@_open_x_initial_dim:
4831 }
4832 { \@@_set_initial_coords_from_anchor:n { south~west } }
4833 \bool_if:NTF \l_@@_final_open_bool
4834 {
4835 \@@_open_y_final_dim:
4836 \@@_open_x_final_dim:
4837 }
4838 { \@@_set_final_coords_from_anchor:n { north~east } }
4839 \bool_if:NT \l_@@_parallelize_diags_bool
4840 {
4841 \int_gincr:N \g_@@_iddots_int
4842 \int_compare:nNnTF { \g_@@_iddots_int } = { \c_one_int }
4843 {
4844 \dim_gset:Nn \g_@@_delta_x_two_dim
4845 { \l_@@_x_final_dim - \l_@@_x_initial_dim }
4846 \dim_gset:Nn \g_@@_delta_y_two_dim
4847 { \l_@@_y_final_dim - \l_@@_y_initial_dim }
4848 }
4849 {
4850 \dim_compare:nNnF { \g_@@_delta_x_two_dim } = { \c_zero_dim }
4851 {

123

4852 \dim_set:Nn \l_@@_y_final_dim
4853 {
4854 \l_@@_y_initial_dim +
4855 (\l_@@_x_final_dim - \l_@@_x_initial_dim) *
4856 \dim_ratio:nn \g_@@_delta_y_two_dim \g_@@_delta_x_two_dim
4857 }
4858 }
4859 }
4860 }
4861 \@@_draw_line:
4862 }

17 The actual instructions for drawing the dotted lines with
TikZ

The command \@@_draw_line: should be used in a {pgfpicture}. It has six implicit arguments:

• \l_@@_x_initial_dim

• \l_@@_y_initial_dim

• \l_@@_x_final_dim

• \l_@@_y_final_dim

• \l_@@_initial_open_bool

• \l_@@_final_open_bool

4863 \cs_new_protected:Npn \@@_draw_line:
4864 {
4865 \pgfrememberpicturepositiononpagetrue
4866 \pgf@relevantforpicturesizefalse
4867 \bool_lazy_or:nnTF
4868 { \tl_if_eq_p:NN \l_@@_xdots_line_style_tl \c_@@_standard_tl }
4869 { \l_@@_dotted_bool }
4870 { \@@_draw_standard_dotted_line: }
4871 { \@@_draw_unstandard_dotted_line: }
4872 }

We have to do a special construction with \exp_args:No to be able to put in the list of options in
the correct place in the TikZ instruction.

4873 \cs_new_protected:Npn \@@_draw_unstandard_dotted_line:
4874 {
4875 \begin { scope }
4876 \@@_draw_unstandard_dotted_line:o
4877 { \l_@@_xdots_line_style_tl , \l_@@_xdots_color_tl }
4878 }

We have used the fact that, in pgf, un color name can be put directly in a list of options (that’s why
we have put diredtly \l_@@_xdots_color_tl).
The argument of \@@_draw_unstandard_dotted_line:n is, in fact, the list of options.

4879 \cs_new_protected:Npn \@@_draw_unstandard_dotted_line:n #1
4880 {
4881 \@@_draw_unstandard_dotted_line:nooo
4882 { #1 }
4883 \l_@@_xdots_up_tl
4884 \l_@@_xdots_down_tl
4885 \l_@@_xdots_middle_tl
4886 }
4887 \cs_generate_variant:Nn \@@_draw_unstandard_dotted_line:n { o }

124

The following TikZ styles are for the three labels (set by the symbols _, ^ and =) of a continuous line
with a non-standard style.

4888 \hook_gput_code:nnn { begindocument } { . }
4889 {
4890 \IfPackageLoadedT { tikz }
4891 {
4892 \tikzset
4893 {
4894 @@_node_above / .style = { sloped , above } ,
4895 @@_node_below / .style = { sloped , below } ,
4896 @@_node_middle / .style =
4897 {
4898 sloped ,
4899 inner~sep = \c_@@_innersep_middle_dim
4900 }
4901 }
4902 }
4903 }

4904 \cs_new_protected:Npn \@@_draw_unstandard_dotted_line:nnnn #1 #2 #3 #4
4905 {

We take into account the parameters xdots/shorten-start and xdots/shorten-end “by hand”
because, when we use the key shorten > and shorten < of TikZ in the command \draw, we don’t
have the expected output with {decorate,decoration=brace} is used.

The dimension \l_@@_l_dim is the length ` of the line to draw. We use the floating point reals of
the L3 programming layer to compute this length.

4906 \dim_zero_new:N \l_@@_l_dim
4907 \dim_set:Nn \l_@@_l_dim
4908 {
4909 \fp_to_dim:n
4910 {
4911 sqrt
4912 (
4913 (\l_@@_x_final_dim - \l_@@_x_initial_dim) ^ 2
4914 +
4915 (\l_@@_y_final_dim - \l_@@_y_initial_dim) ^ 2
4916)
4917 }
4918 }

It seems that, during the first compilations, the value of \l_@@_l_dim may be erroneous (equal to zero
or very large). We must detect these cases because they would cause errors during the drawing of the
dotted line. Maybe we should also write something in the aux file to say that one more compilation
should be done.

4919 \dim_compare:nNnT { \l_@@_l_dim } < { \c_@@_max_l_dim }
4920 {
4921 \dim_compare:nNnT { \l_@@_l_dim } > { 1 pt }
4922 \@@_draw_unstandard_dotted_line_i:
4923 }

If the key xdots/horizontal-labels has been used.
4924 \bool_if:NT \l_@@_xdots_h_labels_bool
4925 {
4926 \tikzset
4927 {
4928 @@_node_above / .style = { auto = left } ,
4929 @@_node_below / .style = { auto = right } ,
4930 @@_node_middle / .style = { inner~sep = \c_@@_innersep_middle_dim }
4931 }
4932 }
4933 \tl_if_empty:nF { #4 }
4934 { \tikzset { @@_node_middle / .append~style = { fill = white } } }

125

4935 \dim_zero:N \l_tmpa_dim
4936 \dim_zero:N \l_tmpb_dim
4937 \tl_if_eq:NNTF \l_@@_xdots_line_style_tl \c_@@_brace_tl
4938 {

We test whether the brace is vertical or horizontal.
4939 \dim_compare:nNnTF \l_@@_x_final_dim = \l_@@_x_initial_dim
4940 { \dim_set_eq:NN \l_tmpa_dim \l_@@_brace_shift_dim }
4941 { \dim_set_eq:NN \l_tmpb_dim \l_@@_brace_shift_dim }
4942 }
4943 {
4944 \tl_if_eq:NNT \l_@@_xdots_line_style_tl \c_@@_mirrored_brace_tl
4945 {
4946 \dim_compare:nNnTF \l_@@_x_final_dim = \l_@@_x_initial_dim
4947 { \dim_set:Nn \l_tmpa_dim { - \l_@@_brace_shift_dim } }
4948 { \dim_set:Nn \l_tmpb_dim { - \l_@@_brace_shift_dim } }
4949 }
4950 }
4951 \use:e
4952 {
4953 \exp_not:N \begin { scope }
4954 [shift = {(\dim_use:N \l_tmpa_dim,\dim_use:N \l_tmpb_dim)}]
4955 }
4956 \draw
4957 [#1]
4958 (\l_@@_x_initial_dim , \l_@@_y_initial_dim)
4959 -- node [@@_node_middle] { $ \scriptstyle #4 $ }
4960 node [@@_node_below] { $ \scriptstyle #3 $ }
4961 node [@@_node_above] { $ \scriptstyle #2 $ }
4962 (\l_@@_x_final_dim , \l_@@_y_final_dim) ;
4963 \end { scope }
4964 \end { scope }
4965 }
4966 \cs_generate_variant:Nn \@@_draw_unstandard_dotted_line:nnnn { n o o o }

4967 \cs_new_protected:Npn \@@_draw_unstandard_dotted_line_i:
4968 {
4969 \dim_set:Nn \l_tmpa_dim
4970 {
4971 \l_@@_x_initial_dim
4972 + (\l_@@_x_final_dim - \l_@@_x_initial_dim)
4973 * \dim_ratio:nn \l_@@_xdots_shorten_start_dim \l_@@_l_dim
4974 }
4975 \dim_set:Nn \l_tmpb_dim
4976 {
4977 \l_@@_y_initial_dim
4978 + (\l_@@_y_final_dim - \l_@@_y_initial_dim)
4979 * \dim_ratio:nn \l_@@_xdots_shorten_start_dim \l_@@_l_dim
4980 }
4981 \dim_set:Nn \l_@@_tmpc_dim
4982 {
4983 \l_@@_x_final_dim
4984 - (\l_@@_x_final_dim - \l_@@_x_initial_dim)
4985 * \dim_ratio:nn \l_@@_xdots_shorten_end_dim \l_@@_l_dim
4986 }
4987 \dim_set:Nn \l_@@_tmpd_dim
4988 {
4989 \l_@@_y_final_dim
4990 - (\l_@@_y_final_dim - \l_@@_y_initial_dim)
4991 * \dim_ratio:nn \l_@@_xdots_shorten_end_dim \l_@@_l_dim
4992 }
4993 \dim_set_eq:NN \l_@@_x_initial_dim \l_tmpa_dim
4994 \dim_set_eq:NN \l_@@_y_initial_dim \l_tmpb_dim
4995 \dim_set_eq:NN \l_@@_x_final_dim \l_@@_tmpc_dim

126

4996 \dim_set_eq:NN \l_@@_y_final_dim \l_@@_tmpd_dim
4997 }

The command \@@_draw_standard_dotted_line: draws the line with our system of dots (which
gives a dotted line with real rounded dots).

4998 \cs_new_protected:Npn \@@_draw_standard_dotted_line:
4999 {
5000 \group_begin:

The dimension \l_@@_l_dim is the length ` of the line to draw. We use the floating point reals of
the L3 programming layer to compute this length.

5001 \dim_zero_new:N \l_@@_l_dim
5002 \dim_set:Nn \l_@@_l_dim
5003 {
5004 \fp_to_dim:n
5005 {
5006 sqrt
5007 (
5008 (\l_@@_x_final_dim - \l_@@_x_initial_dim) ^ 2
5009 +
5010 (\l_@@_y_final_dim - \l_@@_y_initial_dim) ^ 2
5011)
5012 }
5013 }

It seems that, during the first compilations, the value of \l_@@_l_dim may be erroneous (equal to zero
or very large). We must detect these cases because they would cause errors during the drawing of the
dotted line. Maybe we should also write something in the aux file to say that one more compilation
should be done.

5014 \dim_compare:nNnT { \l_@@_l_dim } < { \c_@@_max_l_dim }
5015 {
5016 \dim_compare:nNnT { \l_@@_l_dim } > { 1 pt }
5017 { \@@_draw_standard_dotted_line_i: }
5018 }
5019 \group_end:

5020 \bool_lazy_all:nF
5021 {
5022 { \tl_if_empty_p:N \l_@@_xdots_up_tl }
5023 { \tl_if_empty_p:N \l_@@_xdots_down_tl }
5024 { \tl_if_empty_p:N \l_@@_xdots_middle_tl }
5025 }
5026 { \@@_labels_standard_dotted_line: }
5027 }

5028 \dim_const:Nn \c_@@_max_l_dim { 50 cm }

5029 \cs_new_protected:Npn \@@_draw_standard_dotted_line_i:
5030 {

The number of dots will be \l_tmpa_int + 1.
5031 \int_set:Nn \l_tmpa_int
5032 {
5033 \dim_ratio:nn
5034 {
5035 \l_@@_l_dim
5036 - \l_@@_xdots_shorten_start_dim
5037 - \l_@@_xdots_shorten_end_dim
5038 }
5039 { \l_@@_xdots_inter_dim }
5040 }

The dimensions \l_tmpa_dim and \l_tmpb_dim are the coordinates of the vector between two dots
in the dotted line.

5041 \dim_set:Nn \l_tmpa_dim

127

5042 {
5043 (\l_@@_x_final_dim - \l_@@_x_initial_dim) *
5044 \dim_ratio:nn \l_@@_xdots_inter_dim \l_@@_l_dim
5045 }
5046 \dim_set:Nn \l_tmpb_dim
5047 {
5048 (\l_@@_y_final_dim - \l_@@_y_initial_dim) *
5049 \dim_ratio:nn \l_@@_xdots_inter_dim \l_@@_l_dim
5050 }

In the loop over the dots, the dimensions \l_@@_x_initial_dim and \l_@@_y_initial_dim will be
used for the coordinates of the dots. But, before the loop, we must move until the first dot.

5051 \dim_gadd:Nn \l_@@_x_initial_dim
5052 {
5053 (\l_@@_x_final_dim - \l_@@_x_initial_dim) *
5054 \dim_ratio:nn
5055 {
5056 \l_@@_l_dim - \l_@@_xdots_inter_dim * \l_tmpa_int
5057 + \l_@@_xdots_shorten_start_dim - \l_@@_xdots_shorten_end_dim
5058 }
5059 { 2 \l_@@_l_dim }
5060 }
5061 \dim_gadd:Nn \l_@@_y_initial_dim
5062 {
5063 (\l_@@_y_final_dim - \l_@@_y_initial_dim) *
5064 \dim_ratio:nn
5065 {
5066 \l_@@_l_dim - \l_@@_xdots_inter_dim * \l_tmpa_int
5067 + \l_@@_xdots_shorten_start_dim - \l_@@_xdots_shorten_end_dim
5068 }
5069 { 2 \l_@@_l_dim }
5070 }
5071 \pgf@relevantforpicturesizefalse
5072 \int_step_inline:nnn { \c_zero_int } { \l_tmpa_int }
5073 {
5074 \pgfpathcircle
5075 { \pgfpoint \l_@@_x_initial_dim \l_@@_y_initial_dim }
5076 { \l_@@_xdots_radius_dim }
5077 \dim_add:Nn \l_@@_x_initial_dim \l_tmpa_dim
5078 \dim_add:Nn \l_@@_y_initial_dim \l_tmpb_dim
5079 }
5080 \pgfusepathqfill
5081 }

5082 \cs_new_protected:Npn \@@_labels_standard_dotted_line:
5083 {
5084 \pgfscope
5085 \pgftransformshift
5086 {
5087 \pgfpointlineattime { 0.5 }
5088 { \pgfpoint \l_@@_x_initial_dim \l_@@_y_initial_dim }
5089 { \pgfpoint \l_@@_x_final_dim \l_@@_y_final_dim }
5090 }
5091 \fp_set:Nn \l_tmpa_fp
5092 {
5093 atand
5094 (
5095 \l_@@_y_final_dim - \l_@@_y_initial_dim ,
5096 \l_@@_x_final_dim - \l_@@_x_initial_dim
5097)
5098 }
5099 \pgftransformrotate { \fp_use:N \l_tmpa_fp }
5100 \bool_if:NF \l_@@_xdots_h_labels_bool { \fp_zero:N \l_tmpa_fp }

128

5101 \tl_if_empty:NF \l_@@_xdots_middle_tl
5102 {
5103 \begin { pgfscope }
5104 \pgfset { inner~sep = \c_@@_innersep_middle_dim }
5105 \pgfnode
5106 { rectangle }
5107 { center }
5108 {
5109 \rotatebox { \fp_eval:n { - \l_tmpa_fp } }
5110 {
5111 $ % $
5112 \scriptstyle \l_@@_xdots_middle_tl
5113 $ % $
5114 }
5115 }
5116 { }
5117 {
5118 \pgfsetfillcolor { white }
5119 \pgfusepath { fill }
5120 }
5121 \end { pgfscope }
5122 }
5123 \tl_if_empty:NF \l_@@_xdots_up_tl
5124 {
5125 \pgfnode
5126 { rectangle }
5127 { south }
5128 {
5129 \rotatebox { \fp_eval:n { - \l_tmpa_fp } }
5130 {
5131 $ % $
5132 \scriptstyle \l_@@_xdots_up_tl
5133 $ % $
5134 }
5135 }
5136 { }
5137 { \pgfusepath { } }
5138 }
5139 \tl_if_empty:NF \l_@@_xdots_down_tl
5140 {
5141 \pgfnode
5142 { rectangle }
5143 { north }
5144 {
5145 \rotatebox { \fp_eval:n { - \l_tmpa_fp } }
5146 {
5147 $ % $
5148 \scriptstyle \l_@@_xdots_down_tl
5149 $ % $
5150 }
5151 }
5152 { }
5153 { \pgfusepath { } }
5154 }
5155 \endpgfscope
5156 }

129

18 User commands available in the new environments

The commands \@@_Ldots:, \@@_Cdots:, \@@_Vdots:, \@@_Ddots: and \@@_Iddots: will be linked
to \Ldots, \Cdots, \Vdots, \Ddots and \Iddots in the environments {NiceArray} (the other envi-
ronments of nicematrix rely upon {NiceArray}).

The syntax of these commands uses the character _ as embellishment and that’s why we have
to insert a character _ in the arg spec of these commands. However, we don’t know the future
catcode of _ in the main document (maybe the user will use underscore, and, in that case, the
catcode is 13 because underscore activates _). That’s why these commands will be defined in a
\hook_gput_code:nnn { begindocument } { . } and the arg spec will be rescanned.

5157 \hook_gput_code:nnn { begindocument } { . }
5158 {

We rescan the argspec in order the correct catcode of _ in the main document (and that’s why we
are in a \AtBeginDocument).

5159 \tl_set_rescan:Nnn \l_@@_argspec_tl { } { m E { _ ^ : } { { } { } { } } }
5160 \cs_new_protected:Npn \@@_Ldots:
5161 { \@@_collect_options:n { \@@_Ldots_i } }
5162 \exp_args:NNo \NewDocumentCommand \@@_Ldots_i \l_@@_argspec_tl
5163 {
5164 \int_if_zero:nTF { \c@jCol }
5165 { \@@_error:nn { in~first~col } { \Ldots } }
5166 {
5167 \int_compare:nNnTF { \c@jCol } = { \l_@@_last_col_int }
5168 { \@@_error:nn { in~last~col } { \Ldots } }
5169 {
5170 \@@_instruction_of_type:nnn { \c_false_bool } { Ldots }
5171 { #1 , down = #2 , up = #3 , middle = #4 }
5172 }
5173 }
5174 \bool_if:NF \l_@@_nullify_dots_bool
5175 { \phantom { \ensuremath { \@@_old_ldots: } } }
5176 \bool_gset_true:N \g_@@_empty_cell_bool
5177 }

5178 \cs_new_protected:Npn \@@_Cdots:
5179 { \@@_collect_options:n { \@@_Cdots_i } }
5180 \exp_args:NNo \NewDocumentCommand \@@_Cdots_i \l_@@_argspec_tl
5181 {
5182 \int_if_zero:nTF { \c@jCol }
5183 { \@@_error:nn { in~first~col } { \Cdots } }
5184 {
5185 \int_compare:nNnTF { \c@jCol } = { \l_@@_last_col_int }
5186 { \@@_error:nn { in~last~col } { \Cdots } }
5187 {
5188 \@@_instruction_of_type:nnn { \c_false_bool } { Cdots }
5189 { #1 , down = #2 , up = #3 , middle = #4 }
5190 }
5191 }
5192 \bool_if:NF \l_@@_nullify_dots_bool
5193 { \phantom { \ensuremath { \@@_old_cdots: } } }
5194 \bool_gset_true:N \g_@@_empty_cell_bool
5195 }

5196 \cs_new_protected:Npn \@@_Vdots:
5197 { \@@_collect_options:n { \@@_Vdots_i } }
5198 \exp_args:NNo \NewDocumentCommand \@@_Vdots_i \l_@@_argspec_tl
5199 {
5200 \int_if_zero:nTF { \c@iRow }

130

5201 { \@@_error:nn { in~first~row } { \Vdots } }
5202 {
5203 \int_compare:nNnTF { \c@iRow } = { \l_@@_last_row_int }
5204 { \@@_error:nn { in~last~row } { \Vdots } }
5205 {
5206 \@@_instruction_of_type:nnn { \c_false_bool } { Vdots }
5207 { #1 , down = #2 , up = #3 , middle = #4 }
5208 }
5209 }
5210 \bool_if:NF \l_@@_nullify_dots_bool
5211 { \phantom { \ensuremath { \@@_old_vdots: } } }
5212 \bool_gset_true:N \g_@@_empty_cell_bool
5213 }

5214 \cs_new_protected:Npn \@@_Ddots:
5215 { \@@_collect_options:n { \@@_Ddots_i } }
5216 \exp_args:NNo \NewDocumentCommand \@@_Ddots_i \l_@@_argspec_tl
5217 {
5218 \int_case:nnF \c@iRow
5219 {
5220 0 { \@@_error:nn { in~first~row } { \Ddots } }
5221 \l_@@_last_row_int { \@@_error:nn { in~last~row } { \Ddots } }
5222 }
5223 {
5224 \int_case:nnF \c@jCol
5225 {
5226 0 { \@@_error:nn { in~first~col } { \Ddots } }
5227 \l_@@_last_col_int { \@@_error:nn { in~last~col } { \Ddots } }
5228 }
5229 {
5230 \keys_set_known:nn { nicematrix / Ddots } { #1 }
5231 \@@_instruction_of_type:nnn \l_@@_draw_first_bool { Ddots }
5232 { #1 , down = #2 , up = #3 , middle = #4 }
5233 }
5234

5235 }
5236 \bool_if:NF \l_@@_nullify_dots_bool
5237 { \phantom { \ensuremath { \@@_old_ddots: } } }
5238 \bool_gset_true:N \g_@@_empty_cell_bool
5239 }

5240 \cs_new_protected:Npn \@@_Iddots:
5241 { \@@_collect_options:n { \@@_Iddots_i } }
5242 \exp_args:NNo \NewDocumentCommand \@@_Iddots_i \l_@@_argspec_tl
5243 {
5244 \int_case:nnF \c@iRow
5245 {
5246 0 { \@@_error:nn { in~first~row } { \Iddots } }
5247 \l_@@_last_row_int { \@@_error:nn { in~last~row } { \Iddots } }
5248 }
5249 {
5250 \int_case:nnF \c@jCol
5251 {
5252 0 { \@@_error:nn { in~first~col } { \Iddots } }
5253 \l_@@_last_col_int { \@@_error:nn { in~last~col } { \Iddots } }
5254 }
5255 {
5256 \keys_set_known:nn { nicematrix / Ddots } { #1 }
5257 \@@_instruction_of_type:nnn { \l_@@_draw_first_bool } { Iddots }
5258 { #1 , down = #2 , up = #3 , middle = #4 }
5259 }
5260 }

131

5261 \bool_if:NF \l_@@_nullify_dots_bool
5262 { \phantom { \ensuremath { \@@_old_iddots: } } }
5263 \bool_gset_true:N \g_@@_empty_cell_bool
5264 }
5265 }

End of the \AddToHook.

Despite its name, the following set of keys will be used for \Ddots but also for \Iddots.
5266 \keys_define:nn { nicematrix / Ddots }
5267 {
5268 draw-first .bool_set:N = \l_@@_draw_first_bool ,
5269 draw-first .default:n = true ,
5270 draw-first .value_forbidden:n = true
5271 }

The command \@@_Hspace: will be linked to \hspace in {NiceArray}.
5272 \cs_new_protected:Npn \@@_Hspace:
5273 {
5274 \bool_gset_true:N \g_@@_empty_cell_bool
5275 \hspace
5276 }

In the environments of nicematrix, the command \multicolumn is redefined. We will patch the
environment {tabular} to go back to the previous value of \multicolumn.

5277 \cs_new_eq:NN \@@_old_multicolumn: \multicolumn

The command \@@_Hdotsfor will be linked to \Hdotsfor in {NiceArrayWithDelims}. TikZ nodes
are created also in the implicit cells of the \Hdotsfor (maybe we should modify that point).

This command must not be protected since it begins with \multicolumn.
5278 \cs_new:Npn \@@_Hdotsfor:
5279 {
5280 \bool_lazy_and:nnTF
5281 { \int_if_zero_p:n { \c@jCol } }
5282 { \int_if_zero_p:n { \l_@@_first_col_int } }
5283 {
5284 \bool_if:NTF \g_@@_after_col_zero_bool
5285 {
5286 \multicolumn { 1 } { c } { }
5287 \@@_Hdotsfor_i:
5288 }
5289 { \@@_fatal:n { Hdotsfor~in~col~0 } }
5290 }
5291 {
5292 \multicolumn { 1 } { c } { }
5293 \@@_Hdotsfor_i:
5294 }
5295 }

The command \@@_Hdotsfor_i: is defined with \NewDocumentCommand because it has an optional
argument. Note that such a command defined by \NewDocumentCommand is protected and that’s why
we have put the \multicolumn before (in the definition of \@@_Hdotsfor:).

5296 \hook_gput_code:nnn { begindocument } { . }
5297 {

We don’t put ! before the last optional argument for homogeneity with \Cdots, etc. which have only
one optional argument.

5298 \cs_new_protected:Npn \@@_Hdotsfor_i:
5299 { \@@_collect_options:n { \@@_Hdotsfor_ii } }

132

We rescan the argspec in order the correct catcode of _ in the main document (and that’s why we
are in a \AtBeginDocument).

5300 \tl_set_rescan:Nnn \l_tmpa_tl { } { m m O { } E { _ ^ : } { { } { } { } } }
5301 \exp_args:NNo \NewDocumentCommand \@@_Hdotsfor_ii \l_tmpa_tl
5302 {
5303 \tl_gput_right:Ne \g_@@_HVdotsfor_lines_tl
5304 {
5305 \@@_Hdotsfor:nnnn
5306 { \int_use:N \c@iRow }
5307 { \int_use:N \c@jCol }
5308 { #2 }
5309 {
5310 #1 , #3 ,
5311 down = \exp_not:n { #4 } ,
5312 up = \exp_not:n { #5 } ,
5313 middle = \exp_not:n { #6 }
5314 }
5315 }
5316 \prg_replicate:nn { #2 - 1 }
5317 {
5318 &
5319 \multicolumn { 1 } { c } { }
5320 \cs_set_eq:NN \CodeAfter \@@_CodeAfter_i:
5321 }
5322 }
5323 }

5324 \cs_new_protected:Npn \@@_Hdotsfor:nnnn #1 #2 #3 #4
5325 {
5326 \bool_set_false:N \l_@@_initial_open_bool
5327 \bool_set_false:N \l_@@_final_open_bool

For the row, it’s easy.
5328 \int_set:Nn \l_@@_initial_i_int { #1 }
5329 \int_set_eq:NN \l_@@_final_i_int \l_@@_initial_i_int

For the column, it’s a bit more complicated.
5330 \int_compare:nNnTF { #2 } = { \c_one_int }
5331 {
5332 \int_set_eq:NN \l_@@_initial_j_int \c_one_int
5333 \bool_set_true:N \l_@@_initial_open_bool
5334 }
5335 {
5336 \cs_if_exist:cTF
5337 {
5338 pgf @ sh @ ns @ \@@_env:
5339 - \int_use:N \l_@@_initial_i_int
5340 - \int_eval:n { #2 - 1 }
5341 }
5342 { \int_set:Nn \l_@@_initial_j_int { #2 - 1 } }
5343 {
5344 \int_set:Nn \l_@@_initial_j_int { #2 }
5345 \bool_set_true:N \l_@@_initial_open_bool
5346 }
5347 }
5348 \int_compare:nNnTF { #2 + #3 -1 } = { \c@jCol }
5349 {
5350 \int_set:Nn \l_@@_final_j_int { #2 + #3 - 1 }
5351 \bool_set_true:N \l_@@_final_open_bool
5352 }
5353 {
5354 \cs_if_exist:cTF
5355 {
5356 pgf @ sh @ ns @ \@@_env:

133

5357 - \int_use:N \l_@@_final_i_int
5358 - \int_eval:n { #2 + #3 }
5359 }
5360 { \int_set:Nn \l_@@_final_j_int { #2 + #3 } }
5361 {
5362 \int_set:Nn \l_@@_final_j_int { #2 + #3 - 1 }
5363 \bool_set_true:N \l_@@_final_open_bool
5364 }
5365 }

5366 \bool_if:NT \g_@@_aux_found_bool
5367 {
5368 \group_begin:
5369 \@@_open_shorten:
5370 \int_if_zero:nTF { #1 }
5371 { \color { nicematrix-first-row } }
5372 {
5373 \int_compare:nNnT { #1 } = { \g_@@_row_total_int }
5374 { \color { nicematrix-last-row } }
5375 }
5376 \keys_set:nn { nicematrix / xdots } { #4 }
5377 \@@_color:o \l_@@_xdots_color_tl
5378 \@@_actually_draw_Ldots:
5379 \group_end:
5380 }

We declare all the cells concerned by the \Hdotsfor as “dotted” (for the dotted lines created by
\Cdots, \Ldots, etc., this job is done by \@@_find_extremities:nnnn). This declaration is done by
defining a special control sequence (to nil).

5381 \int_step_inline:nnn { #2 } { #2 + #3 - 1 }
5382 { \cs_set_nopar:cpn { @@ _ dotted _ #1 - ##1 } { } }
5383 }

5384 \hook_gput_code:nnn { begindocument } { . }
5385 {
5386 \cs_new_protected:Npn \@@_Vdotsfor:
5387 { \@@_collect_options:n { \@@_Vdotsfor_i } }

We rescan the argspec in order the correct catcode of _ in the main document (and that’s why we
are in a \AtBeginDocument).

5388 \tl_set_rescan:Nnn \l_tmpa_tl { } { m m O { } E { _ ^ : } { { } { } { } } }
5389 \exp_args:NNo \NewDocumentCommand \@@_Vdotsfor_i \l_tmpa_tl
5390 {
5391 \bool_gset_true:N \g_@@_empty_cell_bool
5392 \tl_gput_right:Ne \g_@@_HVdotsfor_lines_tl
5393 {
5394 \@@_Vdotsfor:nnnn
5395 { \int_use:N \c@iRow }
5396 { \int_use:N \c@jCol }
5397 { #2 }
5398 {
5399 #1 , #3 ,
5400 down = \exp_not:n { #4 } ,
5401 up = \exp_not:n { #5 } ,
5402 middle = \exp_not:n { #6 }
5403 }
5404 }
5405 }
5406 }

#1 is the number of row;
#2 is the number of column;

134

#3 is the numbers of rows which are involved;
5407 \cs_new_protected:Npn \@@_Vdotsfor:nnnn #1 #2 #3 #4
5408 {
5409 \bool_set_false:N \l_@@_initial_open_bool
5410 \bool_set_false:N \l_@@_final_open_bool

For the column, it’s easy.
5411 \int_set:Nn \l_@@_initial_j_int { #2 }
5412 \int_set_eq:NN \l_@@_final_j_int \l_@@_initial_j_int

For the row, it’s a bit more complicated.
5413 \int_compare:nNnTF { #1 } = { \c_one_int }
5414 {
5415 \int_set_eq:NN \l_@@_initial_i_int \c_one_int
5416 \bool_set_true:N \l_@@_initial_open_bool
5417 }
5418 {
5419 \cs_if_exist:cTF
5420 {
5421 pgf @ sh @ ns @ \@@_env:
5422 - \int_eval:n { #1 - 1 }
5423 - \int_use:N \l_@@_initial_j_int
5424 }
5425 { \int_set:Nn \l_@@_initial_i_int { #1 - 1 } }
5426 {
5427 \int_set:Nn \l_@@_initial_i_int { #1 }
5428 \bool_set_true:N \l_@@_initial_open_bool
5429 }
5430 }
5431 \int_compare:nNnTF { #1 + #3 - 1 } = { \c@iRow }
5432 {
5433 \int_set:Nn \l_@@_final_i_int { #1 + #3 - 1 }
5434 \bool_set_true:N \l_@@_final_open_bool
5435 }
5436 {
5437 \cs_if_exist:cTF
5438 {
5439 pgf @ sh @ ns @ \@@_env:
5440 - \int_eval:n { #1 + #3 }
5441 - \int_use:N \l_@@_final_j_int
5442 }
5443 { \int_set:Nn \l_@@_final_i_int { #1 + #3 } }
5444 {
5445 \int_set:Nn \l_@@_final_i_int { #1 + #3 - 1 }
5446 \bool_set_true:N \l_@@_final_open_bool
5447 }
5448 }

5449 \bool_if:NT \g_@@_aux_found_bool
5450 {
5451 \group_begin:
5452 \@@_open_shorten:
5453 \int_if_zero:nTF { #2 }
5454 { \color { nicematrix-first-col } }
5455 {
5456 \int_compare:nNnT { #2 } = { \g_@@_col_total_int }
5457 { \color { nicematrix-last-col } }
5458 }
5459 \keys_set:nn { nicematrix / xdots } { #4 }
5460 \@@_color:o \l_@@_xdots_color_tl
5461 \bool_if:NTF \l_@@_Vbrace_bool
5462 { \@@_actually_draw_Vbrace: }
5463 { \@@_actually_draw_Vdots: }
5464 \group_end:
5465 }

135

We declare all the cells concerned by the \Vdotsfor as “dotted” (for the dotted lines created by
\Cdots, \Ldots, etc., this job is done by \@@_find_extremities:nnnn). This declaration is done by
defining a special control sequence (to nil).

5466 \int_step_inline:nnn { #1 } { #1 + #3 - 1 }
5467 { \cs_set_nopar:cpn { @@ _ dotted _ ##1 - #2 } { } }
5468 }

The command \@@_rotate: will be linked to \rotate in {NiceArrayWithDelims}.
5469 \NewDocumentCommand \@@_rotate: { O { } }
5470 {
5471 \bool_gset_true:N \g_@@_rotate_bool
5472 \keys_set:nn { nicematrix / rotate } { #1 }
5473 \ignorespaces
5474 }

The command \@@_rotate_p_col: will be linked to \rotate in the the cells of the columns of type
p and al.

5475 \cs_new_protected:Npn \@@_rotate_p_col: { \@@_error:n { rotate~in~p~col } }

5476 \keys_define:nn { nicematrix / rotate }
5477 {
5478 c .code:n = \bool_gset_true:N \g_@@_rotate_c_bool ,
5479 c .value_forbidden:n = true ,
5480 unknown .code:n = \@@_error:n { Unknown~key~for~rotate }
5481 }

19 The command \line accessible in code-after

In the \CodeAfter, the command \@@_line:nn will be linked to \line. This command takes two
arguments which are the specifications of two cells in the array (in the format i-j) and draws a dotted
line between these cells. In fact, if also works with names of blocks.

First, we write a command with the following behaviour:

• If the argument is of the format i-j, our command applies the command \int_eval:n to i and j
;

• If not (that is to say, when it’s a name of a \Block), the argument is left unchanged.

This must not be protected (and is, of course fully expandable).14

5482 \cs_new:Npn \@@_double_int_eval:n #1-#2 \q_stop
5483 {
5484 \tl_if_empty:nTF { #2 }
5485 { #1 }
5486 { \@@_double_int_eval_i:n #1-#2 \q_stop }
5487 }
5488 \cs_new:Npn \@@_double_int_eval_i:n #1-#2- \q_stop
5489 { \int_eval:n { #1 } - \int_eval:n { #2 } }

14Indeed, we want that the user may use the command \line in \CodeAfter with LaTeX counters in the arguments
— with the command \value.

136

With the following construction, the command \@@_double_int_eval:n is applied to both argu-
ments before the application of \@@_line_i:nn (the construction uses the fact the \@@_line_i:nn
is protected and that \@@_double_int_eval:n is fully expandable).

5490 \hook_gput_code:nnn { begindocument } { . }
5491 {

We rescan the argspec in order the correct catcode of _ in the main document (and that’s why we
are in a \AtBeginDocument).

5492 \tl_set_rescan:Nnn \l_tmpa_tl { }
5493 { O { } m m ! O { } E { _ ^ : } { { } { } { } } }
5494 \exp_args:NNo \NewDocumentCommand \@@_line \l_tmpa_tl
5495 {
5496 \group_begin:
5497 \keys_set:nn { nicematrix / xdots } { #1 , #4 , down = #5 , up = #6 }
5498 \@@_color:o \l_@@_xdots_color_tl
5499 \use:e
5500 {
5501 \@@_line_i:nn
5502 { \@@_double_int_eval:n #2 - \q_stop }
5503 { \@@_double_int_eval:n #3 - \q_stop }
5504 }
5505 \group_end:
5506 }
5507 }

5508 \cs_new_protected:Npn \@@_line_i:nn #1 #2
5509 {
5510 \bool_set_false:N \l_@@_initial_open_bool
5511 \bool_set_false:N \l_@@_final_open_bool
5512 \bool_lazy_or:nnTF
5513 { \cs_if_free_p:c { pgf @ sh @ ns @ \@@_env: - #1 } }
5514 { \cs_if_free_p:c { pgf @ sh @ ns @ \@@_env: - #2 } }
5515 { \@@_error:nnn { unknown~cell~for~line~in~CodeAfter } { #1 } { #2 } }

The test of measuring@ is a security (cf. question 686649 on TeX StackExchange).
5516 { \legacy_if:nF { measuring@ } { \@@_draw_line_ii:nn { #1 } { #2 } } }
5517 }

5518 \hook_gput_code:nnn { begindocument } { . }
5519 {
5520 \cs_new_protected:Npe \@@_draw_line_ii:nn #1 #2
5521 {

We recall that, when externalization is used, \tikzpicture and \endtikzpicture (or \pgfpicture
and \endpgfpicture) must be directly “visible” and that why we do this static construction of the
command \@@_draw_line_ii:.

5522 \c_@@_pgfortikzpicture_tl
5523 \@@_draw_line_iii:nn { #1 } { #2 }
5524 \c_@@_endpgfortikzpicture_tl
5525 }
5526 }

The following command must be protected (it’s used in the construction of \@@_draw_line_ii:nn).
5527 \cs_new_protected:Npn \@@_draw_line_iii:nn #1 #2
5528 {
5529 \pgfrememberpicturepositiononpagetrue
5530 \pgfpointshapeborder { \@@_env: - #1 } { \@@_qpoint:n { #2 } }
5531 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
5532 \dim_set_eq:NN \l_@@_y_initial_dim \pgf@y
5533 \pgfpointshapeborder { \@@_env: - #2 } { \@@_qpoint:n { #1 } }
5534 \dim_set_eq:NN \l_@@_x_final_dim \pgf@x
5535 \dim_set_eq:NN \l_@@_y_final_dim \pgf@y
5536 \@@_draw_line:
5537 }

137

The commands \Ldots, \Cdots, \Vdots, \Ddots, and \Iddots don’t use this command because they
have to do other settings (for example, the diagonal lines must be parallelized).

20 The command \RowStyle

\g_@@_row_style_tl may contain several instructions of the form:
\@@_if_row_less_than:nn { number } { instructions }

Then, \g_@@_row_style_tl will be inserted in all the cells of the array (and also in both components
of a \diagbox in a cell of in a mono-row block).
The test \@@_if_row_less_then:nn ensures that the instructions are inserted only if you are in a
row which is (still) in the scope of that instructions (which depends on the value of the key nb-rows
of \RowStyle).
That test will be active even in an expandable context because \@@_if_row_less_then:nn is not
protected.
#1 is the first row after the scope of the instructions in #2
However, both arguments are implicit because they are taken by curryfication.

5538 \cs_new:Npn \@@_if_row_less_than:nn { \int_compare:nNnT { \c@iRow } < }
5539 \cs_new:Npn \@@_if_col_greater_than:nn { \int_compare:nNnF { \c@jCol } < }

\@@_put_in_row_style will be used several times in \RowStyle.
5540 \cs_set_protected:Npn \@@_put_in_row_style:n #1
5541 {
5542 \tl_gput_right:Ne \g_@@_row_style_tl
5543 {

Be careful, \exp_not:N \@@_if_row_less_than:nn can’t be replaced by a protected version of
\@@_if_row_less_than:nn.

5544 \exp_not:N
5545 \@@_if_row_less_than:nn
5546 { \int_eval:n { \c@iRow + \l_@@_key_nb_rows_int } }

The \scan_stop: is mandatory (for ex. for the case where \rotate is used in the argument of
\RowStyle).

5547 {
5548 \exp_not:N
5549 \@@_if_col_greater_than:nn
5550 { \int_eval:n { \c@jCol } }
5551 { \exp_not:n { #1 } \scan_stop: }
5552 }
5553 }
5554 }
5555 \cs_generate_variant:Nn \@@_put_in_row_style:n { e }

5556 \keys_define:nn { nicematrix / RowStyle }
5557 {
5558 cell-space-top-limit .dim_set:N = \l_tmpa_dim ,
5559 cell-space-top-limit .value_required:n = true ,
5560 cell-space-top-limit+ .code:n =
5561 \dim_set:Nn \l_tmpa_dim { \l_@@_cell_space_top_limit_dim + #1 } ,
5562 cell-space-top-limit+ .value_required:n = true ,
5563 cell-space-top-limit~+ .meta:n = { cell-space-top-limit+ = #1 } ,
5564 cell-space-bottom-limit .dim_set:N = \l_tmpb_dim ,
5565 cell-space-bottom-limit .value_required:n = true ,
5566 cell-space-bottom-limit+ .code:n =
5567 \dim_set:Nn \l_tmpb_dim { \l_@@_cell_space_bottom_limit_dim + #1 } ,
5568 cell-space-bottom-limit+ .value_required:n = true ,
5569 cell-space-bottom-limit~+ .meta:n = { cell-space-bottom-limit+ = #1 } ,
5570 cell-space-limits .meta:n =

138

5571 {
5572 cell-space-top-limit = #1 ,
5573 cell-space-bottom-limit = #1 ,
5574 } ,
5575 cell-space-limits+ .meta:n =
5576 {
5577 cell-space-top-limit += #1 ,
5578 cell-space-bottom-limit += #1 ,
5579 } ,
5580 cell-space-limits~+ .meta:n = { cell-space-limits+ = #1 } ,
5581 color .tl_set:N = \l_@@_color_tl ,
5582 color .value_required:n = true ,
5583 bold .bool_set:N = \l_@@_bold_row_style_bool ,
5584 bold .default:n = true ,
5585 nb-rows .code:n =
5586 \str_if_eq:eeTF { #1 } { * }
5587 { \int_set:Nn \l_@@_key_nb_rows_int { 500 } }
5588 { \int_set:Nn \l_@@_key_nb_rows_int { #1 } } ,
5589 nb-rows .value_required:n = true ,
5590 fill .tl_set:N = \l_@@_fill_tl ,
5591 fill .value_required:n = true ,

In fine, the opacity will be applied by \pgfsetfillopacity.
5592 opacity .tl_set:N = \l_@@_opacity_tl ,
5593 opacity .value_required:n = true ,
5594 rowcolor .tl_set:N = \l_@@_fill_tl ,
5595 rowcolor .value_required:n = true ,
5596 rounded-corners .dim_set:N = \l_@@_rounded_corners_dim ,
5597 rounded-corners .default:n = 4 pt ,
5598 unknown .code:n =
5599 \@@_unknown_key:nn
5600 { nicematrix / RowStyle }
5601 { Unknown~key~for~RowStyle }
5602 }

5603 \NewDocumentCommand \@@_RowStyle:n { O { } m }
5604 {
5605 \group_begin:
5606 \tl_clear:N \l_@@_fill_tl
5607 \tl_clear:N \l_@@_opacity_tl
5608 \tl_clear:N \l_@@_color_tl
5609 \int_set_eq:NN \l_@@_key_nb_rows_int \c_one_int
5610 \dim_zero:N \l_@@_rounded_corners_dim
5611 \dim_zero:N \l_tmpa_dim
5612 \dim_zero:N \l_tmpb_dim
5613 \keys_set:nn { nicematrix / RowStyle } { #1 }

If the key fill (or its alias rowcolor) has been used.
5614 \tl_if_empty:NF \l_@@_fill_tl
5615 {
5616 \@@_add_opacity_to_fill:
5617 \tl_gput_right:Ne \g_@@_pre_code_before_tl
5618 {

The command \@@_exp_color_arg:No is fully expandable.
5619 \@@_exp_color_arg:No \@@_roundedrectanglecolor \l_@@_fill_tl
5620 { \int_use:N \c@iRow - \int_use:N \c@jCol }
5621 {
5622 \int_eval:n { \c@iRow + \l_@@_key_nb_rows_int - 1 }
5623 - *
5624 }
5625 { \dim_use:N \l_@@_rounded_corners_dim }
5626 }
5627 }

139

5628 \@@_put_in_row_style:n { \exp_not:n { #2 } }

\l_tmpa_dim is the value of the key cell-space-top-limit of \RowStyle.
5629 \dim_compare:nNnT { \l_tmpa_dim } > { \c_zero_dim }
5630 {
5631 \@@_put_in_row_style:e
5632 {
5633 \tl_gput_right:Nn \exp_not:N \g_@@_cell_after_hook_tl
5634 {

It’s not possible to change the following code by using \dim_set_eq:NN (because of expansion).
5635 \dim_set:Nn \l_@@_cell_space_top_limit_dim
5636 { \dim_use:N \l_tmpa_dim }
5637 }
5638 }
5639 }

\l_tmpb_dim is the value of the key cell-space-bottom-limit of \RowStyle.
5640 \dim_compare:nNnT { \l_tmpb_dim } > { \c_zero_dim }
5641 {
5642 \@@_put_in_row_style:e
5643 {
5644 \tl_gput_right:Nn \exp_not:N \g_@@_cell_after_hook_tl
5645 {
5646 \dim_set:Nn \l_@@_cell_space_bottom_limit_dim
5647 { \dim_use:N \l_tmpb_dim }
5648 }
5649 }
5650 }

\l_@@_color_tl is the value of the key color of \RowStyle.
5651 \tl_if_empty:NF \l_@@_color_tl
5652 {
5653 \@@_put_in_row_style:e
5654 {
5655 \mode_leave_vertical:
5656 \@@_color:n { \l_@@_color_tl }
5657 }
5658 }

\l_@@_bold_row_style_bool is the value of the key bold.
5659 \bool_if:NT \l_@@_bold_row_style_bool
5660 {
5661 \@@_put_in_row_style:n
5662 {
5663 \exp_not:n
5664 {
5665 \if_mode_math:
5666 $ % $
5667 \bfseries \boldmath
5668 $ % $
5669 \else:
5670 \bfseries \boldmath
5671 \fi:
5672 }
5673 }
5674 }
5675 \group_end:
5676 \g_@@_row_style_tl
5677 \ignorespaces
5678 }

The following commande must not be protected.
5679 \cs_new:Npn \@@_rounded_from_row:n #1
5680 {
5681 \@@_exp_color_arg:No \@@_roundedrectanglecolor \l_@@_fill_tl

140

In the following code, the “- 1” is not a subtraction.
5682 { \int_eval:n { #1 } - 1 }
5683 {
5684 \int_eval:n { \c@iRow + \l_@@_key_nb_rows_int - 1 }
5685 - \exp_not:n { \int_use:N \c@jCol }
5686 }
5687 { \dim_use:N \l_@@_rounded_corners_dim }
5688 }

21 Colors of cells, rows and columns

We want to avoid the thin white lines that are shown in some pdf viewers (eg: with the engine
MuPDF used by SumatraPDF). That’s why we try to draw rectangles of the same color in the same
instruction \pgfusepath { fill } (and they will be in the same instruction fill—coded f—in the
resulting pdf).
The commands \@@_rowcolor, \@@_columncolor, \@@_rectanglecolor and \@@_rowlistcolors
don’t directly draw the corresponding rectangles. Instead, they store their instructions color by
color:

• A sequence \g_@@_colors_seq will be built containing all the colors used by at least one of
these instructions. Each color may be prefixed by its color model (eg: [gray]{0.5}).

• For the color whose index in \g_@@_colors_seq is equal to i, a list of instructions which use that
color will be constructed in the token list \g_@@_color_i_tl. In that token list, the instructions
will be written using \@@_cartesian_color:nn and \@@_rectanglecolor:nn.

#1 is the color and #2 is an instruction using that color. Despite its name, the command
\@@_add_to_colors_seq:nn doesn’t only add a color to \g_@@_colors_seq: it also updates the
corresponding token list \g_@@_color_i_tl. We add in a global way because the final user may use
the instructions such as \cellcolor in a loop of pgffor in the \CodeBefore (and we recall that a loop
of pgffor is encapsulated in a group).

5689 \cs_new_protected:Npn \@@_add_to_colors_seq:nn #1 #2
5690 {

First, we look for the number of the color and, if it’s found, we store it in \l_tmpa_int. If the color
is not present in \l_@@_colors_seq, \l_tmpa_int will remain equal to 0.

5691 \int_zero:N \l_tmpa_int

We don’t take into account the colors like myserie!!+ because those colors are special color from a
\definecolorseries of xcolor. \str_if_in:nnF is mandatory: don’t use \tl_if_in:nnF.

5692 \str_if_in:nnF { #1 } { !! }
5693 {
5694 \seq_map_indexed_inline:Nn \g_@@_colors_seq

We use \str_if_eq:eeTF which is slightly faster than \tl_if_eq:nnTF.
5695 { \str_if_eq:eeT { #1 } { ##2 } { \int_set:Nn \l_tmpa_int { ##1 } } }
5696 }
5697 \int_if_zero:nTF { \l_tmpa_int }

First, the case where the color is a new color (not in the sequence).
5698 {
5699 \seq_gput_right:Nn \g_@@_colors_seq { #1 }
5700 \tl_gset:ce { g_@@_color _ \seq_count:N \g_@@_colors_seq _ tl } { #2 }
5701 }

141

Now, the case where the color is not a new color (the color is in the sequence at the position
\l_tmpa_int).

5702 { \tl_gput_right:ce { g_@@_color _ \int_use:N \l_tmpa_int _tl } { #2 } }
5703 }
5704 \cs_generate_variant:Nn \@@_add_to_colors_seq:nn { e }
5705 \cs_generate_variant:Nn \@@_add_to_colors_seq:nn { e e }

The following command must be used within a \pgfpicture.
5706 \cs_new_protected:Npn \@@_clip_with_rounded_corners:
5707 {
5708 \dim_compare:nNnT { \l_@@_tab_rounded_corners_dim } > { \c_zero_dim }
5709 {

The TeX group is for \pgfsetcornersarced (whose scope is the TeX scope).
5710 \group_begin:
5711 \pgfsetcornersarced
5712 {
5713 \pgfpoint
5714 { \l_@@_tab_rounded_corners_dim }
5715 { \l_@@_tab_rounded_corners_dim }
5716 }

Because we want nicematrix compatible with arrays constructed by array, the nodes for the rows and
columns (that is to say the nodes row-i and col-j) have not always the expected position, that is
to say, there is sometimes a slight shifting of something such as \arrayrulewidth. Now, for the
clipping, we have to change slightly the position of that clipping whether a rounded rectangle around
the array is required. That’s the point which is tested in the following line.

5717 \bool_if:NTF \l_@@_hvlines_bool
5718 {
5719 \pgfpathrectanglecorners
5720 {
5721 \pgfpointadd
5722 { \@@_qpoint:n { row-1 } }
5723 { \pgfpoint { 0.5 \arrayrulewidth } { \c_zero_dim } }
5724 }
5725 {
5726 \pgfpointadd
5727 {
5728 \@@_qpoint:n
5729 { \int_eval:n { \int_max:nn { \c@iRow } { \c@jCol } + 1 } }
5730 }
5731 { \pgfpoint \c_zero_dim { 0.5 \arrayrulewidth } }
5732 }
5733 }
5734 {
5735 \pgfpathrectanglecorners
5736 { \@@_qpoint:n { row-1 } }
5737 {
5738 \pgfpointadd
5739 {
5740 \@@_qpoint:n
5741 { \int_eval:n { \int_max:nn { \c@iRow } { \c@jCol } + 1 } }
5742 }
5743 { \pgfpoint \c_zero_dim \arrayrulewidth }
5744 }
5745 }
5746 \pgfusepath { clip }
5747 \group_end:

The TeX group was for \pgfsetcornersarced.
5748 }
5749 }

142

The macro \@@_actually_color: will actually fill all the rectangles, color by color (using the se-
quence \l_@@_colors_seq and all the token lists of the form \l_@@_color_i_tl).

5750 \cs_new_protected:Npn \@@_actually_color:
5751 {
5752 \pgfpicture
5753 \pgf@relevantforpicturesizefalse

If the final user has used the key rounded-corners for the environment {NiceTabular}, we will clip
to a rectangle with rounded corners before filling the rectangles.

5754 \@@_clip_with_rounded_corners:
5755 \seq_map_indexed_inline:Nn \g_@@_colors_seq
5756 {
5757 \int_compare:nNnTF { ##1 } = { \c_one_int }
5758 {
5759 \cs_set_eq:NN \@@_cartesian_path:n \@@_cartesian_path_nocolor:n
5760 \use:c { g_@@_color _ 1 _tl }
5761 \cs_set_eq:NN \@@_cartesian_path:n \@@_cartesian_path_normal:n
5762 }
5763 {
5764 \begin { pgfscope }
5765 \@@_color_opacity: ##2
5766 \use:c { g_@@_color _ ##1 _tl }
5767 \tl_gclear:c { g_@@_color _ ##1 _tl }
5768 \pgfusepath { fill }
5769 \end { pgfscope }
5770 }
5771 }
5772 \endpgfpicture
5773 }

The following command will extract the potential key opacity in its optional argument (between
square brackets) and (of course) then apply the command \color.

5774 \cs_new_protected:Npn \@@_color_opacity:
5775 {
5776 \peek_meaning:NTF [
5777 { \@@_color_opacity:w }
5778 { \@@_color_opacity:w [] }
5779 }

The command \@@_color_opacity:w takes in as argument only the optional argument. One may
consider that the second argument (the actual definition of the color) is provided by curryfication.

5780 \cs_new_protected:Npn \@@_color_opacity:w [#1]
5781 {
5782 \tl_clear:N \l_tmpa_tl
5783 \keys_set_known:nnN { nicematrix / color-opacity } { #1 } \l_tmpb_tl

\l_tmpa_tl (if not empty) is now the opacity and \l_tmpb_tl (if not empty) is now the colorimetric
space.

5784 \tl_if_empty:NF \l_tmpa_tl { \exp_args:No \pgfsetfillopacity \l_tmpa_tl }
5785 \tl_if_empty:NTF \l_tmpb_tl
5786 { \@declaredcolor }
5787 { \use:e { \exp_not:N \@undeclaredcolor [\l_tmpb_tl] } }
5788 }

The following set of keys is used by the command \@@_color_opacity:w.
5789 \keys_define:nn { nicematrix / color-opacity }
5790 {
5791 opacity .tl_set:N = \l_tmpa_tl ,
5792 opacity .value_required:n = true
5793 }

143

Here, we use \def instead of \tl_set:Nn for efficiency only.
5794 \cs_new_protected:Npn \@@_cartesian_color:nn #1 #2
5795 {
5796 \def \l_@@_rows_tl { #1 }
5797 \def \l_@@_cols_tl { #2 }
5798 \@@_cartesian_path:
5799 }

Here is an example : \@@_rowcolor {red!15} {1,3,5-7,10-}
5800 \NewDocumentCommand \@@_rowcolor { O { } m m }
5801 {
5802 \tl_if_blank:nF { #2 }
5803 {
5804 \@@_add_to_colors_seq:en
5805 { \tl_if_blank:nF { #1 } { [#1] } { #2 } }
5806 { \@@_cartesian_color:nn { #3 } { - } }
5807 }
5808 }

Here an example: \@@_columncolor:nn {red!15} {1,3,5-7,10-}
5809 \NewDocumentCommand \@@_columncolor { O { } m m }
5810 {
5811 \tl_if_blank:nF { #2 }
5812 {
5813 \@@_add_to_colors_seq:en
5814 { \tl_if_blank:nF { #1 } { [#1] } { #2 } }
5815 { \@@_cartesian_color:nn { - } { #3 } }
5816 }
5817 }

Here is an example: \@@_rectanglecolor{red!15}{2-3}{5-6}
5818 \NewDocumentCommand \@@_rectanglecolor { O { } m m m }
5819 {
5820 \tl_if_blank:nF { #2 }
5821 {
5822 \@@_add_to_colors_seq:en
5823 { \tl_if_blank:nF { #1 } { [#1] } { #2 } }
5824 { \@@_rectanglecolor:nnn { #3 } { #4 } { \c_zero_dim } }
5825 }
5826 }

The last argument is the radius of the corners of the rectangle.
5827 \NewDocumentCommand \@@_roundedrectanglecolor { O { } m m m m }
5828 {
5829 \tl_if_blank:nF { #2 }
5830 {
5831 \@@_add_to_colors_seq:en
5832 { \tl_if_blank:nF { #1 } { [#1] } { #2 } }
5833 { \@@_rectanglecolor:nnn { #3 } { #4 } { #5 } }
5834 }
5835 }

The last argument is the radius of the corners of the rectangle.
5836 \cs_new_protected:Npn \@@_rectanglecolor:nnn #1 #2 #3
5837 {
5838 \@@_cut_on_hyphen:w #1 \q_stop
5839 \tl_set_eq:NN \l_@@_tmpc_tl \l_tmpa_tl
5840 \tl_set_eq:NN \l_@@_tmpd_tl \l_tmpb_tl
5841 \@@_cut_on_hyphen:w #2 \q_stop
5842 \tl_set:Ne \l_@@_rows_tl { \l_@@_tmpc_tl - \l_tmpa_tl }
5843 \tl_set:Ne \l_@@_cols_tl { \l_@@_tmpd_tl - \l_tmpb_tl }

144

The command \@@_cartesian_path:n takes in two implicit arguments: \l_@@_cols_tl and
\l_@@_rows_tl.

5844 \@@_cartesian_path:n { #3 }
5845 }

Here is an example: \@@_cellcolor[rgb]{0.5,0.5,0}{2-3,3-4,4-5,5-6}
5846 \NewDocumentCommand \@@_cellcolor { O { } m m }
5847 {
5848 \clist_map_inline:nn { #3 }
5849 { \@@_rectanglecolor [#1] { #2 } { ##1 } { ##1 } }
5850 }

5851 \NewDocumentCommand \@@_chessboardcolors { O { } m m }
5852 {
5853 \int_step_inline:nn { \c@iRow }
5854 {
5855 \int_step_inline:nn { \c@jCol }
5856 {
5857 \int_if_even:nTF { ####1 + ##1 }
5858 { \@@_cellcolor [#1] { #2 } }
5859 { \@@_cellcolor [#1] { #3 } }
5860 { ##1 - ####1 }
5861 }
5862 }
5863 }

The command \@@_arraycolor (linked to \arraycolor at the beginning of the \CodeBefore) will
color the whole tabular (excepted the potential exterior rows and columns) and the cells in the
“corners”.

5864 \NewDocumentCommand \@@_arraycolor { O { } m }
5865 {
5866 \@@_rectanglecolor [#1] { #2 }
5867 { 1 - 1 }
5868 { \int_use:N \c@iRow - \int_use:N \c@jCol }
5869 }

5870 \keys_define:nn { nicematrix / rowcolors }
5871 {
5872 respect-blocks .bool_set:N = \l_@@_respect_blocks_bool ,
5873 respect-blocks .default:n = true ,
5874 cols .tl_set:N = \l_@@_cols_tl ,
5875 restart .bool_set:N = \l_@@_rowcolors_restart_bool ,
5876 restart .default:n = true ,
5877 unknown .code:n = \@@_error:n { Unknown~key~for~rowcolors }
5878 }

The command \rowcolors (accessible in the \CodeBefore) is inspired by the command \rowcolors
of the package xcolor (with the option table). However, the command \rowcolors of nicematrix has
not the optional argument of the command \rowcolors of xcolor.
Here is an example: \rowcolors{1}{blue!10}{}[respect-blocks].
In nicematrix, the command \@@_rowcolors appears as a special case of \@@_rowlistcolors.
#1 (optional) is the color space; #2 is a list of intervals of rows; #3 is the list of colors; #4 is for the
optional list of pairs key=value.

5879 \NewDocumentCommand \@@_rowlistcolors { O { } m m O { } }
5880 {

145

The group is for the options. \l_@@_colors_seq will be the list of colors.
5881 \group_begin:
5882 \seq_clear_new:N \l_@@_colors_seq
5883 \seq_set_split:Nnn \l_@@_colors_seq { , } { #3 }
5884 \tl_clear_new:N \l_@@_cols_tl
5885 \tl_set:Nn \l_@@_cols_tl { - }
5886 \keys_set:nn { nicematrix / rowcolors } { #4 }

The counter \l_@@_color_int will be the rank of the current color in the list of colors (modulo the
length of the list).

5887 \int_zero_new:N \l_@@_color_int
5888 \int_set_eq:NN \l_@@_color_int \c_one_int
5889 \bool_if:NT \l_@@_respect_blocks_bool
5890 {

We don’t want to take into account a block which is completely in the “first column” (number 0) or in
the “last column” and that’s why we filter the sequence of the blocks (in the sequence \l_tmpa_seq).

5891 \seq_set_eq:NN \l_tmpb_seq \g_@@_pos_of_blocks_seq
5892 \seq_set_filter:NNn \l_tmpa_seq \l_tmpb_seq
5893 { \@@_not_in_exterior_p:nnnnn ##1 }
5894 }
5895 \pgfpicture
5896 \pgf@relevantforpicturesizefalse

#2 is the list of intervals of rows.
5897 \clist_map_inline:nn { #2 }
5898 {
5899 \tl_set:Nn \l_tmpa_tl { ##1 }
5900 \tl_if_in:NnTF \l_tmpa_tl { - }
5901 { \@@_cut_on_hyphen:w ##1 \q_stop }
5902 { \tl_set:No \l_tmpb_tl { \int_use:N \c@iRow } }

Now, l_tmpa_tl and l_tmpb_tl are the first row and the last row of the interval of rows that we
have to treat. The counter \l_tmpa_int will be the index of the loop over the rows.

5903 \int_set:Nn \l_tmpa_int \l_tmpa_tl
5904 \int_set:Nn \l_@@_color_int
5905 { \bool_if:NTF \l_@@_rowcolors_restart_bool { 1 } { \l_tmpa_tl } }
5906 \int_set:Nn \l_@@_tmpc_int \l_tmpb_tl
5907 \int_do_until:nNnn \l_tmpa_int > \l_@@_tmpc_int
5908 {

We will compute in \l_tmpb_int the last row of the “block”.
5909 \int_set_eq:NN \l_tmpb_int \l_tmpa_int

If the key respect-blocks is in force, we have to adjust that value (of course).
5910 \bool_if:NT \l_@@_respect_blocks_bool
5911 {
5912 \seq_set_filter:NNn \l_tmpb_seq \l_tmpa_seq
5913 { \@@_intersect_our_row_p:nnnnn ####1 }
5914 \seq_map_inline:Nn \l_tmpb_seq { \@@_rowcolors_i:nnnnn ####1 }

Now, the last row of the block is computed in \l_tmpb_int.
5915 }
5916 \tl_set:Ne \l_@@_rows_tl
5917 { \int_use:N \l_tmpa_int - \int_use:N \l_tmpb_int }

\l_@@_tmpc_tl will be the color that we will use.
5918 \tl_set:Ne \l_@@_color_tl
5919 {
5920 \@@_color_index:n
5921 {
5922 \int_mod:nn
5923 { \l_@@_color_int - 1 }
5924 { \seq_count:N \l_@@_colors_seq }
5925 + 1
5926 }

146

5927 }
5928 \tl_if_empty:NF \l_@@_color_tl
5929 {
5930 \@@_add_to_colors_seq:ee
5931 { \tl_if_blank:nF { #1 } { [#1] } { \l_@@_color_tl } }
5932 { \@@_cartesian_color:nn { \l_@@_rows_tl } { \l_@@_cols_tl } }
5933 }
5934 \int_incr:N \l_@@_color_int
5935 \int_set:Nn \l_tmpa_int { \l_tmpb_int + 1 }
5936 }
5937 }
5938 \endpgfpicture
5939 \group_end:
5940 }

The command \@@_color_index:n peeks in \l_@@_colors_seq the color at the index #1. However,
if that color is the symbol =, the previous one is poken. This macro is recursive.

5941 \cs_new:Npn \@@_color_index:n #1
5942 {

Be careful: this command \@@_color_index:n must be “fully expandable”.
5943 \str_if_eq:eeTF { \seq_item:Nn \l_@@_colors_seq { #1 } } { = }
5944 { \@@_color_index:n { #1 - 1 } }
5945 { \seq_item:Nn \l_@@_colors_seq { #1 } }
5946 }

The command \rowcolors (available in the \CodeBefore) is a specialisation of the more general
command \rowlistcolors. The last argument, which is a optional argument between square brackets
is provided by curryfication.

5947 \NewDocumentCommand \@@_rowcolors { O { } m m m }
5948 { \@@_rowlistcolors [#1] { #2 } { { #3 } , { #4 } } }

The braces around #3 and #4 are mandatory.

5949 \cs_new_protected:Npn \@@_rowcolors_i:nnnnn #1 #2 #3 #4 #5
5950 {
5951 \int_compare:nNnT { #3 } > { \l_tmpb_int }
5952 { \int_set:Nn \l_tmpb_int { #3 } }
5953 }

5954 \prg_new_conditional:Nnn \@@_not_in_exterior:nnnnn { p }
5955 {
5956 \int_if_zero:nTF { #4 }
5957 { \prg_return_false: }
5958 {
5959 \int_compare:nNnTF { #2 } > { \c@jCol }
5960 { \prg_return_false: }
5961 { \prg_return_true: }
5962 }
5963 }

The following command return true when the block intersects the row \l_tmpa_int.
5964 \prg_new_conditional:Nnn \@@_intersect_our_row:nnnnn { p }
5965 {
5966 \int_compare:nNnTF { #1 } > { \l_tmpa_int }
5967 { \prg_return_false: }
5968 {
5969 \int_compare:nNnTF { \l_tmpa_int } > { #3 }
5970 { \prg_return_false: }
5971 { \prg_return_true: }
5972 }
5973 }

147

The following command uses two implicit arguments: \l_@@_rows_tl and \l_@@_cols_tl which are
specifications for a set of rows and a set of columns. It creates a path but does not fill it. It must
be filled by another command after. The argument is the radius of the corners. We define below a
command \@@_cartesian_path: which corresponds to a value 0 pt for the radius of the corners.
This command is, in particular, used in \@@_rectanglecolor:nnn (used in \@@_rectanglecolor,
itself used in \@@_cellcolor).

5974 \cs_new_protected:Npn \@@_cartesian_path_normal:n #1
5975 {
5976 \dim_compare:nNnTF { #1 } = { \c_zero_dim }
5977 {
5978 \bool_if:NTF \l_@@_nocolor_used_bool
5979 { \@@_cartesian_path_normal_ii: }
5980 {
5981 \clist_if_empty:NTF \l_@@_corners_cells_clist
5982 { \@@_cartesian_path_normal_i:n { #1 } }
5983 { \@@_cartesian_path_normal_ii: }
5984 }
5985 }
5986 { \@@_cartesian_path_normal_i:n { #1 } }
5987 }

First, the situation where is a rectangular zone of cells will be colored as a whole (in the instructions
of the resulting pdf). The argument is the radius of the corners.

5988 \cs_new_protected:Npn \@@_cartesian_path_normal_i:n #1
5989 {
5990 \pgfsetcornersarced { \pgfpoint { #1 } { #1 } }

We begin the loop over the columns.
5991 \clist_map_inline:Nn \l_@@_cols_tl
5992 {

We use \def instead of \tl_set:Nn for efficiency only.
5993 \def \l_tmpa_tl { ##1 }
5994 \tl_if_in:NnTF \l_tmpa_tl { - }
5995 { \@@_cut_on_hyphen:w ##1 \q_stop }
5996 { \def \l_tmpb_tl { ##1 } }
5997 \tl_if_empty:NTF \l_tmpa_tl
5998 { \def \l_tmpa_tl { 1 } }
5999 {
6000 \str_if_eq:eeT { \l_tmpa_tl } { * }
6001 { \def \l_tmpa_tl { 1 } }
6002 }
6003 \int_compare:nNnT { \l_tmpa_tl } > { \g_@@_col_total_int }
6004 { \@@_error:n { Invalid~col~number } }
6005 \tl_if_empty:NTF \l_tmpb_tl
6006 { \tl_set:No \l_tmpb_tl { \int_use:N \c@jCol } }
6007 {
6008 \str_if_eq:eeT { \l_tmpb_tl } { * }
6009 { \tl_set:No \l_tmpb_tl { \int_use:N \c@jCol } }
6010 }
6011 \int_compare:nNnT { \l_tmpb_tl } > { \g_@@_col_total_int }
6012 { \tl_set:No \l_tmpb_tl { \int_use:N \g_@@_col_total_int } }

\l_@@_tmpc_tl will contain the number of column.
6013 \tl_set_eq:NN \l_@@_tmpc_tl \l_tmpa_tl
6014 \@@_qpoint:n { col - \l_tmpa_tl }
6015 \int_compare:nNnTF { \l_@@_first_col_int } = { \l_tmpa_tl }
6016 { \dim_set:Nn \l_@@_tmpc_dim { \pgf@x - 0.5 \arrayrulewidth } }
6017 { \dim_set:Nn \l_@@_tmpc_dim { \pgf@x + 0.5 \arrayrulewidth } }
6018 \@@_qpoint:n { col - \int_eval:n { \l_tmpb_tl + 1 } }
6019 \dim_set:Nn \l_tmpa_dim { \pgf@x + 0.5 \arrayrulewidth }

148

We begin the loop over the rows. We use \def instead of \tl_set:Nn for efficiency only.
6020 \clist_map_inline:Nn \l_@@_rows_tl
6021 {
6022 \def \l_tmpa_tl { ####1 }
6023 \tl_if_in:NnTF \l_tmpa_tl { - }
6024 { \@@_cut_on_hyphen:w ####1 \q_stop }
6025 { \@@_cut_on_hyphen:w ####1 - ####1 \q_stop }
6026 \tl_if_empty:NTF \l_tmpa_tl
6027 { \def \l_tmpa_tl { 1 } }
6028 {
6029 \str_if_eq:eeT { \l_tmpa_tl } { * }
6030 { \def \l_tmpa_tl { 1 } }
6031 }
6032 \tl_if_empty:NTF \l_tmpb_tl
6033 { \tl_set:No \l_tmpb_tl { \int_use:N \c@iRow } }
6034 {
6035 \str_if_eq:eeT { \l_tmpb_tl } { * }
6036 { \tl_set:No \l_tmpb_tl { \int_use:N \c@iRow } }
6037 }
6038 \int_compare:nNnT { \l_tmpa_tl } > { \g_@@_row_total_int }
6039 { \@@_error:n { Invalid~row~number } }
6040 \int_compare:nNnT { \l_tmpb_tl } > { \g_@@_row_total_int }
6041 { \tl_set:No \l_tmpb_tl { \int_use:N \g_@@_row_total_int } }

Now, the numbers of both rows are in \l_tmpa_tl and \l_tmpb_tl.
6042 \cs_if_exist:cF
6043 { @@ _ nocolor _ \l_tmpa_tl - \l_@@_tmpc_tl }
6044 {
6045 \@@_qpoint:n { row - \int_eval:n { \l_tmpb_tl + 1 } }
6046 \dim_set:Nn \l_tmpb_dim { \pgf@y + 0.5 \arrayrulewidth }
6047 \@@_qpoint:n { row - \l_tmpa_tl }
6048 \dim_set:Nn \l_@@_tmpd_dim { \pgf@y + 0.5 \arrayrulewidth }
6049 \pgfpathrectanglecorners
6050 { \pgfpoint \l_@@_tmpc_dim \l_@@_tmpd_dim }
6051 { \pgfpoint \l_tmpa_dim \l_tmpb_dim }
6052 }
6053 }
6054 }
6055 }

Now, the case where the cells will be colored cell by cell (it’s mandatory for example if the key
corners is used).

6056 \cs_new_protected:Npn \@@_cartesian_path_normal_ii:
6057 {
6058 \@@_expand_clist:NN \l_@@_cols_tl \c@jCol
6059 \@@_expand_clist:NN \l_@@_rows_tl \c@iRow

We begin the loop over the columns.
6060 \clist_map_inline:Nn \l_@@_cols_tl
6061 {
6062 \@@_qpoint:n { col - ##1 }
6063 \int_compare:nNnTF { \l_@@_first_col_int } = { ##1 }
6064 { \dim_set:Nn \l_@@_tmpc_dim { \pgf@x - 0.5 \arrayrulewidth } }
6065 { \dim_set:Nn \l_@@_tmpc_dim { \pgf@x + 0.5 \arrayrulewidth } }
6066 \@@_qpoint:n { col - \int_eval:n { ##1 + 1 } }
6067 \dim_set:Nn \l_tmpa_dim { \pgf@x + 0.5 \arrayrulewidth }

We begin the loop over the rows.
6068 \clist_map_inline:Nn \l_@@_rows_tl
6069 {
6070 \@@_if_in_corner:nF { ####1 - ##1 }
6071 {
6072 \@@_qpoint:n { row - \int_eval:n { ####1 + 1 } }
6073 \dim_set:Nn \l_tmpb_dim { \pgf@y + 0.5 \arrayrulewidth }
6074 \@@_qpoint:n { row - ####1 }

149

6075 \dim_set:Nn \l_@@_tmpd_dim { \pgf@y + 0.5 \arrayrulewidth }
6076 \cs_if_exist:cF { @@ _ nocolor _ ####1 - ##1 }
6077 {
6078 \pgfpathrectanglecorners
6079 { \pgfpoint \l_@@_tmpc_dim \l_@@_tmpd_dim }
6080 { \pgfpoint \l_tmpa_dim \l_tmpb_dim }
6081 }
6082 }
6083 }
6084 }
6085 }

The following command corresponds to a radius of the corners equal to 0 pt. This command is used
by the commands \@@_rowcolors, \@@_columncolor and \@@_rowcolor:n (used in \@@_rowcolor).

6086 \cs_new_protected:Npn \@@_cartesian_path: { \@@_cartesian_path:n \c_zero_dim }

Despite its name, the following command does not create a PGF path. It declares as colored by
the “empty color” all the cells in what would be the path. Hence, the other coloring instructions of
nicematrix won’t put color in those cells. the

6087 \cs_new_protected:Npn \@@_cartesian_path_nocolor:n #1
6088 {
6089 \bool_set_true:N \l_@@_nocolor_used_bool
6090 \@@_expand_clist:NN \l_@@_cols_tl \c@jCol
6091 \@@_expand_clist:NN \l_@@_rows_tl \c@iRow

We begin the loop over the columns.
6092 \clist_map_inline:Nn \l_@@_rows_tl
6093 {
6094 \clist_map_inline:Nn \l_@@_cols_tl
6095 { \cs_set_nopar:cpn { @@ _ nocolor _ ##1 - ####1 } { } }
6096 }
6097 }

The following command will be used only with \l_@@_cols_tl and \c@jCol (first case) or with
\l_@@_rows_tl and \c@iRow (second case). For instance, with \l_@@_cols_tl equal to 2,4-6,8-*
and \c@jCol equal to 10, the clist \l_@@_cols_tl will be replaced by 2,4,5,6,8,9,10.

6098 \cs_new_protected:Npn \@@_expand_clist:NN #1 #2
6099 {
6100 \clist_set_eq:NN \l_tmpa_clist #1
6101 \clist_clear:N #1
6102 \clist_map_inline:Nn \l_tmpa_clist
6103 {

We use \def instead of \tl_set:Nn for efficiency only.
6104 \def \l_tmpa_tl { ##1 }
6105 \tl_if_in:NnTF \l_tmpa_tl { - }
6106 { \@@_cut_on_hyphen:w ##1 \q_stop }
6107 { \@@_cut_on_hyphen:w ##1 - ##1 \q_stop }
6108 \bool_lazy_or:nnT
6109 { \str_if_eq_p:ee { \l_tmpa_tl } { * } }
6110 { \tl_if_blank_p:o \l_tmpa_tl }
6111 { \def \l_tmpa_tl { 1 } }
6112 \bool_lazy_or:nnT
6113 { \str_if_eq_p:ee { \l_tmpb_tl } { * } }
6114 { \tl_if_blank_p:o \l_tmpb_tl }
6115 { \tl_set:No \l_tmpb_tl { \int_use:N #2 } }
6116 \int_compare:nNnT { \l_tmpb_tl } > { #2 }
6117 { \tl_set:No \l_tmpb_tl { \int_use:N #2 } }
6118 \int_step_inline:nnn { \l_tmpa_tl } { \l_tmpb_tl }
6119 { \clist_put_right:Nn #1 { ####1 } }
6120 }
6121 }

150

The following command will be linked to \cellcolor in the tabular.
6122 \NewDocumentCommand \@@_cellcolor_tabular { O { } m }
6123 {
6124 \tl_gput_right:Ne \g_@@_pre_code_before_tl
6125 {

We must not expand the color (#2) because the color may contain the token ! which may be activated
by some packages (ex.: babel with the option french on latex and pdflatex).

6126 \@@_cellcolor [#1] { \exp_not:n { #2 } }
6127 { \int_use:N \c@iRow - \int_use:N \c@jCol }
6128 }
6129 \ignorespaces
6130 }

6131 \NewDocumentCommand \@@_cellcolor_error { O { } m }
6132 { \@@_error:n { cellcolor~in~Block } }
6133 % \end{macrocode}
6134 %
6135 % \begin{macrocode}
6136 \NewDocumentCommand \@@_rowcolor_error { O { } m }
6137 { \@@_error:n { rowcolor~in~Block } }
6138 % \end{macrocode}
6139 %
6140 % \bigskip
6141 % The following command will be linked to |\rowcolor| in the tabular.
6142 % \begin{macrocode}
6143 \NewDocumentCommand \@@_rowcolor_tabular { O { } m }
6144 {
6145 \tl_gput_right:Ne \g_@@_pre_code_before_tl
6146 {
6147 \@@_rectanglecolor [#1] { \exp_not:n { #2 } }
6148 { \int_use:N \c@iRow - \int_use:N \c@jCol }
6149 { \int_use:N \c@iRow - \exp_not:n { \int_use:N \c@jCol } }
6150 }
6151 \ignorespaces
6152 }

The following command will be linked to \rowcolors in the tabular. The last argument (an optional
argument between square brackets is taken by curryfication).

6153 \NewDocumentCommand { \@@_rowcolors_tabular } { O { } m m }
6154 { \@@_rowlistcolors_tabular [#1] { { #2 } , { #3 } } }

The braces around #2 and #3 are mandatory.

The following command will be linked to \rowlistcolors in the tabular.
6155 \NewDocumentCommand { \@@_rowlistcolors_tabular } { O { } m O { } }
6156 {

A use of \rowlistcolors in the tabular erases the instructions \rowlistcolors which are in force.
However, it’s possible to put several instructions \rowlistcolors in the same row of a tabular: it may
be useful when those instructions \rowlistcolors concerns different columns of the tabular (thanks
to the key cols of \rowlistcolors). That’s why we store the different instructions \rowlistcolors
which are in force in a sequence \g_@@_rowlistcolors_seq. Now, we will filter that sequence to
keep only the elements which have been issued on the actual row. We will store the elements to keep
in the \g_tmpa_seq.

6157 \seq_gclear:N \g_tmpa_seq
6158 \seq_map_inline:Nn \g_@@_rowlistcolors_seq
6159 { \@@_rowlistcolors_tabular:nnnn ##1 }
6160 \seq_gset_eq:NN \g_@@_rowlistcolors_seq \g_tmpa_seq

Now, we add to the sequence \g_@@_rowlistcolors_seq (which is the list of the commands
\rowlistcolors which are in force) the current instruction \rowlistcolors.

6161 \seq_gput_right:Ne \g_@@_rowlistcolors_seq
6162 {

151

6163 { \int_use:N \c@iRow }
6164 { \exp_not:n { #1 } }
6165 { \exp_not:n { #2 } }
6166 { restart , cols = \int_use:N \c@jCol - , \exp_not:n { #3 } }
6167 }
6168 \ignorespaces
6169 }

The following command will be applied to each component of \g_@@_rowlistcolors_seq. Each
component of that sequence is a kind of 4-uple of the form {#1}{#2}{#3}{#4}.
#1 is the number of the row where the command \rowlistcolors has been issued.
#2 is the colorimetric space (optional argument of the \rowlistcolors).
#3 is the list of colors (mandatory argument of \rowlistcolors).
#4 is the list of key=value pairs (last optional argument of \rowlistcolors).

6170 \cs_new_protected:Npn \@@_rowlistcolors_tabular:nnnn #1 #2 #3 #4
6171 {
6172 \int_compare:nNnTF { #1 } = { \c@iRow }

We (temporary) keep in memory in \g_tmpa_seq the instructions which will still be in force after
the current instruction (because they have been issued in the same row of the tabular).

6173 { \seq_gput_right:Nn \g_tmpa_seq { { #1 } { #2 } { #3 } { #4 } } }
6174 {
6175 \tl_gput_right:Ne \g_@@_pre_code_before_tl
6176 {
6177 \@@_rowlistcolors
6178 [\exp_not:n { #2 }]
6179 { #1 - \int_eval:n { \c@iRow - 1 } }
6180 { \exp_not:n { #3 } }
6181 [\exp_not:n { #4 }]
6182 }
6183 }
6184 }

The following command will be used at the end of the tabular, just before the execution of the
\g_@@_pre_code_before_tl. It clears the sequence \g_@@_rowlistcolors_seq of all the commands
\rowlistcolors which are (still) in force.

6185 \cs_new_protected:Npn \@@_clear_rowlistcolors_seq:
6186 {
6187 \seq_map_inline:Nn \g_@@_rowlistcolors_seq
6188 { \@@_rowlistcolors_tabular_ii:nnnn ##1 }
6189 \seq_gclear:N \g_@@_rowlistcolors_seq
6190 }

6191 \cs_new_protected:Npn \@@_rowlistcolors_tabular_ii:nnnn #1 #2 #3 #4
6192 {
6193 \tl_gput_right:Nn \g_@@_pre_code_before_tl
6194 { \@@_rowlistcolors [#2] { #1 } { #3 } [#4] }
6195 }

The first mandatory argument of the command \@@_rowlistcolors which is writtent in the
pre-\CodeBefore is of the form i: it means that the command must be applied to all the rows
from the row i until the end of the tabular.

6196 \NewDocumentCommand \@@_columncolor_preamble { O { } m }
6197 {

With the following line, we test whether the cell is the first one we encounter in its column (don’t
forget that some rows may be incomplete).

6198 \int_compare:nNnT { \c@jCol } > { \g_@@_col_total_int }
6199 {

152

You use gput_left because we want the specification of colors for the columns drawn before the
specifications of color for the rows (and the cells). Be careful: maybe this is not effective since we
have an analyze of the instructions in the \CodeBefore in order to fill color by color (to avoid the
thin white lines).

6200 \tl_gput_left:Ne \g_@@_pre_code_before_tl
6201 {
6202 \exp_not:N \columncolor [#1]
6203 { \exp_not:n { #2 } } { \int_use:N \c@jCol }
6204 }
6205 }
6206 }

6207 \cs_new_protected:Npn \@@_EmptyColumn:n #1
6208 {
6209 \clist_map_inline:nn { #1 }
6210 {
6211 \seq_gput_right:Nn \g_@@_future_pos_of_blocks_seq
6212 { { -2 } { #1 } { 98 } { ##1 } { } } % 98 and not 99 !
6213 \columncolor { nocolor } { ##1 }
6214 }
6215 }

6216 \cs_new_protected:Npn \@@_EmptyRow:n #1
6217 {
6218 \clist_map_inline:nn { #1 }
6219 {
6220 \seq_gput_right:Nn \g_@@_future_pos_of_blocks_seq
6221 { { ##1 } { -2 } { ##1 } { 98 } { } } % 98 and not 99 !
6222 \rowcolor { nocolor } { ##1 }
6223 }
6224 }

22 The vertical and horizontal rules

OnlyMainNiceMatrix

We give to the user the possibility to define new types of columns (with \newcolumntype of array) for
special vertical rules (e.g. rules thicker than the standard ones) which will not extend in the potential
exterior rows of the array.
We provide the command \OnlyMainNiceMatrix in that goal. However, that command must be
no-op outside the environments of nicematrix (and so the user will be allowed to use the same new
type of column in the environments of nicematrix and in the standard environments of array).
That’s why we provide first a global definition of \OnlyMainNiceMatrix.

6225 \cs_new_eq:NN \OnlyMainNiceMatrix \use:n

Another definition of \OnlyMainNiceMatrix will be linked to the command in the environments of
nicematrix. Here is that definition, called \@@_OnlyMainNiceMatrix:n.

6226 \cs_new_protected:Npn \@@_OnlyMainNiceMatrix:n #1
6227 {
6228 \int_if_zero:nTF { \l_@@_first_col_int }
6229 { \@@_OnlyMainNiceMatrix_i:n { #1 } }
6230 {
6231 \int_if_zero:nTF { \c@jCol }
6232 {
6233 \int_compare:nNnF { \c@iRow } = { -1 }
6234 {

153

6235 \int_compare:nNnF { \c@iRow } = { \l_@@_last_row_int - 1 }
6236 { #1 }
6237 }
6238 }
6239 { \@@_OnlyMainNiceMatrix_i:n { #1 } }
6240 }
6241 }

This definition may seem complicated but we must remind that the number of row \c@iRow is
incremented in the first cell of the row, after a potential vertical rule on the left side of the first cell.
The command \@@_OnlyMainNiceMatrix_i:n is only a short-cut which is used twice in the above
command. This command must not be protected.

6242 \cs_new_protected:Npn \@@_OnlyMainNiceMatrix_i:n #1
6243 {
6244 \int_if_zero:nF { \c@iRow }
6245 {
6246 \int_compare:nNnF { \c@iRow } = { \l_@@_last_row_int }
6247 {
6248 \int_compare:nNnT { \c@jCol } > { \c_zero_int }
6249 { \bool_if:NF \l_@@_in_last_col_bool { #1 } }
6250 }
6251 }
6252 }

Remember that \c@iRow is not always inferior to \l_@@_last_row_int because \l_@@_last_row_int
may be equal to −2 or −1 (we can’t write \int_compare:nNnT \c@iRow < \l_@@_last_row_int).

The following command will be used for \Toprule, \BottomRule and \MidRule.
6253 \cs_new:Npn \@@_tikz_booktabs_loaded:nn #1 #2
6254 {
6255 \IfPackageLoadedTF { tikz }
6256 {
6257 \IfPackageLoadedTF { booktabs }
6258 { #2 }
6259 { \@@_error:nn { TopRule~without~booktabs } { #1 } }
6260 }
6261 { \@@_error:nn { TopRule~without~tikz } { #1 } }
6262 }

6263 \NewExpandableDocumentCommand { \@@_TopRule } { }
6264 { \@@_tikz_booktabs_loaded:nn { \TopRule } { \@@_TopRule_i: } }

6265 \cs_new:Npn \@@_TopRule_i:
6266 {
6267 \noalign \bgroup
6268 \peek_meaning:NTF [
6269 { \@@_TopRule_ii: }
6270 { \@@_TopRule_ii: [\dim_use:N \heavyrulewidth] }
6271 }

6272 \NewDocumentCommand \@@_TopRule_ii: { o }
6273 {
6274 \tl_gput_right:Ne \g_@@_pre_code_after_tl
6275 {
6276 \@@_hline:n
6277 {
6278 position = \int_eval:n { \c@iRow + 1 } ,
6279 tikz =
6280 {
6281 line~width = #1 ,
6282 yshift = 0.25 \arrayrulewidth ,
6283 shorten~< = - 0.5 \arrayrulewidth
6284 } ,
6285 total-width = #1
6286 }

154

6287 }
6288 \skip_vertical:n { \belowrulesep + #1 }
6289 \egroup
6290 }

6291 \NewExpandableDocumentCommand { \@@_BottomRule } { }
6292 { \@@_tikz_booktabs_loaded:nn { \BottomRule } { \@@_BottomRule_i: } }

6293 \cs_new:Npn \@@_BottomRule_i:
6294 {
6295 \noalign \bgroup
6296 \peek_meaning:NTF [
6297 { \@@_BottomRule_ii: }
6298 { \@@_BottomRule_ii: [\dim_use:N \heavyrulewidth] }
6299 }

6300 \NewDocumentCommand \@@_BottomRule_ii: { o }
6301 {
6302 \tl_gput_right:Ne \g_@@_pre_code_after_tl
6303 {
6304 \@@_hline:n
6305 {
6306 position = \int_eval:n { \c@iRow + 1 } ,
6307 tikz =
6308 {
6309 line~width = #1 ,
6310 yshift = 0.25 \arrayrulewidth ,
6311 shorten~< = - 0.5 \arrayrulewidth
6312 } ,
6313 total-width = #1 ,
6314 }
6315 }
6316 \skip_vertical:N \aboverulesep
6317 \@@_create_row_node_i:
6318 \skip_vertical:n { #1 }
6319 \egroup
6320 }

6321 \NewExpandableDocumentCommand { \@@_MidRule } { }
6322 { \@@_tikz_booktabs_loaded:nn { \MidRule } { \@@_MidRule_i: } }

6323 \cs_new:Npn \@@_MidRule_i:
6324 {
6325 \noalign \bgroup
6326 \peek_meaning:NTF [
6327 { \@@_MidRule_ii: }
6328 { \@@_MidRule_ii: [\dim_use:N \lightrulewidth] }
6329 }

6330 \NewDocumentCommand \@@_MidRule_ii: { o }
6331 {
6332 \skip_vertical:N \aboverulesep
6333 \@@_create_row_node_i:
6334 \tl_gput_right:Ne \g_@@_pre_code_after_tl
6335 {
6336 \@@_hline:n
6337 {
6338 position = \int_eval:n { \c@iRow + 1 } ,
6339 tikz =
6340 {
6341 line~width = #1 ,
6342 yshift = 0.25 \arrayrulewidth ,
6343 shorten~< = - 0.5 \arrayrulewidth
6344 } ,
6345 total-width = #1 ,
6346 }
6347 }

155

6348 \skip_vertical:n { \belowrulesep + #1 }
6349 \egroup
6350 }

General system for drawing rules

When a command, environment or “subsystem” of nicematrix wants to draw a rule, it will write in the
internal \CodeAfter a command \@@_vline:n or \@@_hline:n. Both commands take in as argument
a list of key=value pairs. That list will first be analyzed with the following set of keys. However,
unknown keys will be analyzed further with another set of keys.

6351 \keys_define:nn { nicematrix / Rules }
6352 {
6353 position .int_set:N = \l_@@_position_int ,
6354 position .value_required:n = true ,
6355 start .int_set:N = \l_@@_start_int ,
6356 end .code:n =
6357 \bool_lazy_or:nnTF
6358 { \tl_if_empty_p:n { #1 } }
6359 { \str_if_eq_p:ee { #1 } { last } }
6360 { \int_set_eq:NN \l_@@_end_int \c@jCol }
6361 { \int_set:Nn \l_@@_end_int { #1 } }
6362 }

It’s possible that the rule won’t be drawn continuously from start to end because of the blocks
(created with the command \Block), the virtual blocks (created by \Cdots, etc.), etc. That’s why an
analysis is done and the rule is cut in small rules which will actually be drawn. The small continuous
rules will be drawn by \@@_vline_ii: and \@@_hline_ii:. Those commands use the following set
of keys.

6363 \keys_define:nn { nicematrix / RulesBis }
6364 {
6365 multiplicity .int_set:N = \l_@@_multiplicity_int ,
6366 multiplicity .initial:n = 1 ,
6367 dotted .bool_set:N = \l_@@_dotted_bool ,
6368 dotted .initial:n = false ,
6369 dotted .default:n = true ,

We want that, even when the rule has been defined with TikZ by the key tikz, the user has still the
possibility to change the color of the rule with the key color (in the command \Hline, not in the
key tikz of the command \Hline). The main use is, when the user has defined its own command
\MyDashedLine by \newcommand{\MyDashedRule}{\Hline[tikz=dashed]}, to give the ability to
write \MyDashedRule[color=red].

6370 color .code:n =
6371 \@@_set_CTarc:n { #1 }
6372 \tl_set:Nn \l_@@_rule_color_tl { #1 } ,
6373 color .value_required:n = true ,
6374 sep-color .code:n = \@@_set_CTdrsc:n { #1 } ,
6375 sep-color .value_required:n = true ,

If the user uses the key tikz, the rule (or more precisely: the different sub-rules since a rule may be
broken by blocks or others) will be drawn with TikZ.

6376 tikz .code:n =
6377 \IfPackageLoadedTF { tikz }
6378 { \clist_put_right:Nn \l_@@_tikz_rule_tl { #1 } }
6379 { \@@_error:n { tikz~without~tikz } } ,
6380 tikz .value_required:n = true ,
6381 total-width .dim_set:N = \l_@@_rule_width_dim ,
6382 total-width .value_required:n = true ,
6383 width .meta:n = { total-width = #1 } ,
6384 unknown .code:n =
6385 \@@_unknown_key:nn

156

6386 { nicematrix / RulesBis }
6387 { Unknown~key~for~RulesBis }
6388 }

The vertical rules

The following command will be executed in the internal \CodeAfter. The argument #1 is a list of
key=value pairs.

6389 \cs_new_protected:Npn \@@_vline:n #1
6390 {

The group is for the options.
6391 \group_begin:
6392 \int_set_eq:NN \l_@@_end_int \c@iRow
6393 \keys_set_known:nnN { nicematrix / Rules } { #1 } \l_@@_other_keys_tl

The following test is for the case where the user does not use all the columns specified in the preamble
of the environment (for instance, a preamble of |c|c|c| but only two columns used).

6394 \int_compare:nNnT { \l_@@_position_int } < { \c@jCol + 2 }
6395 \@@_vline_i:
6396 \group_end:
6397 }

6398 \cs_new_protected:Npn \@@_vline_i:
6399 {

\l_tmpa_tl is the number of row and \l_tmpb_tl the number of column. When we have found a
row corresponding to a rule to draw, we note its number in \l_@@_tmpc_tl.

6400 \tl_set:No \l_tmpb_tl { \int_use:N \l_@@_position_int }
6401 \int_step_variable:nnNn \l_@@_start_int \l_@@_end_int
6402 \l_tmpa_tl
6403 {

The boolean \g_tmpa_bool indicates whether the small vertical rule will be drawn. If we find that it
is in a block (a real block, created by \Block or a virtual block corresponding to a dotted line, created
by \Cdots, \Vdots, etc.), we will set \g_tmpa_bool to false and the small vertical rule won’t be
drawn.

6404 \bool_gset_true:N \g_tmpa_bool

6405 \seq_map_inline:Nn \g_@@_pos_of_blocks_seq
6406 { \@@_test_vline_in_block:nnnnn ##1 }
6407 \seq_map_inline:Nn \g_@@_pos_of_xdots_seq
6408 { \@@_test_vline_in_block:nnnnn ##1 }
6409 \seq_map_inline:Nn \g_@@_pos_of_stroken_blocks_seq
6410 { \@@_test_vline_in_stroken_block:nnnn ##1 }
6411 \clist_if_empty:NF \l_@@_corners_clist { \@@_test_in_corner_v: }
6412 \bool_if:NTF \g_tmpa_bool
6413 {
6414 \int_if_zero:nT { \l_@@_local_start_int }

We keep in memory that we have a rule to draw. \l_@@_local_start_int will be the starting row
of the rule that we will have to draw.

6415 { \int_set:Nn \l_@@_local_start_int \l_tmpa_tl }
6416 }
6417 {
6418 \int_compare:nNnT { \l_@@_local_start_int } > { \c_zero_int }
6419 {
6420 \int_set:Nn \l_@@_local_end_int { \l_tmpa_tl - 1 }
6421 \@@_vline_ii:
6422 \int_zero:N \l_@@_local_start_int
6423 }
6424 }
6425 }
6426 \int_compare:nNnT { \l_@@_local_start_int } > { \c_zero_int }
6427 {

157

6428 \int_set_eq:NN \l_@@_local_end_int \l_@@_end_int
6429 \@@_vline_ii:
6430 }
6431 }

6432 \cs_new_protected:Npn \@@_test_in_corner_v:
6433 {
6434 \int_compare:nNnTF { \l_tmpb_tl } = { \c@jCol + 1 }
6435 {
6436 \@@_if_in_corner:nT { \l_tmpa_tl - \int_eval:n { \l_tmpb_tl - 1 } }
6437 { \bool_set_false:N \g_tmpa_bool }
6438 }
6439 {
6440 \@@_if_in_corner:nT { \l_tmpa_tl - \l_tmpb_tl }
6441 {
6442 \int_compare:nNnTF { \l_tmpb_tl } = { \c_one_int }
6443 { \bool_set_false:N \g_tmpa_bool }
6444 {
6445 \@@_if_in_corner:nT
6446 { \l_tmpa_tl - \int_eval:n { \l_tmpb_tl - 1 } }
6447 { \bool_set_false:N \g_tmpa_bool }
6448 }
6449 }
6450 }
6451 }

6452 \cs_new_protected:Npn \@@_vline_ii:
6453 {
6454 \tl_clear:N \l_@@_tikz_rule_tl
6455 \keys_set:no { nicematrix / RulesBis } \l_@@_other_keys_tl
6456 \bool_if:NTF \l_@@_dotted_bool
6457 { \@@_vline_iv: }
6458 {
6459 \tl_if_empty:NTF \l_@@_tikz_rule_tl
6460 { \@@_vline_iii: }
6461 { \@@_vline_v: }
6462 }
6463 }

First the case of a standard rule: the user has not used the key dotted nor the key tikz.
6464 \cs_new_protected:Npn \@@_vline_iii:
6465 {
6466 \pgfpicture
6467 \pgfrememberpicturepositiononpagetrue
6468 \pgf@relevantforpicturesizefalse
6469 \@@_qpoint:n { row - \int_use:N \l_@@_local_start_int }
6470 \dim_set_eq:NN \l_tmpa_dim \pgf@y
6471 \@@_qpoint:n { col - \int_use:N \l_@@_position_int }
6472 \dim_set:Nn \l_tmpb_dim
6473 {
6474 \pgf@x
6475 - 0.5 \l_@@_rule_width_dim
6476 +
6477 (\arrayrulewidth * \l_@@_multiplicity_int
6478 + \doublerulesep * (\l_@@_multiplicity_int - 1)) / 2
6479 }
6480 \@@_qpoint:n { row - \int_eval:n { \l_@@_local_end_int + 1 } }
6481 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
6482 \bool_lazy_all:nT
6483 {
6484 { \int_compare_p:nNn { \l_@@_multiplicity_int } > { \c_one_int } }

158

6485 { \cs_if_exist_p:N \CT@drsc@ }
6486 { ! \tl_if_blank_p:o \CT@drsc@ }
6487 }
6488 {
6489 \group_begin:
6490 \CT@drsc@
6491 \dim_add:Nn \l_tmpa_dim { 0.5 \arrayrulewidth }
6492 \dim_sub:Nn \l_@@_tmpc_dim { 0.5 \arrayrulewidth }
6493 \dim_set:Nn \l_@@_tmpd_dim
6494 {
6495 \l_tmpb_dim - (\doublerulesep + \arrayrulewidth)
6496 * (\l_@@_multiplicity_int - 1)
6497 }
6498 \pgfpathrectanglecorners
6499 { \pgfpoint \l_tmpb_dim \l_tmpa_dim }
6500 { \pgfpoint \l_@@_tmpd_dim \l_@@_tmpc_dim }
6501 \pgfusepath { fill }
6502 \group_end:
6503 }
6504 \pgfpathmoveto { \pgfpoint \l_tmpb_dim \l_tmpa_dim }
6505 \pgfpathlineto { \pgfpoint \l_tmpb_dim \l_@@_tmpc_dim }
6506 \prg_replicate:nn { \l_@@_multiplicity_int - 1 }
6507 {
6508 \dim_sub:Nn \l_tmpb_dim { \arrayrulewidth + \doublerulesep }
6509 \pgfpathmoveto { \pgfpoint \l_tmpb_dim \l_tmpa_dim }
6510 \pgfpathlineto { \pgfpoint \l_tmpb_dim \l_@@_tmpc_dim }
6511 }
6512 \CT@arc@
6513 \pgfsetlinewidth { 1.1 \arrayrulewidth }
6514 \pgfsetrectcap
6515 \pgfusepathqstroke
6516 \endpgfpicture
6517 }

The following code is for the case of a dotted rule (with our system of rounded dots).
6518 \cs_new_protected:Npn \@@_vline_iv:
6519 {
6520 \pgfpicture
6521 \pgfrememberpicturepositiononpagetrue
6522 \pgf@relevantforpicturesizefalse
6523 \@@_qpoint:n { col - \int_use:N \l_@@_position_int }
6524 \dim_set:Nn \l_@@_x_initial_dim { \pgf@x - 0.5 \l_@@_rule_width_dim }
6525 \dim_set_eq:NN \l_@@_x_final_dim \l_@@_x_initial_dim
6526 \@@_qpoint:n { row - \int_use:N \l_@@_local_start_int }
6527 \dim_set_eq:NN \l_@@_y_initial_dim \pgf@y
6528 \@@_qpoint:n { row - \int_eval:n { \l_@@_local_end_int + 1 } }
6529 \dim_set_eq:NN \l_@@_y_final_dim \pgf@y
6530 \CT@arc@
6531 \@@_draw_line:
6532 \endpgfpicture
6533 }

The following code is for the case when the user uses the key tikz.
6534 \cs_new_protected:Npn \@@_vline_v:
6535 {
6536 \begin { tikzpicture }

By default, the color defined by \arrayrulecolor or by rules/color will be used, but it’s still
possible to change the color by using the key color or, of course, the key color inside the key tikz
(that is to say the key color provided by pgf.

6537 \CT@arc@
6538 \tl_if_empty:NF \l_@@_rule_color_tl
6539 { \tl_put_right:Ne \l_@@_tikz_rule_tl { , color = \l_@@_rule_color_tl } }

159

6540 \pgfrememberpicturepositiononpagetrue
6541 \pgf@relevantforpicturesizefalse
6542 \@@_qpoint:n { row - \int_use:N \l_@@_local_start_int }
6543 \dim_set_eq:NN \l_tmpa_dim \pgf@y
6544 \@@_qpoint:n { col - \int_use:N \l_@@_position_int }
6545 \dim_set:Nn \l_tmpb_dim { \pgf@x - 0.5 \l_@@_rule_width_dim }
6546 \@@_qpoint:n { row - \int_eval:n { \l_@@_local_end_int + 1 } }
6547 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
6548 \exp_args:No \tikzset \l_@@_tikz_rule_tl
6549 \use:e { \exp_not:N \draw [\l_@@_tikz_rule_tl] }
6550 (\l_tmpb_dim , \l_tmpa_dim) --
6551 (\l_tmpb_dim , \l_@@_tmpc_dim) ;
6552 \end { tikzpicture }
6553 }

The command \@@_draw_vlines: draws all the vertical rules excepted in the blocks, in the virtual
blocks (determined by a command such as \Cdots) and in the corners (if the key corners is used).

6554 \cs_new_protected:Npn \@@_draw_vlines:
6555 {
6556 \int_step_inline:nnn
6557 {
6558 \bool_lazy_or:nnTF { \g_@@_delims_bool } { \l_@@_except_borders_bool }
6559 { 2 }
6560 { 1 }
6561 }
6562 {
6563 \bool_lazy_or:nnTF { \g_@@_delims_bool } { \l_@@_except_borders_bool }
6564 { \c@jCol }
6565 { \int_eval:n { \c@jCol + 1 } }
6566 }
6567 {
6568 \str_if_eq:eeF { \l_@@_vlines_clist } { all }
6569 { \clist_if_in:NnT \l_@@_vlines_clist { ##1 } }
6570 { \@@_vline:n { position = ##1 , total-width = \arrayrulewidth } }
6571 }
6572 }

The horizontal rules

The following command will be executed in the internal \CodeAfter. The argument #1 is a list of
key=value pairs of the form {nicematrix/Rules}.

6573 \cs_new_protected:Npn \@@_hline:n #1
6574 {

The group is for the options.
6575 \group_begin:
6576 \int_set_eq:NN \l_@@_end_int \c@jCol
6577 \keys_set_known:nnN { nicematrix / Rules } { #1 } \l_@@_other_keys_tl
6578 \@@_hline_i:
6579 \group_end:
6580 }

6581 \cs_new_protected:Npn \@@_hline_i:
6582 {

\l_tmpa_tl is the number of row and \l_tmpb_tl the number of column. When we have found a
column corresponding to a rule to draw, we note its number in \l_@@_tmpc_tl.

6583 \tl_set:No \l_tmpa_tl { \int_use:N \l_@@_position_int }
6584 \int_step_variable:nnNn \l_@@_start_int \l_@@_end_int
6585 \l_tmpb_tl
6586 {

160

The boolean \g_tmpa_bool indicates whether the small horizontal rule will be drawn. If we find that
it is in a block (a real block, created by \Block or a virtual block corresponding to a dotted line,
created by \Cdots, \Vdots, etc.), we will set \g_tmpa_bool to false and the small horizontal rule
won’t be drawn.

6587 \bool_gset_true:N \g_tmpa_bool

We test whether we are in a block.
6588 \seq_map_inline:Nn \g_@@_pos_of_blocks_seq
6589 { \@@_test_hline_in_block:nnnnn ##1 }

6590 \seq_map_inline:Nn \g_@@_pos_of_xdots_seq
6591 { \@@_test_hline_in_block:nnnnn ##1 }
6592 \seq_map_inline:Nn \g_@@_pos_of_stroken_blocks_seq
6593 { \@@_test_hline_in_stroken_block:nnnn ##1 }
6594 \clist_if_empty:NF \l_@@_corners_clist { \@@_test_in_corner_h: }
6595 \bool_if:NTF \g_tmpa_bool
6596 {
6597 \int_if_zero:nT { \l_@@_local_start_int }

We keep in memory that we have a rule to draw. \l_@@_local_start_int will be the starting row
of the rule that we will have to draw.

6598 { \int_set:Nn \l_@@_local_start_int \l_tmpb_tl }
6599 }
6600 {
6601 \int_compare:nNnT { \l_@@_local_start_int } > { \c_zero_int }
6602 {
6603 \int_set:Nn \l_@@_local_end_int { \l_tmpb_tl - 1 }
6604 \@@_hline_ii:
6605 \int_zero:N \l_@@_local_start_int
6606 }
6607 }
6608 }
6609 \int_compare:nNnT { \l_@@_local_start_int } > { \c_zero_int }
6610 {
6611 \int_set_eq:NN \l_@@_local_end_int \l_@@_end_int
6612 \@@_hline_ii:
6613 }
6614 }

6615 \cs_new_protected:Npn \@@_test_in_corner_h:
6616 {
6617 \int_compare:nNnTF { \l_tmpa_tl } = { \c@iRow + 1 }
6618 {
6619 \@@_if_in_corner:nT { \int_eval:n { \l_tmpa_tl - 1 } - \l_tmpb_tl }
6620 { \bool_set_false:N \g_tmpa_bool }
6621 }
6622 {
6623 \@@_if_in_corner:nT { \l_tmpa_tl - \l_tmpb_tl }
6624 {
6625 \int_compare:nNnTF { \l_tmpa_tl } = { \c_one_int }
6626 { \bool_set_false:N \g_tmpa_bool }
6627 {
6628 \@@_if_in_corner:nT
6629 { \int_eval:n { \l_tmpa_tl - 1 } - \l_tmpb_tl }
6630 { \bool_set_false:N \g_tmpa_bool }
6631 }
6632 }
6633 }
6634 }

6635 \cs_new_protected:Npn \@@_hline_ii:
6636 {

161

6637 \tl_clear:N \l_@@_tikz_rule_tl
6638 \keys_set:no { nicematrix / RulesBis } \l_@@_other_keys_tl
6639 \bool_if:NTF \l_@@_dotted_bool
6640 { \@@_hline_iv: }
6641 {
6642 \tl_if_empty:NTF \l_@@_tikz_rule_tl
6643 { \@@_hline_iii: }
6644 { \@@_hline_v: }
6645 }
6646 }

First the case of a standard rule (without the keys dotted and tikz).
6647 \cs_new_protected:Npn \@@_hline_iii:
6648 {
6649 \pgfpicture
6650 \pgfrememberpicturepositiononpagetrue
6651 \pgf@relevantforpicturesizefalse
6652 \@@_qpoint:n { col - \int_use:N \l_@@_local_start_int }
6653 \dim_set_eq:NN \l_tmpa_dim \pgf@x
6654 \@@_qpoint:n { row - \int_use:N \l_@@_position_int }
6655 \dim_set:Nn \l_tmpb_dim
6656 {
6657 \pgf@y
6658 - 0.5 \l_@@_rule_width_dim
6659 +
6660 (\arrayrulewidth * \l_@@_multiplicity_int
6661 + \doublerulesep * (\l_@@_multiplicity_int - 1)) / 2
6662 }
6663 \@@_qpoint:n { col - \int_eval:n { \l_@@_local_end_int + 1 } }
6664 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@x
6665 \bool_lazy_all:nT
6666 {
6667 { \int_compare_p:nNn { \l_@@_multiplicity_int } > { \c_one_int } }
6668 { \cs_if_exist_p:N \CT@drsc@ }
6669 { ! \tl_if_blank_p:o \CT@drsc@ }
6670 }
6671 {
6672 \group_begin:
6673 \CT@drsc@
6674 \dim_set:Nn \l_@@_tmpd_dim
6675 {
6676 \l_tmpb_dim - (\doublerulesep + \arrayrulewidth)
6677 * (\l_@@_multiplicity_int - 1)
6678 }
6679 \pgfpathrectanglecorners
6680 { \pgfpoint \l_tmpa_dim \l_tmpb_dim }
6681 { \pgfpoint \l_@@_tmpc_dim \l_@@_tmpd_dim }
6682 \pgfusepathqfill
6683 \group_end:
6684 }
6685 \pgfpathmoveto { \pgfpoint \l_tmpa_dim \l_tmpb_dim }
6686 \pgfpathlineto { \pgfpoint \l_@@_tmpc_dim \l_tmpb_dim }
6687 \prg_replicate:nn { \l_@@_multiplicity_int - 1 }
6688 {
6689 \dim_sub:Nn \l_tmpb_dim { \arrayrulewidth + \doublerulesep }
6690 \pgfpathmoveto { \pgfpoint \l_tmpa_dim \l_tmpb_dim }
6691 \pgfpathlineto { \pgfpoint \l_@@_tmpc_dim \l_tmpb_dim }
6692 }
6693 \CT@arc@
6694 \pgfsetlinewidth { 1.1 \arrayrulewidth }
6695 \pgfsetrectcap
6696 \pgfusepathqstroke
6697 \endpgfpicture

162

6698 }

The following code is for the case of a dotted rule (with our system of rounded dots). The aim is
that, by standard the dotted line fits between square brackets (\hline doesn’t).
\begin{bNiceMatrix}
1 & 2 & 3 & 4 \\
\hline
1 & 2 & 3 & 4 \\
\hdottedline
1 & 2 & 3 & 4
\end{bNiceMatrix}

1 2 3 4
1 2 3 4

1 2 3 4



But, if the user uses margin, the dotted line extends to have the same width as a \hline.
\begin{bNiceMatrix}[margin]
1 & 2 & 3 & 4 \\
\hline
1 & 2 & 3 & 4 \\
\hdottedline
1 & 2 & 3 & 4
\end{bNiceMatrix}

 1 2 3 4
1 2 3 4

1 2 3 4



6699 \cs_new_protected:Npn \@@_hline_iv:
6700 {
6701 \pgfpicture
6702 \pgfrememberpicturepositiononpagetrue
6703 \pgf@relevantforpicturesizefalse
6704 \@@_qpoint:n { row - \int_use:N \l_@@_position_int }
6705 \dim_set:Nn \l_@@_y_initial_dim { \pgf@y - 0.5 \l_@@_rule_width_dim }
6706 \dim_set_eq:NN \l_@@_y_final_dim \l_@@_y_initial_dim
6707 \@@_qpoint:n { col - \int_use:N \l_@@_local_start_int }
6708 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
6709 \int_compare:nNnT { \l_@@_local_start_int } = { \c_one_int }
6710 {
6711 \dim_sub:Nn \l_@@_x_initial_dim \l_@@_left_margin_dim
6712 \bool_if:NF \g_@@_delims_bool
6713 { \dim_sub:Nn \l_@@_x_initial_dim \arraycolsep }

For reasons purely aesthetic, we do an adjustment in the case of a rounded bracket. The correction
by 0.5 \l_@@_xdots_inter_dim is ad hoc for a better result.

6714 \tl_if_eq:NnF \g_@@_left_delim_tl (
6715 { \dim_add:Nn \l_@@_x_initial_dim { 0.5 \l_@@_xdots_inter_dim } }
6716 }
6717 \@@_qpoint:n { col - \int_eval:n { \l_@@_local_end_int + 1 } }
6718 \dim_set_eq:NN \l_@@_x_final_dim \pgf@x
6719 \int_compare:nNnT { \l_@@_local_end_int } = { \c@jCol }
6720 {
6721 \dim_add:Nn \l_@@_x_final_dim \l_@@_right_margin_dim
6722 \bool_if:NF \g_@@_delims_bool
6723 { \dim_add:Nn \l_@@_x_final_dim \arraycolsep }
6724 \tl_if_eq:NnF \g_@@_right_delim_tl)
6725 { \dim_gsub:Nn \l_@@_x_final_dim { 0.5 \l_@@_xdots_inter_dim } }
6726 }
6727 \CT@arc@
6728 \@@_draw_line:
6729 \endpgfpicture
6730 }

The following code is for the case when the user uses the key tikz (in the definition of a customized
rule by using the key custom-line).

6731 \cs_new_protected:Npn \@@_hline_v:
6732 {
6733 \begin { tikzpicture }

163

By default, the color defined by \arrayrulecolor or by rules/color will be used, but it’s still
possible to change the color by using the key color or, of course, the key color inside the key tikz
(that is to say the key color provided by pgf.

6734 \CT@arc@
6735 \tl_if_empty:NF \l_@@_rule_color_tl
6736 { \tl_put_right:Ne \l_@@_tikz_rule_tl { , color = \l_@@_rule_color_tl } }
6737 \pgfrememberpicturepositiononpagetrue
6738 \pgf@relevantforpicturesizefalse
6739 \@@_qpoint:n { col - \int_use:N \l_@@_local_start_int }
6740 \dim_set_eq:NN \l_tmpa_dim \pgf@x
6741 \@@_qpoint:n { row - \int_use:N \l_@@_position_int }
6742 \dim_set:Nn \l_tmpb_dim { \pgf@y - 0.5 \l_@@_rule_width_dim }
6743 \@@_qpoint:n { col - \int_eval:n { \l_@@_local_end_int + 1 } }
6744 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@x
6745 \exp_args:No \tikzset \l_@@_tikz_rule_tl
6746 \use:e { \exp_not:N \draw [\l_@@_tikz_rule_tl] }
6747 (\l_tmpa_dim , \l_tmpb_dim) --
6748 (\l_@@_tmpc_dim , \l_tmpb_dim) ;
6749 \end { tikzpicture }
6750 }

The command \@@_draw_hlines: draws all the horizontal rules excepted in the blocks (even the
virtual blocks determined by commands such as \Cdots and in the corners — if the key corners is
used).

6751 \cs_new_protected:Npn \@@_draw_hlines:
6752 {
6753 \int_step_inline:nnn
6754 { \bool_lazy_or:nnTF \g_@@_delims_bool \l_@@_except_borders_bool 2 1 }
6755 {
6756 \bool_lazy_or:nnTF { \g_@@_delims_bool } { \l_@@_except_borders_bool }
6757 { \c@iRow }
6758 { \int_eval:n { \c@iRow + 1 } }
6759 }
6760 {
6761 \str_if_eq:eeF { \l_@@_hlines_clist } { all }
6762 { \clist_if_in:NnT \l_@@_hlines_clist { ##1 } }
6763 { \@@_hline:n { position = ##1 , total-width = \arrayrulewidth } }
6764 }
6765 }

The command \@@_Hline: will be linked to \Hline in the environments of nicematrix.
6766 \cs_set:Npn \@@_Hline: { \noalign \bgroup \@@_Hline_i:n { 1 } }

The argument of the command \@@_Hline_i:n is the number of successive \Hline found.
6767 \cs_set:Npn \@@_Hline_i:n #1
6768 {
6769 \peek_remove_spaces:n
6770 {
6771 \peek_meaning:NTF \Hline
6772 { \@@_Hline_ii:nn { #1 + 1 } }
6773 { \@@_Hline_iii:n { #1 } }
6774 }
6775 }

6776 \cs_set:Npn \@@_Hline_ii:nn #1 #2 { \@@_Hline_i:n { #1 } }

6777 \cs_set:Npn \@@_Hline_iii:n #1
6778 { \@@_collect_options:n { \@@_Hline_iv:nn { #1 } } }

6779 \cs_set_protected:Npn \@@_Hline_iv:nn #1 #2
6780 {
6781 \@@_compute_rule_width:n { multiplicity = #1 , #2 }
6782 \skip_vertical:N \l_@@_rule_width_dim
6783 \tl_gput_right:Ne \g_@@_pre_code_after_tl

164

6784 {
6785 \@@_hline:n
6786 {
6787 multiplicity = #1 ,
6788 position = \int_eval:n { \c@iRow + 1 } ,
6789 total-width = \dim_use:N \l_@@_rule_width_dim ,
6790 #2
6791 }
6792 }
6793 \egroup
6794 }

Customized rules defined by the final user

The final user can define a customized rule by using the key custom-line in \NiceMatrixOptions.
That key takes in as value a list of key=value pairs.

The following command will create the customized rule (it is executed when the final user uses the
key custom-line, for example in \NiceMatrixOptions).

6795 \cs_new_protected:Npn \@@_custom_line:n #1
6796 {
6797 \str_clear_new:N \l_@@_command_str
6798 \str_clear_new:N \l_@@_ccommand_str
6799 \str_clear_new:N \l_@@_letter_str
6800 \tl_clear_new:N \l_@@_other_keys_tl
6801 \keys_set_known:nnN { nicematrix / custom-line } { #1 } \l_@@_other_keys_tl
6802 \str_if_eq:eeT \c_backslash_str { \str_head:N \l_@@_command_str }
6803 {
6804 \str_set:Ne \l_@@_command_str { \str_tail:N \l_@@_command_str }

We delete the last character which is a space.
6805 \str_set:Ne \l_@@_command_str
6806 { \str_range:Nnn \l_@@_command_str { 1 } { -2 } }
6807 }
6808 \str_if_eq:eeT \c_backslash_str { \str_head:N \l_@@_ccommand_str }
6809 {
6810 \str_set:Ne \l_@@_ccommand_str
6811 { \str_tail:N \l_@@_ccommand_str }
6812 \str_set:Ne \l_@@_ccommand_str
6813 { \str_range:Nnn \l_@@_ccommand_str { 1 } { -2 } }
6814 }

If the final user only wants to draw horizontal rules, he does not need to specify a letter (for the
vertical rules in the preamble of the array). On the other hand, if he only wants to draw vertical
rules, he does not need to define a command (which is the tool to draw horizontal rules in the array).
Of course, a definition of custom lines with no letter and no command would be point-less.

6815 \bool_lazy_all:nTF
6816 {
6817 { \str_if_empty_p:N \l_@@_letter_str }
6818 { \str_if_empty_p:N \l_@@_command_str }
6819 { \str_if_empty_p:N \l_@@_ccommand_str }
6820 }
6821 { \@@_error:n { No~letter~and~no~command } }
6822 { \@@_custom_line_i:o \l_@@_other_keys_tl }
6823 }

6824 \keys_define:nn { nicematrix / custom-line }
6825 {
6826 letter .str_set:N = \l_@@_letter_str ,
6827 letter .value_required:n = true ,
6828 command .str_set:N = \l_@@_command_str ,
6829 command .value_required:n = true ,
6830 ccommand .str_set:N = \l_@@_ccommand_str ,
6831 ccommand .value_required:n = true ,
6832 }

165

6833 \cs_new_protected:Npn \@@_custom_line_i:n #1
6834 {

The following flags will be raised when the keys tikz, dotted and color are used (in the custom-
line).

6835 \bool_set_false:N \l_@@_tikz_rule_bool
6836 \bool_set_false:N \l_@@_dotted_rule_bool
6837 \bool_set_false:N \l_@@_color_bool

6838 \keys_set:nn { nicematrix / custom-line-bis } { #1 }
6839 \bool_if:NT \l_@@_tikz_rule_bool
6840 {
6841 \IfPackageLoadedF { tikz }
6842 { \@@_error:n { tikz~in~custom-line~without~tikz } }
6843 \bool_if:NT \l_@@_color_bool
6844 { \@@_error:n { color~in~custom-line~with~tikz } }
6845 }
6846 \bool_if:NT \l_@@_dotted_rule_bool
6847 {
6848 \int_compare:nNnT { \l_@@_multiplicity_int } > { \c_one_int }
6849 { \@@_error:n { key~multiplicity~with~dotted } }
6850 }
6851 \str_if_empty:NF \l_@@_letter_str
6852 {
6853 \int_compare:nTF { \str_count:N \l_@@_letter_str != 1 }
6854 { \@@_error:n { Several~letters } }
6855 {
6856 \tl_if_in:NoTF
6857 \c_@@_forbidden_letters_str
6858 \l_@@_letter_str
6859 { \@@_error:ne { Forbidden~letter } \l_@@_letter_str }
6860 {

During the analysis of the preamble provided by the final user, our automaton, for the letter cor-
responding at the custom line, will directly use the following command that you define in the main
hash table of TeX.

6861 \cs_set_nopar:cpn { @@ _ \l_@@_letter_str : } ##1
6862 { \@@_v_custom_line:nn { #1 } }
6863 }
6864 }
6865 }
6866 \str_if_empty:NF \l_@@_command_str { \@@_h_custom_line:n { #1 } }
6867 \str_if_empty:NF \l_@@_ccommand_str { \@@_c_custom_line:n { #1 } }
6868 }
6869 \cs_generate_variant:Nn \@@_custom_line_i:n { o }

6870 \tl_const:Nn \c_@@_forbidden_letters_tl { lcrpmbVX|()[]!@<> }
6871 \str_const:Nn \c_@@_forbidden_letters_str { lcrpmbVX|()[]!@<> }

The previous command \@@_custom_line_i:n uses the following set of keys. However, the whole
definition of the customized lines (as provided by the final user as argument of custom-line) will
also be used further with other sets of keys (for instance {nicematrix/Rules}). That’s why the
following set of keys has some keys which are no-op.

6872 \keys_define:nn { nicematrix / custom-line-bis }
6873 {
6874 multiplicity .int_set:N = \l_@@_multiplicity_int ,
6875 multiplicity .initial:n = 1 ,
6876 multiplicity .value_required:n = true ,
6877 color .code:n = \bool_set_true:N \l_@@_color_bool ,
6878 color .value_required:n = true ,
6879 tikz .code:n = \bool_set_true:N \l_@@_tikz_rule_bool ,
6880 tikz .value_required:n = true ,
6881 dotted .code:n = \bool_set_true:N \l_@@_dotted_rule_bool ,
6882 dotted .value_forbidden:n = true ,

166

6883 total-width .code:n = { } ,
6884 total-width .value_required:n = true ,
6885 width .code:n = { } ,
6886 width .value_required:n = true ,
6887 sep-color .code:n = { } ,
6888 sep-color .value_required:n = true ,
6889 unknown .code:n =
6890 \@@_unknown_key:nn
6891 { nicematrix / custom-line-bis }
6892 { Unknown~key~for~custom-line }
6893 }

The following keys will indicate whether the keys dotted, tikz and color are used in the use of a
custom-line.

6894 \bool_new:N \l_@@_dotted_rule_bool
6895 \bool_new:N \l_@@_tikz_rule_bool
6896 \bool_new:N \l_@@_color_bool

The following keys are used to determine the total width of the line (including the spaces on both
sides of the line). The key width is deprecated and has been replaced by the key total-width.

6897 \keys_define:nn { nicematrix / custom-line-width }
6898 {
6899 multiplicity .int_set:N = \l_@@_multiplicity_int ,
6900 multiplicity .initial:n = 1 ,
6901 multiplicity .value_required:n = true ,
6902 tikz .code:n = \bool_set_true:N \l_@@_tikz_rule_bool ,
6903 total-width .code:n = \dim_set:Nn \l_@@_rule_width_dim { #1 }
6904 \bool_set_true:N \l_@@_total_width_bool ,
6905 total-width .value_required:n = true ,
6906 width .meta:n = { total-width = #1 } ,
6907 dotted .code:n = \bool_set_true:N \l_@@_dotted_rule_bool ,
6908 }

The following command will create the command that the final user will use in its array to draw an
horizontal rule (hence the ‘h‘ in the name) with the full width of the array. #1 is the whole set of
keys to pass to the command \@@_hline:n (which is in the internal \CodeAfter).

6909 \cs_new_protected:Npn \@@_h_custom_line:n #1
6910 {

We use \cs_set:cpn and not \cs_new:cpn because we want a local definition. Moreover, the com-
mand must not be protected since it begins with \noalign (which is in \Hline).

6911 \cs_set_nopar:cpn { nicematrix - \l_@@_command_str } { \Hline [#1] }
6912 \seq_put_left:No \l_@@_custom_line_commands_seq \l_@@_command_str
6913 }

The following command will create the command that the final user will use in its array to draw an
horizontal rule on only some of the columns of the array (hence the letter c as in \cline). #1 is the
whole set of keys to pass to the command \@@_hline:n (which is in the internal \CodeAfter).

6914 \cs_new_protected:Npn \@@_c_custom_line:n #1
6915 {

Here, we need an expandable command since it begins with an \noalign.
6916 \exp_args:Nc \NewExpandableDocumentCommand
6917 { nicematrix - \l_@@_ccommand_str }
6918 { O { } m }
6919 {
6920 \noalign
6921 {
6922 \@@_compute_rule_width:n { #1 , ##1 }
6923 \skip_vertical:n { \l_@@_rule_width_dim }

167

6924 \clist_map_inline:nn
6925 { ##2 }
6926 { \@@_c_custom_line_i:nn { #1 , ##1 } { ####1 } }
6927 }
6928 }
6929 \seq_put_left:No \l_@@_custom_line_commands_seq \l_@@_ccommand_str
6930 }

The first argument is the list of key-value pairs characteristic of the line. The second argument is the
specification of columns for the \cline with the syntax a-b.

6931 \cs_new_protected:Npn \@@_c_custom_line_i:nn #1 #2
6932 {
6933 \tl_if_in:nnTF { #2 } { - }
6934 { \@@_cut_on_hyphen:w #2 \q_stop }
6935 { \@@_cut_on_hyphen:w #2 - #2 \q_stop }
6936 \tl_gput_right:Ne \g_@@_pre_code_after_tl
6937 {
6938 \@@_hline:n
6939 {
6940 #1 ,
6941 start = \l_tmpa_tl ,
6942 end = \l_tmpb_tl ,
6943 position = \int_eval:n { \c@iRow + 1 } ,
6944 total-width = \dim_use:N \l_@@_rule_width_dim
6945 }
6946 }
6947 }

6948 \cs_new_protected:Npn \@@_compute_rule_width:n #1
6949 {
6950 \bool_set_false:N \l_@@_tikz_rule_bool
6951 \bool_set_false:N \l_@@_total_width_bool
6952 \bool_set_false:N \l_@@_dotted_rule_bool
6953 \keys_set_known:nn { nicematrix / custom-line-width } { #1 }
6954 \bool_if:NF \l_@@_total_width_bool
6955 {
6956 \bool_if:NTF \l_@@_dotted_rule_bool
6957 { \dim_set:Nn \l_@@_rule_width_dim { 2 \l_@@_xdots_radius_dim } }
6958 {
6959 \bool_if:NF \l_@@_tikz_rule_bool
6960 {
6961 \dim_set:Nn \l_@@_rule_width_dim
6962 {
6963 \arrayrulewidth * \l_@@_multiplicity_int
6964 + \doublerulesep * (\l_@@_multiplicity_int - 1)
6965 }
6966 }
6967 }
6968 }
6969 }

The following constructions aims to allow cumulative blocks of options between square brackets such
as in I[color=blue][tikz=dashed].

6970 \cs_new_protected:Npn \@@_v_custom_line:nn #1 #2
6971 {
6972 \str_if_eq:nnTF { #2 } { [}
6973 { \@@_v_custom_line_i:nw { #1 } [}
6974 { \@@_v_custom_line_ii:nn { #2 } { #1 } }
6975 }
6976 \cs_new_protected:Npn \@@_v_custom_line_i:nw #1 [#2]
6977 { \@@_v_custom_line:nn { #1 , #2 } }

6978 \cs_new_protected:Npn \@@_v_custom_line_ii:nn #1 #2
6979 {
6980 \@@_compute_rule_width:n { #2 }

168

In the following line, the \dim_use:N is mandatory since we do an expansion.
6981 \tl_gput_right:Ne \g_@@_array_preamble_tl
6982 { \exp_not:N ! { \skip_horizontal:n { \dim_use:N \l_@@_rule_width_dim } } }
6983 \tl_gput_right:Ne \g_@@_pre_code_after_tl
6984 {
6985 \@@_vline:n
6986 {
6987 #2 ,
6988 position = \int_eval:n { \c@jCol + 1 } ,
6989 total-width = \dim_use:N \l_@@_rule_width_dim
6990 }
6991 }
6992 \@@_rec_preamble:n #1
6993 }

6994 \@@_custom_line:n
6995 { letter = : , command = hdottedline , ccommand = cdottedline, dotted }

The key hvlines

The following command tests whether the current position in the array (given by \l_tmpa_tl for the
row and \l_tmpb_tl for the column) would provide an horizontal rule towards the right in the block
delimited by the four arguments #1, #2, #3 and #4. If this rule would be in the block (it must not be
drawn), the boolean \l_tmpa_bool is set to false.

6996 \cs_new_protected:Npn \@@_test_hline_in_block:nnnnn #1 #2 #3 #4 #5
6997 {
6998 \int_compare:nNnT { \l_tmpa_tl } > { #1 }
6999 {
7000 \int_compare:nNnT { \l_tmpa_tl } < { #3 + 1 }
7001 {
7002 \int_compare:nNnT { \l_tmpb_tl } > { #2 - 1 }
7003 {
7004 \int_compare:nNnT { \l_tmpb_tl } < { #4 + 1 }
7005 { \bool_gset_false:N \g_tmpa_bool }
7006 }
7007 }
7008 }
7009 }

The same for vertical rules.
7010 \cs_new_protected:Npn \@@_test_vline_in_block:nnnnn #1 #2 #3 #4 #5
7011 {
7012 \int_compare:nNnT { \l_tmpa_tl } > { #1 - 1 }
7013 {
7014 \int_compare:nNnT { \l_tmpa_tl } < { #3 + 1 }
7015 {
7016 \int_compare:nNnT { \l_tmpb_tl } > { #2 }
7017 {
7018 \int_compare:nNnT { \l_tmpb_tl } < { #4 + 1 }
7019 { \bool_gset_false:N \g_tmpa_bool }
7020 }
7021 }
7022 }
7023 }

7024 \cs_new_protected:Npn \@@_test_hline_in_stroken_block:nnnn #1 #2 #3 #4
7025 {
7026 \int_compare:nNnT { \l_tmpb_tl } > { #2 - 1 }
7027 {
7028 \int_compare:nNnT { \l_tmpb_tl } < { #4 + 1 }
7029 {
7030 \int_compare:nNnTF { \l_tmpa_tl } = { #1 }
7031 { \bool_gset_false:N \g_tmpa_bool }
7032 {

169

7033 \int_compare:nNnT { \l_tmpa_tl } = { #3 + 1 }
7034 { \bool_gset_false:N \g_tmpa_bool }
7035 }
7036 }
7037 }
7038 }

7039 \cs_new_protected:Npn \@@_test_vline_in_stroken_block:nnnn #1 #2 #3 #4
7040 {
7041 \int_compare:nNnT { \l_tmpa_tl } > { #1 - 1 }
7042 {
7043 \int_compare:nNnT { \l_tmpa_tl } < { #3 + 1 }
7044 {
7045 \int_compare:nNnTF { \l_tmpb_tl } = { #2 }
7046 { \bool_gset_false:N \g_tmpa_bool }
7047 {
7048 \int_compare:nNnT { \l_tmpb_tl } = { #4 + 1 }
7049 { \bool_gset_false:N \g_tmpa_bool }
7050 }
7051 }
7052 }
7053 }

23 The empty corners

When the key corners is raised, the rules are not drawn in the corners; they are not colored and
\TikzEveryCell does not apply. Of course, we have to compute the corners before we begin to draw
the rules.

7054 \cs_new_protected:Npn \@@_compute_corners:
7055 {
7056 \seq_map_inline:Nn \g_@@_pos_of_blocks_seq
7057 { \@@_mark_cells_of_block:nnnnn ##1 }

The list \l_@@_corners_cells_clist will be the list of all the empty cells (and not in a block)
considered in the corners of the array. We use a clist instead of a seq because we will frequently
search in that list (and searching in a clist is faster than searching in a seq).

7058 \clist_clear:N \l_@@_corners_cells_clist
7059 \clist_map_inline:Nn \l_@@_corners_clist
7060 {
7061 \str_case:nnF { ##1 }
7062 {
7063 { NW }
7064 { \@@_compute_a_corner:nnnnnn 1 1 1 1 \c@iRow \c@jCol }
7065 { NE }
7066 { \@@_compute_a_corner:nnnnnn 1 \c@jCol 1 { -1 } \c@iRow 1 }
7067 { SW }
7068 { \@@_compute_a_corner:nnnnnn \c@iRow 1 { -1 } 1 1 \c@jCol }
7069 { SE }
7070 { \@@_compute_a_corner:nnnnnn \c@iRow \c@jCol { -1 } { -1 } 1 1 }
7071 }
7072 { \@@_error:nn { bad~corner } { ##1 } }
7073 }

Even if the user has used the key corners the list of cells in the corners may be empty.
7074 \clist_if_empty:NF \l_@@_corners_cells_clist
7075 {

You write on the aux file the list of the cells which are in the (empty) corners because you need that
information in the \CodeBefore since the commands which colors the rows, columns and cells must
not color the cells in the corners.

170

7076 \tl_gput_right:Ne \g_@@_aux_tl
7077 {
7078 \clist_set:Nn \exp_not:N \l_@@_corners_cells_clist
7079 { \l_@@_corners_cells_clist }
7080 }
7081 }
7082 }

7083 \cs_new_protected:Npn \@@_mark_cells_of_block:nnnnn #1 #2 #3 #4 #5
7084 {
7085 \int_step_inline:nnn { #1 } { #3 }
7086 {
7087 \int_step_inline:nnn { #2 } { #4 }
7088 { \cs_set_nopar:cpn { @@ _ block _ ##1 - ####1 } { } }
7089 }
7090 }

7091 \prg_new_conditional:Npnn \@@_if_in_block:nn #1 #2 { p }
7092 {
7093 \cs_if_exist:cTF
7094 { @@ _ block _ \int_eval:n { #1 } - \int_eval:n { #2 } }
7095 { \prg_return_true: }
7096 { \prg_return_false: }
7097 }

“Computing a corner” is determining all the empty cells (which are not in a block) that belong to
that corner. These cells will be added to the sequence \l_@@_corners_cells_clist.

The six arguments of \@@_compute_a_corner:nnnnnn are as follow:

• #1 and #2 are the number of row and column of the cell which is actually in the corner;

• #3 and #4 are the steps in rows and the step in columns when moving from the corner;

• #5 is the number of the final row when scanning the rows from the corner;

• #6 is the number of the final column when scanning the columns from the corner.

7098 \cs_new_protected:Npn \@@_compute_a_corner:nnnnnn #1 #2 #3 #4 #5 #6
7099 {

For the explanations and the name of the variables, we consider that we are computing the left-upper
corner.
First, we try to determine which is the last empty cell (and not in a block: we won’t add that precision
any longer) in the column of number 1. The flag \l_tmpa_bool will be raised when a non-empty cell
is found.

7100 \bool_set_false:N \l_tmpa_bool
7101 \int_zero_new:N \l_@@_last_empty_row_int
7102 \int_set:Nn \l_@@_last_empty_row_int { #1 }
7103 \int_step_inline:nnnn { #1 } { #3 } { #5 }
7104 {
7105 \bool_lazy_or:nnTF
7106 {
7107 \cs_if_exist_p:c
7108 { pgf @ sh @ ns @ \@@_env: - ##1 - \int_eval:n { #2 } }
7109 }
7110 { \@@_if_in_block_p:nn { ##1 } { #2 } }
7111 { \bool_set_true:N \l_tmpa_bool }
7112 {
7113 \bool_if:NF \l_tmpa_bool
7114 { \int_set:Nn \l_@@_last_empty_row_int { ##1 } }
7115 }
7116 }

171

Now, you determine the last empty cell in the row of number 1.
7117 \bool_set_false:N \l_tmpa_bool
7118 \int_zero_new:N \l_@@_last_empty_column_int
7119 \int_set:Nn \l_@@_last_empty_column_int { #2 }
7120 \int_step_inline:nnnn { #2 } { #4 } { #6 }
7121 {
7122 \bool_lazy_or:nnTF
7123 {
7124 \cs_if_exist_p:c
7125 { pgf @ sh @ ns @ \@@_env: - \int_eval:n { #1 } - ##1 }
7126 }
7127 { \@@_if_in_block_p:nn { #1 } { ##1 } }
7128 { \bool_set_true:N \l_tmpa_bool }
7129 {
7130 \bool_if:NF \l_tmpa_bool
7131 { \int_set:Nn \l_@@_last_empty_column_int { ##1 } }
7132 }
7133 }

Now, we loop over the rows.
7134 \int_step_inline:nnnn { #1 } { #3 } { \l_@@_last_empty_row_int }
7135 {

We treat the row number ##1 with another loop.
7136 \bool_set_false:N \l_tmpa_bool
7137 \int_step_inline:nnnn { #2 } { #4 } { \l_@@_last_empty_column_int }
7138 {
7139 \bool_lazy_or:nnTF
7140 { \cs_if_exist_p:c { pgf @ sh @ ns @ \@@_env: - ##1 - ####1 } }
7141 { \@@_if_in_block_p:nn { ##1 } { ####1 } }
7142 { \bool_set_true:N \l_tmpa_bool }
7143 {
7144 \bool_if:NF \l_tmpa_bool
7145 {
7146 \int_set:Nn \l_@@_last_empty_column_int { ####1 }
7147 \clist_put_right:Nn
7148 \l_@@_corners_cells_clist
7149 { ##1 - ####1 }
7150 \cs_set_nopar:cpn { @@ _ corner _ ##1 - ####1 } { }
7151 }
7152 }
7153 }
7154 }
7155 }

Of course, instead of the following lines, we could have use \prg_new_conditional:Npnn.
7156 \cs_new:Npn \@@_if_in_corner:nT #1 { \cs_if_exist:cT { @@ _ corner _ #1 } }
7157 \cs_new:Npn \@@_if_in_corner:nF #1 { \cs_if_exist:cF { @@ _ corner _ #1 } }

Instead of the previous lines, we could have used \l_@@_corners_cells_clist but it’s less efficient:
\clist_if_in:NeT \l_@@_corners_cells_clist { #1 } ...

24 The environment {NiceMatrixBlock}

The following flag will be raised when all the columns of the environments of the block must have
the same width in “auto” mode.

7158 \bool_new:N \l_@@_block_auto_columns_width_bool

172

Up to now, there is only one option available for the environment {NiceMatrixBlock}.
7159 \keys_define:nn { nicematrix / NiceMatrixBlock }
7160 {
7161 auto-columns-width .code:n =
7162 {
7163 \bool_set_true:N \l_@@_block_auto_columns_width_bool
7164 \dim_gzero_new:N \g_@@_max_cell_width_dim
7165 \bool_set_true:N \l_@@_auto_columns_width_bool
7166 }
7167 }

7168 \NewDocumentEnvironment { NiceMatrixBlock } { ! O { } }
7169 {
7170 \int_gincr:N \g_@@_NiceMatrixBlock_int
7171 \dim_zero:N \l_@@_columns_width_dim
7172 \keys_set:nn { nicematrix / NiceMatrixBlock } { #1 }
7173 \bool_if:NT \l_@@_block_auto_columns_width_bool
7174 {
7175 \cs_if_exist:cT
7176 { @@_max_cell_width_ \int_use:N \g_@@_NiceMatrixBlock_int }
7177 {
7178 \dim_set:Nn \l_@@_columns_width_dim
7179 {
7180 \use:c
7181 { @@_max_cell_width _ \int_use:N \g_@@_NiceMatrixBlock_int }
7182 }
7183 }
7184 }
7185 }

At the end of the environment {NiceMatrixBlock}, we write in the main aux file instructions for
the column width of all the environments of the block (that’s why we have stored the number of the
first environment of the block in the counter \l_@@_first_env_block_int).

7186 {
7187 \legacy_if:nTF { measuring@ }

If {NiceMatrixBlock} is used in an environment of amsmath such as {align}: cf. question 694957
on TeX StackExchange. The most important line in that case is the following one.

7188 { \int_gdecr:N \g_@@_NiceMatrixBlock_int }
7189 {
7190 \bool_if:NT \l_@@_block_auto_columns_width_bool
7191 {
7192 \iow_shipout:Nn \@mainaux \ExplSyntaxOn
7193 \iow_shipout:Ne \@mainaux
7194 {
7195 \cs_gset:cpn
7196 { @@ _ max _ cell _ width _ \int_use:N \g_@@_NiceMatrixBlock_int }

For technical reasons, we have to include the width of a potential rule on the right side of the cells.
7197 { \dim_eval:n { \g_@@_max_cell_width_dim + \arrayrulewidth } }
7198 }
7199 \iow_shipout:Nn \@mainaux \ExplSyntaxOff
7200 }
7201 }
7202 \ignorespacesafterend
7203 }

173

25 The extra nodes

The following command is called in \@@_use_arraybox_with_notes_c: just before the construction
of the blocks (if the creation of medium nodes is required, medium nodes are also created for the
blocks and that construction uses the standard medium nodes).

7204 \cs_new_protected:Npn \@@_create_extra_nodes:
7205 {
7206 \bool_if:nTF \l_@@_medium_nodes_bool
7207 {
7208 \bool_if:NTF \l_@@_no_cell_nodes_bool
7209 { \@@_error:n { extra-nodes~with~no-cell-nodes } }
7210 {
7211 \bool_if:NTF \l_@@_large_nodes_bool
7212 \@@_create_medium_and_large_nodes:
7213 \@@_create_medium_nodes:
7214 }
7215 }
7216 {
7217 \bool_if:NT \l_@@_large_nodes_bool
7218 {
7219 \bool_if:NTF \l_@@_no_cell_nodes_bool
7220 { \@@_error:n { extra-nodes~with~no-cell-nodes } }
7221 \@@_create_large_nodes:
7222 }
7223 }
7224 }

We have three macros of creation of nodes: \@@_create_medium_nodes:, \@@_create_large_nodes:
and \@@_create_medium_and_large_nodes:.

We have to compute the mathematical coordinates of the “medium nodes”. These mathematical
coordinates are also used to compute the mathematical coordinates of the “large nodes”. That’s why
we write a command \@@_computations_for_medium_nodes: to do these computations.

The command \@@_computations_for_medium_nodes: must be used in a {pgfpicture}.
For each row i, we compute two dimensions l_@@_row_i_min_dim and l_@@_row_i_max_dim. The
dimension l_@@_row_i_min_dim is the minimal y-value of all the cells of the row i. The dimension
l_@@_row_i_max_dim is the maximal y-value of all the cells of the row i.
Similarly, for each column j, we compute two dimensions l_@@_column_j_min_dim and l_@@_-
column_j_max_dim. The dimension l_@@_column_j_min_dim is the minimal x-value of all the cells
of the column j. The dimension l_@@_column_j_max_dim is the maximal x-value of all the cells of
the column j.
Since these dimensions will be computed as maximum or minimum, we initialize them to \c_max_dim
or -\c_max_dim.

7225 \cs_new_protected:Npn \@@_computations_for_medium_nodes:
7226 {
7227 \int_step_variable:nnNn \l_@@_first_row_int \g_@@_row_total_int \@@_i:
7228 {
7229 \dim_zero_new:c { l_@@_row_ \@@_i: _min_dim }
7230 \dim_set_eq:cN { l_@@_row_ \@@_i: _min_dim } \c_max_dim
7231 \dim_zero_new:c { l_@@_row_ \@@_i: _max_dim }
7232 \dim_set:cn { l_@@_row_ \@@_i: _max_dim } { - \c_max_dim }
7233 }
7234 \int_step_variable:nnNn \l_@@_first_col_int \g_@@_col_total_int \@@_j:
7235 {
7236 \dim_zero_new:c { l_@@_column_ \@@_j: _min_dim }
7237 \dim_set_eq:cN { l_@@_column_ \@@_j: _min_dim } \c_max_dim
7238 \dim_zero_new:c { l_@@_column_ \@@_j: _max_dim }
7239 \dim_set:cn { l_@@_column_ \@@_j: _max_dim } { - \c_max_dim }
7240 }

174

We begin the two nested loops over the rows and the columns of the array.
7241 \int_step_variable:nnNn \l_@@_first_row_int \g_@@_row_total_int \@@_i:
7242 {
7243 \int_step_variable:nnNn
7244 \l_@@_first_col_int \g_@@_col_total_int \@@_j:

If the cell (i-j) is empty or an implicit cell (that is to say a cell after implicit ampersands &) we don’t
update the dimensions we want to compute.

7245 {
7246 \cs_if_exist:cT
7247 { pgf @ sh @ ns @ \@@_env: - \@@_i: - \@@_j: }

We retrieve the coordinates of the anchor south west of the (normal) node of the cell (i-j). They
will be stored in \pgf@x and \pgf@y.

7248 {
7249 \pgfpointanchor { \@@_env: - \@@_i: - \@@_j: } { south~west }
7250 \dim_set:cn { l_@@_row_ \@@_i: _min_dim }
7251 { \dim_min:vn { l_@@_row _ \@@_i: _min_dim } \pgf@y }
7252 \seq_if_in:NeF \g_@@_multicolumn_cells_seq { \@@_i: - \@@_j: }
7253 {
7254 \dim_set:cn { l_@@_column _ \@@_j: _min_dim }
7255 { \dim_min:vn { l_@@_column _ \@@_j: _min_dim } \pgf@x }
7256 }

We retrieve the coordinates of the anchor north east of the (normal) node of the cell (i-j). They
will be stored in \pgf@x and \pgf@y.

7257 \pgfpointanchor { \@@_env: - \@@_i: - \@@_j: } { north~east }
7258 \dim_set:cn { l_@@_row _ \@@_i: _ max_dim }
7259 { \dim_max:vn { l_@@_row _ \@@_i: _ max_dim } { \pgf@y } }
7260 \seq_if_in:NeF \g_@@_multicolumn_cells_seq { \@@_i: - \@@_j: }
7261 {
7262 \dim_set:cn { l_@@_column _ \@@_j: _ max_dim }
7263 { \dim_max:vn { l_@@_column _ \@@_j: _max_dim } { \pgf@x } }
7264 }
7265 }
7266 }
7267 }

Now, we have to deal with empty rows or empty columns since we don’t have created nodes in such
rows and columns.

7268 \int_step_variable:nnNn \l_@@_first_row_int \g_@@_row_total_int \@@_i:
7269 {
7270 \dim_compare:nNnT
7271 { \dim_use:c { l_@@_row _ \@@_i: _ min _ dim } } = \c_max_dim
7272 {
7273 \@@_qpoint:n { row - \@@_i: - base }
7274 \dim_set:cn { l_@@_row _ \@@_i: _ max _ dim } \pgf@y
7275 \dim_set:cn { l_@@_row _ \@@_i: _ min _ dim } \pgf@y
7276 }
7277 }
7278 \int_step_variable:nnNn \l_@@_first_col_int \g_@@_col_total_int \@@_j:
7279 {
7280 \dim_compare:nNnT
7281 { \dim_use:c { l_@@_column _ \@@_j: _ min _ dim } } = \c_max_dim
7282 {
7283 \@@_qpoint:n { col - \@@_j: }
7284 \dim_set:cn { l_@@_column _ \@@_j: _ max _ dim } \pgf@y
7285 \dim_set:cn { l_@@_column _ \@@_j: _ min _ dim } \pgf@y
7286 }
7287 }
7288 }

Here is the command \@@_create_medium_nodes:. When this command is used, the “medium nodes”
are created.

175

7289 \cs_new_protected:Npn \@@_create_medium_nodes:
7290 {
7291 \pgfpicture
7292 \pgfrememberpicturepositiononpagetrue
7293 \pgf@relevantforpicturesizefalse
7294 \@@_computations_for_medium_nodes:

Now, we can create the “medium nodes”. We use a command \@@_create_nodes: because this
command will also be used for the creation of the “large nodes”.

7295 \tl_set:Nn \l_@@_suffix_tl { -medium }
7296 \@@_create_nodes:
7297 \endpgfpicture
7298 }

The command \@@_create_large_nodes: must be used when we want to create only the “large
nodes” and not the medium ones15. However, the computation of the mathematical coordinates
of the “large nodes” needs the computation of the mathematical coordinates of the “medium
nodes”. Hence, we use first \@@_computations_for_medium_nodes: and then the command
\@@_computations_for_large_nodes:.

7299 \cs_new_protected:Npn \@@_create_large_nodes:
7300 {
7301 \pgfpicture
7302 \pgfrememberpicturepositiononpagetrue
7303 \pgf@relevantforpicturesizefalse
7304 \@@_computations_for_medium_nodes:
7305 \@@_computations_for_large_nodes:
7306 \tl_set:Nn \l_@@_suffix_tl { - large }
7307 \@@_create_nodes:
7308 \endpgfpicture
7309 }

7310 \cs_new_protected:Npn \@@_create_medium_and_large_nodes:
7311 {
7312 \pgfpicture
7313 \pgfrememberpicturepositiononpagetrue
7314 \pgf@relevantforpicturesizefalse
7315 \@@_computations_for_medium_nodes:

Now, we can create the “medium nodes”. We use a command \@@_create_nodes: because this
command will also be used for the creation of the “large nodes”.

7316 \tl_set:Nn \l_@@_suffix_tl { - medium }
7317 \@@_create_nodes:
7318 \@@_computations_for_large_nodes:
7319 \tl_set:Nn \l_@@_suffix_tl { - large }
7320 \@@_create_nodes:
7321 \endpgfpicture
7322 }

For “large nodes”, the exterior rows and columns don’t interfere. That’s why the loop over the
columns will start at 1 and stop at \c@jCol (and not \g_@@_col_total_int). Idem for the rows.

7323 \cs_new_protected:Npn \@@_computations_for_large_nodes:
7324 {
7325 \int_set_eq:NN \l_@@_first_row_int \c_one_int
7326 \int_set_eq:NN \l_@@_first_col_int \c_one_int

We have to change the values of all the dimensions l_@@_row_i_min_dim, l_@@_row_i_max_dim,
l_@@_column_j_min_dim and l_@@_column_j_max_dim.

7327 \int_step_variable:nNn { \c@iRow - 1 } \@@_i:
7328 {
7329 \dim_set:cn { l_@@_row _ \@@_i: _ min _ dim }

15If we want to create both, we have to use \@@_create_medium_and_large_nodes:

176

7330 {
7331 (
7332 \dim_use:c { l_@@_row _ \@@_i: _ min _ dim } +
7333 \dim_use:c { l_@@_row _ \int_eval:n { \@@_i: + 1 } _ max _ dim }
7334)
7335 / 2
7336 }
7337 \dim_set_eq:cc { l_@@_row _ \int_eval:n { \@@_i: + 1 } _ max _ dim }
7338 { l_@@_row_ \@@_i: _min_dim }
7339 }
7340 \int_step_variable:nNn { \c@jCol - 1 } \@@_j:
7341 {
7342 \dim_set:cn { l_@@_column _ \@@_j: _ max _ dim }
7343 {
7344 (
7345 \dim_use:c { l_@@_column _ \@@_j: _ max _ dim } +
7346 \dim_use:c
7347 { l_@@_column _ \int_eval:n { \@@_j: + 1 } _ min _ dim }
7348)
7349 / 2
7350 }
7351 \dim_set_eq:cc { l_@@_column _ \int_eval:n { \@@_j: + 1 } _ min _ dim }
7352 { l_@@_column _ \@@_j: _ max _ dim }
7353 }

Here, we have to use \dim_sub:cn because of the number 1 in the name.
7354 \dim_sub:cn
7355 { l_@@_column _ 1 _ min _ dim }
7356 \l_@@_left_margin_dim
7357 \dim_add:cn
7358 { l_@@_column _ \int_use:N \c@jCol _ max _ dim }
7359 \l_@@_right_margin_dim
7360 }

The command \@@_create_nodes: is used twice: for the construction of the “medium nodes” and for
the construction of the “large nodes”. The nodes are constructed with the value of all the dimensions
l_@@_row_i_min_dim, l_@@_row_i_max_dim, l_@@_column_j_min_dim and l_@@_column_j_max_-
dim. Between the construction of the “medium nodes” and the “large nodes”, the values of these
dimensions are changed.
The function also uses \l_@@_suffix_tl (-medium or -large).

7361 \cs_new_protected:Npn \@@_create_nodes:
7362 {
7363 \int_step_variable:nnNn \l_@@_first_row_int \g_@@_row_total_int \@@_i:
7364 {
7365 \int_step_variable:nnNn \l_@@_first_col_int \g_@@_col_total_int \@@_j:
7366 {

We draw the rectangular node for the cell (\@@_i-\@@_j).
7367 \@@_pgf_rect_node:nnnnn
7368 { \@@_env: - \@@_i: - \@@_j: \l_@@_suffix_tl }
7369 { \dim_use:c { l_@@_column_ \@@_j: _min_dim } }
7370 { \dim_use:c { l_@@_row_ \@@_i: _min_dim } }
7371 { \dim_use:c { l_@@_column_ \@@_j: _max_dim } }
7372 { \dim_use:c { l_@@_row_ \@@_i: _max_dim } }
7373 \str_if_empty:NF \l_@@_name_str
7374 {
7375 \pgfnodealias
7376 { \l_@@_name_str - \@@_i: - \@@_j: \l_@@_suffix_tl }
7377 { \@@_env: - \@@_i: - \@@_j: \l_@@_suffix_tl }
7378 }
7379 }
7380 }
7381 \int_step_inline:nn { \c@iRow }

177

7382 {
7383 \pgfnodealias
7384 { \@@_env: - ##1 - last \l_@@_suffix_tl }
7385 { \@@_env: - ##1 - \int_use:N \c@jCol \l_@@_suffix_tl }
7386 }
7387 \int_step_inline:nn { \c@jCol }
7388 {
7389 \pgfnodealias
7390 { \@@_env: - last - ##1 \l_@@_suffix_tl }
7391 { \@@_env: - \int_use:N \c@iRow - ##1 \l_@@_suffix_tl }
7392 }
7393 \pgfnodealias % added 2025-04-05
7394 { \@@_env: - last - last \l_@@_suffix_tl }
7395 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol \l_@@_suffix_tl }

Now, we create the nodes for the cells of the \multicolumn. We recall that we have stored in
\g_@@_multicolumn_cells_seq the list of the cells where a \multicolumn{n}{...}{...} with n>1
was issued and in \g_@@_multicolumn_sizes_seq the correspondent values of n.

7396 \seq_map_pairwise_function:NNN
7397 \g_@@_multicolumn_cells_seq
7398 \g_@@_multicolumn_sizes_seq
7399 \@@_node_for_multicolumn:nn
7400 }

7401 \cs_new_protected:Npn \@@_extract_coords_values: #1 - #2 \q_stop
7402 {
7403 \cs_set_nopar:Npn \@@_i: { #1 }
7404 \cs_set_nopar:Npn \@@_j: { #2 }
7405 }

The command \@@_node_for_multicolumn:nn takes two arguments. The first is the position of the
cell where the command \multicolumn{n}{...}{...} was issued in the format i-j and the second
is the value of n (the length of the “multi-cell”).

7406 \cs_new_protected:Npn \@@_node_for_multicolumn:nn #1 #2
7407 {
7408 \@@_extract_coords_values: #1 \q_stop
7409 \@@_pgf_rect_node:nnnnn
7410 { \@@_env: - \@@_i: - \@@_j: \l_@@_suffix_tl }
7411 { \dim_use:c { l_@@_column _ \@@_j: _ min _ dim } }
7412 { \dim_use:c { l_@@_row _ \@@_i: _ min _ dim } }
7413 { \dim_use:c { l_@@_column _ \int_eval:n { \@@_j: +#2-1 } _ max _ dim } }
7414 { \dim_use:c { l_@@_row _ \@@_i: _ max _ dim } }
7415 \str_if_empty:NF \l_@@_name_str
7416 {
7417 \pgfnodealias
7418 { \l_@@_name_str - \@@_i: - \@@_j: \l_@@_suffix_tl }
7419 { \int_use:N \g_@@_env_int - \@@_i: - \@@_j: \l_@@_suffix_tl }
7420 }
7421 }

26 The blocks

The following code deals with the command \Block. This command has no direct link with the
environment {NiceMatrixBlock}.

The options of the command \Block will be analyzed first in the cell of the array (and once again
when the block will be put in the array). Here is the set of keys for the first pass (in the cell of the
array).

178

7422 \keys_define:nn { nicematrix / Block / FirstPass }
7423 {
7424 j .code:n = \str_set:Nn \l_@@_hpos_block_str j
7425 \bool_set_true:N \l_@@_p_block_bool ,
7426 j .value_forbidden:n = true ,
7427 l .code:n = \str_set:Nn \l_@@_hpos_block_str l ,
7428 l .value_forbidden:n = true ,
7429 r .code:n = \str_set:Nn \l_@@_hpos_block_str r ,
7430 r .value_forbidden:n = true ,
7431 c .code:n = \str_set:Nn \l_@@_hpos_block_str c ,
7432 c .value_forbidden:n = true ,
7433 L .code:n = \str_set:Nn \l_@@_hpos_block_str l ,
7434 L .value_forbidden:n = true ,
7435 R .code:n = \str_set:Nn \l_@@_hpos_block_str r ,
7436 R .value_forbidden:n = true ,
7437 C .code:n = \str_set:Nn \l_@@_hpos_block_str c ,
7438 C .value_forbidden:n = true ,
7439 t .code:n = \str_set:Nn \l_@@_vpos_block_str t ,
7440 t .value_forbidden:n = true ,
7441 T .code:n = \str_set:Nn \l_@@_vpos_block_str T ,
7442 T .value_forbidden:n = true ,
7443 b .code:n = \str_set:Nn \l_@@_vpos_block_str b ,
7444 b .value_forbidden:n = true ,
7445 B .code:n = \str_set:Nn \l_@@_vpos_block_str B ,
7446 B .value_forbidden:n = true ,
7447 m .code:n = \str_set:Nn \l_@@_vpos_block_str c ,
7448 m .value_forbidden:n = true ,
7449 v-center .meta:n = m ,
7450 p .code:n = \bool_set_true:N \l_@@_p_block_bool ,
7451 p .value_forbidden:n = true ,
7452 color .code:n =
7453 \@@_color:n { #1 }
7454 \tl_set_rescan:Nnn
7455 \l_@@_draw_tl
7456 { \char_set_catcode_other:N ! }
7457 { #1 } ,
7458 color .value_required:n = true ,
7459 respect-arraystretch .code:n =
7460 \cs_set_eq:NN \@@_reset_arraystretch: \prg_do_nothing: ,
7461 respect-arraystretch .value_forbidden:n = true ,
7462 }

The following command \@@_Block: will be linked to \Block in the environments of nicematrix. We
define it with \NewExpandableDocumentCommand because it has an optional argument between <
and >. It’s mandatory to use an expandable command.

7463 \cs_new_protected:Npn \@@_Block: { \@@_collect_options:n { \@@_Block_i: } }

7464 \NewExpandableDocumentCommand \@@_Block_i: { m m D < > { } +m }
7465 {

If the first mandatory argument of the command (which is the size of the block with the syntax i-j)
has not been provided by the user, you use 1-1 (that is to say a block of only one cell).

7466 \tl_if_blank:nTF { #2 }
7467 { \@@_Block_ii:nnnnn \c_one_int \c_one_int }
7468 {
7469 \tl_if_in:nnTF { #2 } { - }
7470 {
7471 \int_compare:nNnTF { \char_value_catcode:n { 45 } } = { 13 }
7472 \@@_Block_i_czech:w \@@_Block_i:w
7473 #2 \q_stop
7474 }
7475 {
7476 \@@_error:nn { Bad~argument~for~Block } { #2 }

179

7477 \@@_Block_ii:nnnnn \c_one_int \c_one_int
7478 }
7479 }
7480 { #1 } { #3 } { #4 }
7481 \ignorespaces
7482 }

With the following construction, we extract the values of i and j in the first mandatory argument of
the command.

7483 \cs_new:Npn \@@_Block_i:w #1-#2 \q_stop { \@@_Block_ii:nnnnn { #1 } { #2 } }

With babel with the key czech, the character - (hyphen) is active. That’s why we need a special
version. Remark that we could not use a preprocessor in the command \@@_Block: to do the job
because the command \@@_Block: is defined with the command \NewExpandableDocumentCommand.

7484 {
7485 \char_set_catcode_active:N -
7486 \cs_new:Npn \@@_Block_i_czech:w #1-#2 \q_stop { \@@_Block_ii:nnnnn { #1 } { #2 } }
7487 }

Now, the arguments have been extracted: #1 is i (the number of rows of the block), #2 is j (the
number of columns of the block), #3 is the list of key=values pairs, #4 are the tokens to put before
the math mode and before the composition of the block and #5 is the label (=content) of the block.

7488 \cs_new_protected:Npn \@@_Block_ii:nnnnn #1 #2 #3 #4 #5
7489 {

We recall that #1 and #2 have been extracted from the first mandatory argument of \Block (which
is of the syntax i-j). However, the user is allowed to omit i or j (or both). We detect that situation
by replacing a missing value by 100 (it’s a convention: when the block will actually be drawn these
values will be detected and interpreted as maximal possible value according to the actual size of the
array).

7490 \bool_lazy_or:nnTF
7491 { \tl_if_blank_p:n { #1 } }
7492 { \str_if_eq_p:ee { * } { #1 } }
7493 { \int_set:Nn \l_tmpa_int { 100 } }
7494 { \int_set:Nn \l_tmpa_int { #1 } }
7495 \bool_lazy_or:nnTF
7496 { \tl_if_blank_p:n { #2 } }
7497 { \str_if_eq_p:ee { * } { #2 } }
7498 { \int_set:Nn \l_tmpb_int { 100 } }
7499 { \int_set:Nn \l_tmpb_int { #2 } }

If the block is mono-column.
7500 \int_compare:nNnTF { \l_tmpb_int } = { \c_one_int }
7501 {
7502 \tl_if_empty:NTF \l_@@_hpos_cell_tl
7503 { \str_set_eq:NN \l_@@_hpos_block_str \c_@@_c_str }
7504 { \str_set:No \l_@@_hpos_block_str \l_@@_hpos_cell_tl }
7505 }
7506 { \str_set_eq:NN \l_@@_hpos_block_str \c_@@_c_str }

The value of \l_@@_hpos_block_str may be modified by the keys of the command \Block that we
will analyze now.

7507 \keys_set_known:nn { nicematrix / Block / FirstPass } { #3 }

7508 \tl_set:Ne \l_tmpa_tl
7509 {
7510 { \int_use:N \c@iRow }
7511 { \int_use:N \c@jCol }
7512 { \int_eval:n { \c@iRow + \l_tmpa_int - 1 } }
7513 { \int_eval:n { \c@jCol + \l_tmpb_int - 1 } }
7514 }

180

Now, \l_tmpa_tl contains an “object” corresponding to the position of the block with four compo-
nents, each of them surrounded by curly brackets:
{imin}{jmin}{imax}{jmax}.

We have different treatments when the key p is used and when the block is mono-column or
mono-row, etc. That’s why we have several macros: \@@_Block_iv:nnnnn, \@@_Block_v:nnnnn,
\@@_Block_vi:nnnn, etc. (the five arguments of those macros are provided by curryfication).

7515 \bool_set_false:N \l_tmpa_bool
7516 \bool_if:NT \l_@@_amp_in_blocks_bool

\tl_if_in:nnT is slightly faster than \str_if_in:nnT.
7517 { \tl_if_in:nnT { #5 } { & } { \bool_set_true:N \l_tmpa_bool } }
7518 \bool_case:nF
7519 {
7520 \l_tmpa_bool { \@@_Block_vii:eennn }
7521 \l_@@_p_block_bool { \@@_Block_vi:eennn }

For the blocks mono-column, we will compose right away in a box in order to compute its width and
take that width into account for the width of the column. However, if the column is a X column, we
should not do that since the width is determined by another way. This should be the same for the
p, m and b columns and we should modify that point. However, for the X column, it’s imperative.
Otherwise, the process for the determination of the widths of the columns will be wrong.

7522 \l_@@_X_bool { \@@_Block_v:eennn }
7523 { \tl_if_empty_p:n { #5 } } { \@@_Block_v:eennn }
7524 { \int_compare_p:nNn \l_tmpa_int = \c_one_int } { \@@_Block_iv:eennn }
7525 { \int_compare_p:nNn \l_tmpb_int = \c_one_int } { \@@_Block_iv:eennn }
7526 }
7527 { \@@_Block_v:eennn }
7528 { \l_tmpa_int } { \l_tmpb_int } { #3 } { #4 } { #5 }
7529 }

The following macro is for the case of a \Block which is mono-row or mono-column (or both) and
don’t use the key p. In that case, the content of the block is composed right away in a box (because we
have to take into account the dimensions of that box for the width of the current column or the height
and the depth of the current row). However, that box will be put in the array after the construction
of the array (by using pgf) with \@@_draw_blocks: and above all \@@_Block_v:nnnnnn which will
do the main job.
#1 is i (the number of rows of the block), #2 is j (the number of columns of the block), #3 is the
list of key=values pairs, #4 are the tokens to put before the potential math mode and before the
composition of the block and #5 is the label (=content) of the block.

7530 \cs_new_protected:Npn \@@_Block_iv:nnnnn #1 #2 #3 #4 #5
7531 {
7532 \int_gincr:N \g_@@_block_box_int
7533 \cs_set_eq:NN \cellcolor \@@_cellcolor_error
7534 \cs_set_eq:NN \rowcolor \@@_rowcolor_error
7535 \cs_set_protected_nopar:Npn \diagbox ##1 ##2
7536 {
7537 \tl_gput_right:Ne \g_@@_pre_code_after_tl
7538 {
7539 \@@_actually_diagbox:nnnnnn
7540 { \int_use:N \c@iRow }
7541 { \int_use:N \c@jCol }
7542 { \int_eval:n { \c@iRow + #1 - 1 } }
7543 { \int_eval:n { \c@jCol + #2 - 1 } }
7544 { \g_@@_row_style_tl \exp_not:n { ##1 } }
7545 { \g_@@_row_style_tl \exp_not:n { ##2 } }
7546 }
7547 }
7548 \box_gclear_new:c
7549 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }

181

Now, we will actually compose the content of the \Block in a TeX box. Be careful: if after the
construction of the box, the boolean \g_@@_rotate_bool is raised (which means that the command
\rotate was present in the content of the \Block) we will rotate the box but also, maybe, change
the position of the baseline!

7550 \hbox_gset:cn
7551 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7552 {

For a mono-column block, if the user has specified a color for the column in the preamble of the
array, we want to fix that color in the box we construct. We do that with \set@color and not
\color_ensure_current: (in order to use \color_ensure_current: safely, you should load l3back-
end before the \documentclass).

7553 \tl_if_empty:NTF \l_@@_color_tl
7554 { \int_compare:nNnT { #2 } = { \c_one_int } { \set@color } }
7555 { \@@_color:o \l_@@_color_tl }

If the block is mono-row, we use \g_@@_row_style_tl even if it has yet been used in the beginning of
the cell where the command \Block has been issued because we want to be able to take into account
a potential instruction of color of the font in \g_@@_row_style_tl.

7556 \int_compare:nNnT { #1 } = { \c_one_int }
7557 {
7558 \int_if_zero:nTF { \c@iRow }
7559 {

In the following code, the value of code-for-first-row contains a \Block (in order to have the “first
row” centered). But, that block will be executed, since it is entirely contained in the first row, the
value of code-for-first-row will be inserted once again... with the same command \Block. That’s
why we have to nullify the command \Block.

$\begin{bNiceMatrix}%
[
r,
first-row,
last-col,
code-for-first-row = \Block{}{\scriptstyle\color{blue} \arabic{jCol}},
code-for-last-col = \scriptstyle \color{blue} \arabic{iRow}

]
& & & & \\

-2 & 3 & -4 & 5 & \\
3 & -4 & 5 & -6 & \\
-4 & 5 & -6 & 7 & \\
5 & -6 & 7 & -8 & \\

\end{bNiceMatrix}$

7560 \cs_set_eq:NN \Block \@@_NullBlock:
7561 \l_@@_code_for_first_row_tl
7562 }
7563 {
7564 \int_compare:nNnT { \c@iRow } = { \l_@@_last_row_int }
7565 {
7566 \cs_set_eq:NN \Block \@@_NullBlock:
7567 \l_@@_code_for_last_row_tl
7568 }
7569 }
7570 \g_@@_row_style_tl
7571 }

The following command will be no-op when respect-arraystretch is in force.
7572 \@@_reset_arraystretch:
7573 \dim_zero:N \extrarowheight

#4 is the optional argument of the command \Block, provided with the syntax <...>.
7574 #4

182

We adjust \l_@@_hpos_block_str when \rotate has been used (in the cell where the command
\Block is used but maybe in #4, \RowStyle, code-for-first-row, etc.).

7575 \@@_adjust_hpos_rotate:

The boolean \g_@@_rotate_bool will be also considered after the composition of the box (in order
to rotate the box).

Remind that we are in the command of composition of the box of the block. Previously, we have
only done some tuning. Now, we will actually compose the content with a {tabular}, an {array}
or a {minipage}.

7576 \bool_if:NTF \l_@@_tabular_bool
7577 {
7578 \bool_lazy_all:nTF
7579 {
7580 { \int_compare_p:nNn { #2 } = { \c_one_int } }

Remind that, when the column has not a fixed width, the dimension \l_@@_col_width_dim has the
conventional value of −1 cm.

7581 {
7582 ! \dim_compare_p:nNn
7583 { \l_@@_col_width_dim } < { \c_zero_dim }
7584 }
7585 { ! \g_@@_rotate_bool }
7586 }

When the block is mono-column in a column with a fixed width (e.g. p{3cm}), we use a {minipage}.
7587 {
7588 \use:e
7589 {

Curiously, \exp_not:N is still mandatory when tagging=on.
7590 \exp_not:N \begin { minipage }
7591 [\str_lowercase:f \l_@@_vpos_block_str]
7592 { \l_@@_col_width_dim }
7593 \str_case:on \l_@@_hpos_block_str
7594 { c \centering r \raggedleft l \raggedright }
7595 }
7596 #5
7597 \end { minipage }
7598 }

In the other cases, we use a {tabular}.
7599 {
7600 \use:e
7601 {

Curiously, \exp_not:N is still mandatory when tagging=on.
7602 \exp_not:N \begin { tabular }
7603 [\str_lowercase:f \l_@@_vpos_block_str]
7604 { @ { } \l_@@_hpos_block_str @ { } }
7605 }
7606 #5
7607 \end { tabular }
7608 }
7609 }

If we are in a mathematical array (\l_@@_tabular_bool is false). The composition is always done
with an {array} (never with a {minipage}).

7610 {
7611 $ % $
7612 \use:e
7613 {

183

Curiously, \exp_not:N is still mandatory when tagging=on.
7614 \exp_not:N \begin { array }
7615 [\str_lowercase:f \l_@@_vpos_block_str]
7616 { @ { } \l_@@_hpos_block_str @ { } }
7617 }
7618 #5
7619 \end { array }
7620 $ % $
7621 }
7622 }

The box which will contain the content of the block has now been composed.

If there were \rotate (which raises \g_@@_rotate_bool) in the content of the \Block, we do a
rotation of the box (and we also adjust the baseline of the rotated box).

7623 \bool_if:NT \g_@@_rotate_bool { \@@_rotate_box_of_block: }

If we are in a mono-column block, we take into account the width of that block for the width of the
column.

7624 \int_compare:nNnT { #2 } = { \c_one_int }
7625 {
7626 \dim_gset:Nn \g_@@_blocks_wd_dim
7627 {
7628 \dim_max:nn
7629 { \g_@@_blocks_wd_dim }
7630 {
7631 \box_wd:c
7632 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7633 }
7634 }
7635 }

If we are in a mono-row block we take into account the height and the depth of that block for
the height and the depth of the row, excepted when the block uses explicitely an option of vertical
position T or B. Remind that if the user has not used a key for the vertical position of the block, then
\l_@@_vpos_block_str remains empty.

7636 \int_compare:nNnT { #1 } = { \c_one_int }
7637 {
7638 \bool_lazy_any:nT
7639 {
7640 { \str_if_empty_p:N \l_@@_vpos_block_str }
7641 { \str_if_eq_p:ee { \l_@@_vpos_block_str } { t } }
7642 { \str_if_eq_p:ee { \l_@@_vpos_block_str } { b } }
7643 }
7644 { \@@_adjust_blocks_ht_dp: }
7645 }
7646 \seq_gput_right:Ne \g_@@_blocks_seq
7647 {
7648 \l_tmpa_tl

In the list of options #3, maybe there is a key for the horizontal alignment (l, r or c). In that
case, that key has been read and stored in \l_@@_hpos_block_str. However, maybe there were
no key of the horizontal alignment and that’s why we put a key corresponding to the value of
\l_@@_hpos_block_str, which is fixed by the type of current column.

7649 {
7650 \exp_not:n { #3 } ,
7651 \l_@@_hpos_block_str ,

Now, we put a key for the vertical alignment.
7652 \bool_if:NT \g_@@_rotate_bool
7653 {
7654 \bool_if:NTF \g_@@_rotate_c_bool
7655 { m }
7656 {

184

7657 \int_compare:nNnT { \c@iRow } = { \l_@@_last_row_int }
7658 { T }
7659 }
7660 }
7661 }
7662 {
7663 \box_use_drop:c
7664 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7665 }
7666 }
7667 \bool_set_false:N \g_@@_rotate_c_bool
7668 }

7669 \cs_new_protected:Npn \@@_adjust_blocks_ht_dp:
7670 {
7671 \dim_gset:Nn \g_@@_blocks_ht_dim
7672 {
7673 \dim_max:nn
7674 { \g_@@_blocks_ht_dim }
7675 {
7676 \box_ht:c
7677 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7678 }
7679 }
7680 \dim_gset:Nn \g_@@_blocks_dp_dim
7681 {
7682 \dim_max:nn
7683 { \g_@@_blocks_dp_dim }
7684 {
7685 \box_dp:c
7686 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7687 }
7688 }
7689 }

7690 \cs_new:Npn \@@_adjust_hpos_rotate:
7691 {
7692 \bool_if:NT \g_@@_rotate_bool
7693 {
7694 \str_set:Ne \l_@@_hpos_block_str
7695 {
7696 \bool_if:NTF \g_@@_rotate_c_bool
7697 { c }
7698 {
7699 \str_case:onF \l_@@_vpos_block_str
7700 { b l B l t r T r }
7701 {
7702 \int_compare:nNnTF { \c@iRow } = { \l_@@_last_row_int }
7703 { r }
7704 { l }
7705 }
7706 }
7707 }
7708 }
7709 }
7710 \cs_generate_variant:Nn \@@_Block_iv:nnnnn { e e }

Despite its name the following command rotates the box of the block but also does vertical adjustment
of the baseline of the block.

7711 \cs_new_protected:Npn \@@_rotate_box_of_block:
7712 {
7713 \box_grotate:cn

185

7714 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7715 { 90 }
7716 \int_compare:nNnT { \c@iRow } = { \l_@@_last_row_int }
7717 {
7718 \vbox_gset_top:cn
7719 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7720 {
7721 \skip_vertical:n { 0.8 ex }
7722 \box_use:c
7723 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7724 }
7725 }
7726 \bool_if:NT \g_@@_rotate_c_bool
7727 {
7728 \hbox_gset:cn
7729 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7730 {
7731 $ % $
7732 \vcenter
7733 {
7734 \box_use:c
7735 { g_@@_ block _ box _ \int_use:N \g_@@_block_box_int _ box }
7736 }
7737 $ % $
7738 }
7739 }
7740 }

The following macro is for the standard case, where the block is not mono-row and not mono-column
and does not use the key p). In that case, the content of the block is not composed right away in
a box. The composition in a box will be done further, just after the construction of the array (cf.
\@@_draw_blocks: and above all \@@_Block_v:nnnnnn).
#1 is i (the number of rows of the block), #2 is j (the number of columns of the block), #3 is the list
of key=values pairs, #4 are the tokens to put before the math mode and before the composition of
the block and #5 is the label (=content) of the block.

7741 \cs_new_protected:Npn \@@_Block_v:nnnnn #1 #2 #3 #4 #5
7742 {
7743 \seq_gput_right:Ne \g_@@_blocks_seq
7744 {
7745 \l_tmpa_tl
7746 { \exp_not:n { #3 } }
7747 {
7748 \bool_if:NTF \l_@@_tabular_bool
7749 {
7750 \group_begin:

The following command will be no-op when respect-arraystretch is in force.
7751 \@@_reset_arraystretch:
7752 \exp_not:n
7753 {
7754 \dim_zero:N \extrarowheight
7755 #4

If the box is rotated (the key \rotate may be in the previous #4), the tabular used for the content
of the cell will be constructed with a format c. In the other cases, the tabular will be constructed
with a format equal to the key of position of the box. In other words: the alignment internal to the
tabular is the same as the external alignment of the tabular (that is to say the position of the block
in its zone of merged cells).

7756 \tag_if_active:T { \tag_stop:n { table } }
7757 \use:e
7758 {
7759 \exp_not:N \begin { tabular } [\l_@@_vpos_block_str]
7760 { @ { } \l_@@_hpos_block_str @ { } }

186

7761 }
7762 #5
7763 \end { tabular }
7764 }
7765 \group_end:
7766 }

When we are not in an environment {NiceTabular} (or similar).
7767 {
7768 \group_begin:

The following will be no-op when respect-arraystretch is in force.
7769 \@@_reset_arraystretch:
7770 \exp_not:n
7771 {
7772 \dim_zero:N \extrarowheight
7773 #4
7774 $ % $
7775 \use:e
7776 {
7777 \exp_not:N \begin { array } [\l_@@_vpos_block_str]
7778 { @ { } \l_@@_hpos_block_str @ { } }
7779 }
7780 #5
7781 \end { array }
7782 $ % $
7783 }
7784 \group_end:
7785 }
7786 }
7787 }
7788 }
7789 \cs_generate_variant:Nn \@@_Block_v:nnnnn { e e }

The following macro is for the case of a \Block which uses the key p.
7790 \cs_new_protected:Npn \@@_Block_vi:nnnnn #1 #2 #3 #4 #5
7791 {
7792 \seq_gput_right:Ne \g_@@_blocks_seq
7793 {
7794 \l_tmpa_tl
7795 { \exp_not:n { #3 } }

Here, the curly braces for the group are mandatory.
7796 { { \exp_not:n { #4 #5 } } }
7797 }
7798 }
7799 \cs_generate_variant:Nn \@@_Block_vi:nnnnn { e e }

The following macro is also for the case of a \Block which uses the key p.
7800 \cs_new_protected:Npn \@@_Block_vii:nnnnn #1 #2 #3 #4 #5
7801 {
7802 \seq_gput_right:Ne \g_@@_blocks_seq
7803 {
7804 \l_tmpa_tl
7805 { \exp_not:n { #3 } }
7806 { \exp_not:n { #4 #5 } }
7807 }
7808 }
7809 \cs_generate_variant:Nn \@@_Block_vii:nnnnn { e e }

We recall that the options of the command \Block are analyzed twice: first in the cell of the array
and once again when the block will be put in the array after the construction of the array (by using
pgf).

187

7810 \keys_define:nn { nicematrix / Block / SecondPass }
7811 {
7812 ampersand-in-blocks .bool_set:N = \l_@@_amp_in_blocks_bool ,
7813 ampersand-in-blocks .default:n = true ,
7814 &-in-blocks .meta:n = ampersand-in-blocks ,

The sequence \l_@@_tikz_seq will contain a sequence of comma-separated lists of keys.
7815 tikz .code:n =
7816 \IfPackageLoadedTF { tikz }
7817 { \seq_put_right:Nn \l_@@_tikz_seq { { #1 } } }
7818 { \@@_error:n { tikz~key~without~tikz } } ,
7819 tikz .value_required:n = true ,
7820 fill .code:n =
7821 \tl_set_rescan:Nnn
7822 \l_@@_fill_tl
7823 { \char_set_catcode_other:N ! }
7824 { #1 } ,
7825 fill .value_required:n = true ,

In fine, the opacity will be applied by \pgfsetfillopacity.
7826 opacity .tl_set:N = \l_@@_opacity_tl ,
7827 opacity .value_required:n = true ,
7828 draw .code:n =
7829 \tl_set_rescan:Nnn
7830 \l_@@_draw_tl
7831 { \char_set_catcode_other:N ! }
7832 { #1 } ,
7833 draw .default:n = default ,
7834 rounded-corners .dim_set:N = \l_@@_rounded_corners_dim ,
7835 rounded-corners .default:n = 4 pt ,
7836 color .code:n =
7837 \@@_color:n { #1 }
7838 \tl_set_rescan:Nnn
7839 \l_@@_draw_tl
7840 { \char_set_catcode_other:N ! }
7841 { #1 } ,
7842 borders .clist_set:N = \l_@@_borders_clist ,
7843 borders .value_required:n = true ,
7844 hvlines .meta:n = { vlines , hlines } ,
7845 vlines .bool_set:N = \l_@@_vlines_block_bool,
7846 vlines .default:n = true ,
7847 hlines .bool_set:N = \l_@@_hlines_block_bool,
7848 hlines .default:n = true ,
7849 line-width .dim_set:N = \l_@@_line_width_dim ,
7850 line-width .value_required:n = true ,

Some keys have not a property .value_required:n (or similar) because they are in FirstPass.
7851 j .code:n = \str_set:Nn \l_@@_hpos_block_str j
7852 \bool_set_true:N \l_@@_p_block_bool ,
7853 l .code:n = \str_set:Nn \l_@@_hpos_block_str l ,
7854 r .code:n = \str_set:Nn \l_@@_hpos_block_str r ,
7855 c .code:n = \str_set:Nn \l_@@_hpos_block_str c ,
7856 L .code:n = \str_set:Nn \l_@@_hpos_block_str l
7857 \bool_set_true:N \l_@@_hpos_of_block_cap_bool ,
7858 R .code:n = \str_set:Nn \l_@@_hpos_block_str r
7859 \bool_set_true:N \l_@@_hpos_of_block_cap_bool ,
7860 C .code:n = \str_set:Nn \l_@@_hpos_block_str c
7861 \bool_set_true:N \l_@@_hpos_of_block_cap_bool ,
7862 t .code:n = \str_set:Nn \l_@@_vpos_block_str t ,
7863 T .code:n = \str_set:Nn \l_@@_vpos_block_str T ,
7864 b .code:n = \str_set:Nn \l_@@_vpos_block_str b ,
7865 B .code:n = \str_set:Nn \l_@@_vpos_block_str B ,
7866 m .code:n = \str_set:Nn \l_@@_vpos_block_str c ,
7867 m .value_forbidden:n = true ,
7868 v-center .meta:n = m ,

188

7869 p .code:n = \bool_set_true:N \l_@@_p_block_bool ,
7870 p .value_forbidden:n = true ,
7871 name .tl_set:N = \l_@@_block_name_str , % .str_set:N ?
7872 name .value_required:n = true ,
7873 name .initial:n = ,
7874 respect-arraystretch .code:n =
7875 \cs_set_eq:NN \@@_reset_arraystretch: \prg_do_nothing: ,
7876 respect-arraystretch .value_forbidden:n = true ,
7877 transparent .bool_set:N = \l_@@_transparent_bool ,
7878 transparent .default:n = true ,
7879 transparent .initial:n = false ,
7880 unknown .code:n =
7881 \@@_unknown_key:nn
7882 { nicematrix / Block / SecondPass }
7883 { Unknown~key~for~Block }
7884 }

The command \@@_draw_blocks: will draw all the blocks. This command is used after the construc-
tion of the array. We have to revert to a clean version of \ialign because there may be tabulars in
the \Block instructions that will be composed now.

7885 \cs_new_protected:Npn \@@_draw_blocks:
7886 {
7887 \bool_if:NTF \c_@@_revtex_bool
7888 { \cs_set_eq:NN \ialign \@@_old_ialign: }
7889 { \cs_set_eq:NN \ar@ialign \@@_old_ar@ialign: }
7890 \seq_map_inline:Nn \g_@@_blocks_seq { \@@_Block_iv:nnnnnn ##1 }
7891 }

7892 \cs_new_protected:Npn \@@_Block_iv:nnnnnn #1 #2 #3 #4 #5 #6
7893 {

The integer \l_@@_last_row_int will be the last row of the block and \l_@@_last_col_int its last
column.

7894 \int_zero:N \l_@@_last_row_int
7895 \int_zero:N \l_@@_last_col_int

We remind that the first mandatory argument of the command \Block is the size of the block with
the special format i-j. However, the user is allowed to omit i or j (or both). This will be interpreted
as follows: the last row (resp. column) of the block will be the last row (resp. column) of the block
(without the potential exterior row—resp. column—of the array). By convention, this is stored in
\g_@@_blocks_seq as a number of rows (resp. columns) for the block equal to 100. That’s what we
detect now (we write 98 for the case the the command \Block has been issued in the “first row”).

7896 \int_compare:nNnTF { #3 } > { 98 }
7897 { \int_set_eq:NN \l_@@_last_row_int \c@iRow }
7898 { \int_set:Nn \l_@@_last_row_int { #3 } }
7899 \int_compare:nNnTF { #4 } > { 98 }
7900 { \int_set_eq:NN \l_@@_last_col_int \c@jCol }
7901 { \int_set:Nn \l_@@_last_col_int { #4 } }

7902 \int_compare:nNnTF { \l_@@_last_col_int } > { \g_@@_col_total_int }
7903 {
7904 \bool_lazy_and:nnTF
7905 { \l_@@_preamble_bool }
7906 {
7907 \int_compare_p:n
7908 { \l_@@_last_col_int <= \g_@@_static_num_of_col_int }
7909 }
7910 {
7911 \msg_error:nnnn { nicematrix } { Block~too~large~2 } { #1 } { #2 }
7912 \@@_msg_redirect_name:nn { Block~too~large~2 } { none }
7913 \@@_msg_redirect_name:nn { columns~not~used } { none }
7914 }
7915 { \msg_error:nnnn { nicematrix } { Block~too~large~1 } { #1 } { #2 } }
7916 }

189

7917 {
7918 \int_compare:nNnTF { \l_@@_last_row_int } > { \g_@@_row_total_int }
7919 { \msg_error:nnnn { nicematrix } { Block~too~large~1 } { #1 } { #2 } }
7920 {
7921 \@@_Block_v:nneenn
7922 { #1 }
7923 { #2 }
7924 { \int_use:N \l_@@_last_row_int }
7925 { \int_use:N \l_@@_last_col_int }
7926 { #5 }
7927 { #6 }
7928 }
7929 }
7930 }

The following command \@@_Block_v:nnnnnn will actually draw the block. #1 is the first row of the
block; #2 is the first column of the block; #3 is the last row of the block; #4 is the last column of the
block; #5 is a list of key=value options; #6 is the label (content) of the block.

7931 \cs_new_protected:Npn \@@_Block_v:nnnnnn #1 #2 #3 #4 #5 #6
7932 {

The group is for the keys.
7933 \group_begin:
7934 \int_compare:nNnT { #1 } = { #3 }
7935 { \str_set:Nn \l_@@_vpos_block_str { t } }
7936 \keys_set:nn { nicematrix / Block / SecondPass } { #5 }

If the content of the block contains &, we will have a special treatment (since the cell must be divided
in several sub-cells). Remark that \tl_if_in:nnT is faster then \str_if_in:nnT.

7937 \tl_if_in:nnT { #6 } { & } { \bool_set_true:N \l_@@_ampersand_bool }

7938 \bool_lazy_and:nnT
7939 { \l_@@_vlines_block_bool }
7940 { ! \l_@@_ampersand_bool }
7941 {
7942 \tl_gput_right:Ne \g_nicematrix_code_after_tl
7943 {
7944 \@@_vlines_block:nnn
7945 { \exp_not:n { #5 } }
7946 { #1 - #2 }
7947 { \int_use:N \l_@@_last_row_int - \int_use:N \l_@@_last_col_int }
7948 }
7949 }
7950 \bool_if:NT \l_@@_hlines_block_bool
7951 {
7952 \tl_gput_right:Ne \g_nicematrix_code_after_tl
7953 {
7954 \@@_hlines_block:nnn
7955 { \exp_not:n { #5 } }
7956 { #1 - #2 }
7957 { \int_use:N \l_@@_last_row_int - \int_use:N \l_@@_last_col_int }
7958 }
7959 }
7960 \bool_if:NF \l_@@_transparent_bool
7961 {
7962 \bool_lazy_and:nnF { \l_@@_vlines_block_bool } { \l_@@_hlines_block_bool }
7963 {

The sequence of the positions of the blocks (excepted the blocks with the key hvlines) will be used
when drawing the rules (in fact, there is also the \multicolumn and the \diagbox in that sequence).

7964 \seq_gput_left:Ne \g_@@_pos_of_blocks_seq
7965 { { #1 } { #2 } { #3 } { #4 } { \l_@@_block_name_str } }
7966 }
7967 }

190

7968 \tl_if_empty:NF \l_@@_draw_tl
7969 {
7970 \bool_lazy_or:nnT \l_@@_hlines_block_bool \l_@@_vlines_block_bool
7971 { \@@_error:n { hlines~with~color } }
7972 \tl_gput_right:Ne \g_nicematrix_code_after_tl
7973 {
7974 \@@_stroke_block:nnn

#5 are the options
7975 { \exp_not:n { #5 } }
7976 { #1 - #2 }
7977 { \int_use:N \l_@@_last_row_int - \int_use:N \l_@@_last_col_int }
7978 }
7979 \seq_gput_right:Nn \g_@@_pos_of_stroken_blocks_seq
7980 { { #1 } { #2 } { #3 } { #4 } }
7981 }

7982 \clist_if_empty:NF \l_@@_borders_clist
7983 {
7984 \tl_gput_right:Ne \g_nicematrix_code_after_tl
7985 {
7986 \@@_stroke_borders_block:nnn
7987 { \exp_not:n { #5 } }
7988 { #1 - #2 }
7989 { \int_use:N \l_@@_last_row_int - \int_use:N \l_@@_last_col_int }
7990 }
7991 }

7992 \tl_if_empty:NF \l_@@_fill_tl
7993 {
7994 \@@_add_opacity_to_fill:
7995 \tl_gput_right:Ne \g_@@_pre_code_before_tl
7996 {
7997 \@@_exp_color_arg:No \@@_roundedrectanglecolor \l_@@_fill_tl
7998 { #1 - #2 }
7999 { \int_use:N \l_@@_last_row_int - \int_use:N \l_@@_last_col_int }
8000 { \dim_use:N \l_@@_rounded_corners_dim }
8001 }
8002 }

8003 \seq_if_empty:NF \l_@@_tikz_seq
8004 {
8005 \tl_gput_right:Ne \g_nicematrix_code_before_tl
8006 {
8007 \@@_block_tikz:nnnnn
8008 { \seq_use:Nn \l_@@_tikz_seq { , } }
8009 { #1 }
8010 { #2 }
8011 { \int_use:N \l_@@_last_row_int }
8012 { \int_use:N \l_@@_last_col_int }

We will have in that last field a list of lists of TikZ keys.
8013 }
8014 }

8015 \cs_set_protected_nopar:Npn \diagbox ##1 ##2
8016 {
8017 \tl_gput_right:Ne \g_@@_pre_code_after_tl
8018 {
8019 \@@_actually_diagbox:nnnnnn
8020 { #1 }
8021 { #2 }
8022 { \int_use:N \l_@@_last_row_int }
8023 { \int_use:N \l_@@_last_col_int }
8024 { \exp_not:n { ##1 } }
8025 { \exp_not:n { ##2 } }

191

8026 }
8027 }

Let’s consider the following {NiceTabular}. Because of the instruction !{\hspace{1cm}} in the
preamble which increases the space between the columns (by adding, in fact, that space to the
previous column, that is to say the second column of the tabular), we will create two nodes relative
to the block: the node 1-1-block and the node 1-1-block-short.

\begin{NiceTabular}{cc!{\hspace{1cm}}c}
\Block{2-2}{our block} & & one \\

& & two \\
three & four & five \\
six & seven & eight \\
\end{NiceTabular}

We highlight the node 1-1-block We highlight the node 1-1-block-short

one
two

three four five
six seven eight

our block one
two

three four five
six seven eight

our block

The construction of the node corresponding to the merged cells.
8028 \pgfpicture
8029 \pgfrememberpicturepositiononpagetrue
8030 \pgf@relevantforpicturesizefalse
8031 \@@_qpoint:n { row - #1 }
8032 \dim_set_eq:NN \l_tmpa_dim \pgf@y
8033 \@@_qpoint:n { col - #2 }
8034 \dim_set_eq:NN \l_tmpb_dim \pgf@x
8035 \@@_qpoint:n { row - \int_eval:n { \l_@@_last_row_int + 1 } }
8036 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
8037 \@@_qpoint:n { col - \int_eval:n { \l_@@_last_col_int + 1 } }
8038 \dim_set_eq:NN \l_@@_tmpd_dim \pgf@x

We construct the node for the block with the name (#1-#2-block).
The function \@@_pgf_rect_node:nnnnn takes in as arguments the name of the node and the four
coordinates of two opposite corner points of the rectangle.

8039 \@@_pgf_rect_node:nnnnn
8040 { \@@_env: - #1 - #2 - block }
8041 \l_tmpb_dim \l_tmpa_dim \l_@@_tmpd_dim \l_@@_tmpc_dim
8042 \str_if_empty:NF \l_@@_block_name_str
8043 {
8044 \pgfnodealias
8045 { \@@_env: - \l_@@_block_name_str }
8046 { \@@_env: - #1 - #2 - block }
8047 \str_if_empty:NF \l_@@_name_str
8048 {
8049 \pgfnodealias
8050 { \l_@@_name_str - \l_@@_block_name_str }
8051 { \@@_env: - #1 - #2 - block }
8052 }
8053 }

Now, we create the “short node” which, in general, will be used to put the label (that is to say the
content of the node). However, if one the keys L, C or R is used (that information is provided by the
boolean \l_@@_hpos_of_block_cap_bool), we don’t need to create that node since the normal node
is used to put the label.

8054 \bool_if:NF \l_@@_hpos_of_block_cap_bool
8055 {
8056 \dim_set_eq:NN \l_tmpb_dim \c_max_dim

192

The short node is constructed by taking into account the contents of the columns involved in at least
one cell of the block. That’s why we have to do a loop over the rows of the array.

8057 \int_step_inline:nnn { \l_@@_first_row_int } { \g_@@_row_total_int }
8058 {

We recall that, when a cell is empty, no (normal) node is created in that cell. That’s why we test the
existence of the node before using it.

8059 \cs_if_exist:cT
8060 { pgf @ sh @ ns @ \@@_env: - ##1 - #2 }
8061 {
8062 \seq_if_in:NnF \g_@@_multicolumn_cells_seq { ##1 - #2 }
8063 {
8064 \pgfpointanchor { \@@_env: - ##1 - #2 } { west }
8065 \dim_set:Nn \l_tmpb_dim { \dim_min:nn \l_tmpb_dim \pgf@x }
8066 }
8067 }
8068 }

If all the cells of the column were empty, \l_tmpb_dim has still the same value \c_max_dim. In that
case, you use for \l_tmpb_dim the value of the position of the vertical rule.

8069 \dim_compare:nNnT { \l_tmpb_dim } = { \c_max_dim }
8070 {
8071 \@@_qpoint:n { col - #2 }
8072 \dim_set_eq:NN \l_tmpb_dim \pgf@x
8073 }
8074 \dim_set:Nn \l_@@_tmpd_dim { - \c_max_dim }
8075 \int_step_inline:nnn { \l_@@_first_row_int } { \g_@@_row_total_int }
8076 {
8077 \cs_if_exist:cT
8078 { pgf @ sh @ ns @ \@@_env: - ##1 - \int_use:N \l_@@_last_col_int }
8079 {
8080 \seq_if_in:NnF \g_@@_multicolumn_cells_seq { ##1 - #2 }
8081 {
8082 \pgfpointanchor
8083 { \@@_env: - ##1 - \int_use:N \l_@@_last_col_int }
8084 { east }
8085 \dim_set:Nn \l_@@_tmpd_dim
8086 { \dim_max:nn { \l_@@_tmpd_dim } { \pgf@x } }
8087 }
8088 }
8089 }
8090 \dim_compare:nNnT { \l_@@_tmpd_dim } = { - \c_max_dim }
8091 {
8092 \@@_qpoint:n { col - \int_eval:n { \l_@@_last_col_int + 1 } }
8093 \dim_set_eq:NN \l_@@_tmpd_dim \pgf@x
8094 }
8095 \@@_pgf_rect_node:nnnnn
8096 { \@@_env: - #1 - #2 - block - short }
8097 \l_tmpb_dim \l_tmpa_dim \l_@@_tmpd_dim \l_@@_tmpc_dim
8098 }

If the creation of the “medium nodes” is required, we create a “medium node” for the block. The
function \@@_pgf_rect_node:nnn takes in as arguments the name of the node and two pgf points.

8099 \bool_if:NT \l_@@_medium_nodes_bool
8100 {
8101 \@@_pgf_rect_node:nnn
8102 { \@@_env: - #1 - #2 - block - medium }
8103 { \pgfpointanchor { \@@_env: - #1 - #2 - medium } { north~west } }
8104 {
8105 \pgfpointanchor
8106 { \@@_env:
8107 - \int_use:N \l_@@_last_row_int
8108 - \int_use:N \l_@@_last_col_int - medium
8109 }

193

8110 { south~east }
8111 }
8112 }
8113 \endpgfpicture
8114

\l_@@_ampersand_bool is raised when the content of the block actually contents an ampersand &.
8115 \bool_if:NTF \l_@@_ampersand_bool
8116 {
8117 \seq_set_split:Nnn \l_tmpa_seq { & } { #6 }
8118 \int_zero_new:N \l_@@_split_int
8119 \int_set:Nn \l_@@_split_int { \seq_count:N \l_tmpa_seq }

The following counters will be used to send information to \cellcolor if the user uses that command
in a subcell.

8120 \int_zero_new:N \l_@@_first_row_int
8121 \int_zero_new:N \l_@@_first_col_int
8122 \int_zero_new:N \l_@@_last_row_int
8123 \int_zero_new:N \l_@@_last_col_int
8124 \int_set:Nn \l_@@_first_row_int { #1 }
8125 \int_set:Nn \l_@@_first_col_int { #2 }
8126 \int_set:Nn \l_@@_last_row_int { #3 }
8127 \int_set:Nn \l_@@_last_col_int { #4 }

8128 \pgfpicture
8129 \pgfrememberpicturepositiononpagetrue
8130 \pgf@relevantforpicturesizefalse
8131 \@@_qpoint:n { row - #1 }
8132 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
8133 \@@_qpoint:n { row - \int_eval:n { #3 + 1 } }
8134 \dim_set_eq:NN \l_@@_tmpd_dim \pgf@y
8135 \@@_qpoint:n { col - #2 }
8136 \dim_set_eq:NN \l_tmpa_dim \pgf@x
8137 \@@_qpoint:n { col - \int_eval:n { #4 + 1 } }
8138 \dim_set:Nn \l_tmpb_dim
8139 { (\pgf@x - \l_tmpa_dim) / \int_use:N \l_@@_split_int }
8140 \bool_lazy_or:nnT
8141 { \l_@@_vlines_block_bool }
8142 { \str_if_eq_p:ee { \l_@@_vlines_clist } { all } }
8143 {
8144 \int_step_inline:nn { \l_@@_split_int - 1 }
8145 {
8146 \pgfpathmoveto
8147 {
8148 \pgfpoint
8149 { \l_tmpa_dim + ##1 \l_tmpb_dim }
8150 \l_@@_tmpc_dim
8151 }
8152 \pgfpathlineto
8153 {
8154 \pgfpoint
8155 { \l_tmpa_dim + ##1 \l_tmpb_dim }
8156 \l_@@_tmpd_dim
8157 }
8158 \CT@arc@
8159 \pgfsetlinewidth { 1.1 \arrayrulewidth }
8160 \pgfsetrectcap
8161 \pgfusepathqstroke
8162 }
8163 }
8164 \cs_set_eq:NN \cellcolor \@@_subcellcolor
8165 \int_zero_new:N \l_@@_split_i_int

8166 \str_if_eq:eeTF { \l_@@_vpos_block_str } { T }

194

8167 {
8168 \pgfpointanchor { \@@_env: - #1 - #2 - block } { north }
8169 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
8170 }
8171 {
8172 \str_if_eq:eeTF { \l_@@_vpos_block_str } { B }
8173 {
8174 \pgfpointanchor { \@@_env: - #1 - #2 - block } { south }
8175 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
8176 }
8177 {
8178 \bool_lazy_or:nnTF
8179 { \int_compare_p:nNn { #1 } = { #3 } }
8180 { \str_if_eq_p:ee { \l_@@_vpos_block_str } { t } }
8181 {
8182 \@@_qpoint:n { row - #1 - base }
8183 \dim_set:Nn \l_@@_tmpc_dim { \pgf@y - 0.5 \arrayrulewidth }
8184 }
8185 {
8186 \str_if_eq:eeTF { \l_@@_vpos_block_str } { b }
8187 {
8188 \@@_qpoint:n { row - #3 - base }
8189 \dim_set:Nn \l_@@_tmpc_dim { \pgf@y - 0.5 \arrayrulewidth }
8190 }
8191 {
8192 \@@_qpoint:n { #1 - #2 - block }
8193 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
8194 }
8195 }
8196 }
8197 }
8198 \int_step_inline:nn { \l_@@_split_int }
8199 {
8200 \group_begin:

The counter \l_@@_split_i_int is only for the command \@@_subcellcolor.
8201 \int_set:Nn \l_@@_split_i_int { ##1 }
8202 \dim_set:Nn \col@sep
8203 { \bool_if:NTF \l_@@_tabular_bool { \tabcolsep } { \arraycolsep } }
8204 \pgftransformshift
8205 {
8206 \pgfpoint
8207 {
8208 \l_tmpa_dim + ##1 \l_tmpb_dim -
8209 \str_case:on \l_@@_hpos_block_str
8210 {
8211 l { \l_tmpb_dim + \col@sep}
8212 c { 0.5 \l_tmpb_dim }
8213 r { \col@sep }
8214 }
8215 }
8216 { \l_@@_tmpc_dim }
8217 }
8218 \pgfset { inner~sep = \c_zero_dim }
8219 \pgfnode
8220 { rectangle }
8221 {
8222 \str_if_eq:eeTF { \l_@@_vpos_block_str } { T }
8223 {
8224 \str_case:on \l_@@_hpos_block_str
8225 {
8226 l { north~west }
8227 c { north }
8228 r { north~east }

195

8229 }
8230 }
8231 {
8232 \str_if_eq:eeTF { \l_@@_vpos_block_str } { B }
8233 {
8234 \str_case:on \l_@@_hpos_block_str
8235 {
8236 l { south~west }
8237 c { south }
8238 r { south~east }
8239 }
8240 }
8241 {
8242 \bool_lazy_any:nTF
8243 {
8244 { \int_compare_p:nNn { #1 } = { #3 } }
8245 { \str_if_eq_p:ee { \l_@@_vpos_block_str } { t } }
8246 { \str_if_eq_p:ee { \l_@@_vpos_block_str } { b } }
8247 }
8248 {
8249 \str_case:on \l_@@_hpos_block_str
8250 {
8251 l { base~west }
8252 c { base }
8253 r { base~east }
8254 }
8255 }
8256 {
8257 \str_case:on \l_@@_hpos_block_str
8258 {
8259 l { west }
8260 c { center }
8261 r { east }
8262 }
8263 }
8264 }
8265 }
8266 }
8267 { \seq_item:Nn \l_tmpa_seq { ##1 } } { } { }
8268 \group_end:
8269 }
8270 \endpgfpicture
8271 }

Now the case where there is no ampersand & in the content of the block.
8272 {
8273 \bool_if:NTF \l_@@_p_block_bool
8274 {

When the final user has used the key p, we have to compute the width.
8275 \pgfpicture
8276 \pgfrememberpicturepositiononpagetrue
8277 \pgf@relevantforpicturesizefalse
8278 \bool_if:NTF \l_@@_hpos_of_block_cap_bool
8279 {
8280 \@@_qpoint:n { col - #2 }
8281 \dim_gset_eq:NN \g_tmpa_dim \pgf@x
8282 \@@_qpoint:n { col - \int_eval:n { \l_@@_last_col_int + 1 } }
8283 }
8284 {
8285 \pgfpointanchor { \@@_env: - #1 - #2 - block - short } { west }
8286 \dim_gset_eq:NN \g_tmpa_dim \pgf@x
8287 \pgfpointanchor { \@@_env: - #1 - #2 - block - short } { east }
8288 }

196

8289 \dim_gset:Nn \g_tmpb_dim { \pgf@x - \g_tmpa_dim }
8290 \endpgfpicture
8291 \hbox_set:Nn \l_@@_cell_box
8292 {
8293 \begin { minipage } [\str_lowercase:f \l_@@_vpos_block_str]
8294 { \g_tmpb_dim }
8295 \str_case:on \l_@@_hpos_block_str
8296 { c \centering r \raggedleft l \raggedright j { } }
8297 #6
8298 \end { minipage }
8299 }
8300 }
8301 { \hbox_set:Nn \l_@@_cell_box { \set@color #6 } }
8302 \bool_if:NT \g_@@_rotate_bool { \@@_rotate_cell_box: }

Now, we will put the label of the block. We recall that \l_@@_vpos_block_str is empty when the
user has not used a key for the vertical position of the block.

8303 \pgfpicture
8304 \pgfrememberpicturepositiononpagetrue
8305 \pgf@relevantforpicturesizefalse
8306 \bool_lazy_any:nTF
8307 {
8308 { \str_if_empty_p:N \l_@@_vpos_block_str }
8309 { \str_if_eq_p:ee { \l_@@_vpos_block_str } { c } }
8310 { \str_if_eq_p:ee { \l_@@_vpos_block_str } { T } }
8311 { \str_if_eq_p:ee { \l_@@_vpos_block_str } { B } }
8312 }

8313 {

If we are in the “first column”, we must put the block as if it was with the key r.
8314 \int_if_zero:nT { #2 } { \str_set_eq:NN \l_@@_hpos_block_str \c_@@_r_str }

If we are in the “last column”, we must put the block as if it was with the key l.
8315 \bool_if:nT \g_@@_last_col_found_bool
8316 {
8317 \int_compare:nNnT { #2 } = { \g_@@_col_total_int }
8318 { \str_set_eq:NN \l_@@_hpos_block_str \c_@@_l_str }
8319 }

\l_tmpa_tl will contain the anchor of the pgf node which will be used.
8320 \tl_set:Ne \l_tmpa_tl
8321 {
8322 \str_case:on \l_@@_vpos_block_str
8323 {

We recall that \l_@@_vpos_block_str is empty when the user has not used a key for the vertical
position of the block.

8324 { } {
8325 \str_case:on \l_@@_hpos_block_str
8326 {
8327 c { center }
8328 l { west }
8329 r { east }
8330 j { center }
8331 }
8332 }
8333 c {
8334 \str_case:on \l_@@_hpos_block_str
8335 {
8336 c { center }
8337 l { west }
8338 r { east }
8339 j { center }

197

8340 }
8341

8342 }
8343 T {
8344 \str_case:on \l_@@_hpos_block_str
8345 {
8346 c { north }
8347 l { north~west }
8348 r { north~east }
8349 j { north }
8350 }
8351

8352 }
8353 B {
8354 \str_case:on \l_@@_hpos_block_str
8355 {
8356 c { south }
8357 l { south~west }
8358 r { south~east }
8359 j { south }
8360 }
8361

8362 }
8363 }
8364 }

8365 \pgftransformshift
8366 {
8367 \pgfpointanchor
8368 {
8369 \@@_env: - #1 - #2 - block
8370 \bool_if:NF \l_@@_hpos_of_block_cap_bool { - short }
8371 }
8372 { \l_tmpa_tl }
8373 }
8374 \pgfset { inner~sep = \c_zero_dim }
8375 \pgfnode
8376 { rectangle }
8377 { \l_tmpa_tl }
8378 { \box_use_drop:N \l_@@_cell_box } { } { }
8379 }

End of the case when \l_@@_vpos_block_str is equal to c, T or B. Now, the other cases.
8380 {

8381 \pgfextracty \l_tmpa_dim
8382 {
8383 \@@_qpoint:n
8384 {
8385 row - \str_if_eq:eeTF { \l_@@_vpos_block_str } { b } { #3 } { #1 }
8386 - base
8387 }
8388 }
8389 \dim_sub:Nn \l_tmpa_dim { 0.5 \arrayrulewidth }

We retrieve (in \pgf@x) the x-value of the center of the block.
8390 \pgfpointanchor
8391 {
8392 \@@_env: - #1 - #2 - block
8393 \bool_if:NF \l_@@_hpos_of_block_cap_bool { - short }
8394 }
8395 {
8396 \str_case:on \l_@@_hpos_block_str
8397 {
8398 c { center }

198

8399 l { west }
8400 r { east }
8401 j { center }
8402 }
8403 }

We put the label of the block which has been composed in \l_@@_cell_box.
8404 \pgftransformshift { \pgfpoint \pgf@x \l_tmpa_dim }
8405 \pgfset { inner~sep = \c_zero_dim }
8406 \pgfnode
8407 { rectangle }
8408 {
8409 \str_case:on \l_@@_hpos_block_str
8410 {
8411 c { base }
8412 l { base~west }
8413 r { base~east }
8414 j { base }
8415 }
8416 }
8417 { \box_use_drop:N \l_@@_cell_box } { } { }
8418 }

8419 \endpgfpicture
8420 }
8421 \group_end:
8422 }
8423 \cs_generate_variant:Nn \@@_Block_v:nnnnnn { n n e e }

The following command adds the value of \l_@@_opacity_tl (if not empty) to the specification of
color set in \l_@@_fill_tl (the information of opacity is added in between square brackets before
the color itself).

8424 \cs_new_protected:Npn \@@_add_opacity_to_fill:
8425 {
8426 \tl_if_empty:NF \l_@@_opacity_tl
8427 {
8428 \tl_if_head_eq_meaning:oNTF \l_@@_fill_tl [
8429 {
8430 \tl_set:Ne \l_@@_fill_tl
8431 {
8432 [opacity = \l_@@_opacity_tl ,
8433 \tl_tail:o \l_@@_fill_tl
8434 }
8435 }
8436 {
8437 \tl_set:Ne \l_@@_fill_tl
8438 { [opacity = \l_@@_opacity_tl] { \exp_not:o \l_@@_fill_tl } }
8439 }
8440 }
8441 }

The first argument of \@@_stroke_block:nnn is a list of options for the rectangle that you will stroke.
The second argument is the upper-left cell of the block (with, as usual, the syntax i-j) and the third
is the last cell of the block (with the same syntax).

8442 \cs_new_protected:Npn \@@_stroke_block:nnn #1 #2 #3
8443 {
8444 \group_begin:
8445 \tl_clear:N \l_@@_draw_tl
8446 \dim_set_eq:NN \l_@@_line_width_dim \arrayrulewidth
8447 \keys_set_known:nn { nicematrix / BlockStroke } { #1 }
8448 \pgfpicture
8449 \pgfrememberpicturepositiononpagetrue
8450 \pgf@relevantforpicturesizefalse

199

8451 \tl_if_empty:NF \l_@@_draw_tl
8452 {

If the user has used the key color of the command \Block without value, the color fixed by
\arrayrulecolor is used.

8453 \tl_if_eq:NnTF \l_@@_draw_tl { default }
8454 { \CT@arc@ }
8455 { \@@_color:o \l_@@_draw_tl }
8456 }
8457 \pgfsetcornersarced
8458 {
8459 \pgfpoint
8460 { \l_@@_rounded_corners_dim }
8461 { \l_@@_rounded_corners_dim }
8462 }
8463 \@@_cut_on_hyphen:w #2 \q_stop
8464 \int_compare:nNnF { \l_tmpa_tl } > { \c@iRow }
8465 {
8466 \int_compare:nNnF { \l_tmpb_tl } > { \c@jCol }
8467 {
8468 \@@_qpoint:n { row - \l_tmpa_tl }
8469 \dim_set_eq:NN \l_tmpb_dim \pgf@y
8470 \@@_qpoint:n { col - \l_tmpb_tl }
8471 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@x
8472 \@@_cut_on_hyphen:w #3 \q_stop
8473 \int_compare:nNnT { \l_tmpa_tl } > { \c@iRow }
8474 { \tl_set:No \l_tmpa_tl { \int_use:N \c@iRow } }
8475 \int_compare:nNnT { \l_tmpb_tl } > { \c@jCol }
8476 { \tl_set:No \l_tmpb_tl { \int_use:N \c@jCol } }
8477 \@@_qpoint:n { row - \int_eval:n { \l_tmpa_tl + 1 } }
8478 \dim_set_eq:NN \l_tmpa_dim \pgf@y
8479 \@@_qpoint:n { col - \int_eval:n { \l_tmpb_tl + 1 } }
8480 \dim_set_eq:NN \l_@@_tmpd_dim \pgf@x
8481 \pgfsetlinewidth { 1.1 \l_@@_line_width_dim }
8482 \pgfpathrectanglecorners
8483 { \pgfpoint \l_@@_tmpc_dim \l_tmpb_dim }
8484 { \pgfpoint \l_@@_tmpd_dim \l_tmpa_dim }
8485 \dim_compare:nNnTF { \l_@@_rounded_corners_dim } = { \c_zero_dim }
8486 { \pgfusepathqstroke }
8487 { \pgfusepath { stroke } }
8488 }
8489 }
8490 \endpgfpicture
8491 \group_end:
8492 }

Here is the set of keys for the command \@@_stroke_block:nnn.
8493 \keys_define:nn { nicematrix / BlockStroke }
8494 {
8495 color .tl_set:N = \l_@@_draw_tl ,
8496 draw .code:n =
8497 \tl_if_empty:eF { #1 } { \tl_set:Nn \l_@@_draw_tl { #1 } } ,
8498 draw .default:n = default ,
8499 line-width .dim_set:N = \l_@@_line_width_dim ,
8500 rounded-corners .dim_set:N = \l_@@_rounded_corners_dim ,
8501 rounded-corners .default:n = 4 pt
8502 }

The first argument of \@@_vlines_block:nnn is a list of options for the rules that we will draw. The
second argument is the upper-left cell of the block (with, as usual, the syntax i-j) and the third is
the last cell of the block (with the same syntax).

8503 \cs_new_protected:Npn \@@_vlines_block:nnn #1 #2 #3
8504 {

200

8505 \group_begin:
8506 \dim_set_eq:NN \l_@@_line_width_dim \arrayrulewidth
8507 \keys_set_known:nn { nicematrix / BlockBorders } { #1 }
8508 \dim_set_eq:NN \arrayrulewidth \l_@@_line_width_dim
8509 \@@_cut_on_hyphen:w #2 \q_stop
8510 \tl_set_eq:NN \l_@@_tmpc_tl \l_tmpa_tl
8511 \tl_set_eq:NN \l_@@_tmpd_tl \l_tmpb_tl
8512 \@@_cut_on_hyphen:w #3 \q_stop
8513 \tl_set:Ne \l_tmpa_tl { \int_eval:n { \l_tmpa_tl + 1 } }
8514 \tl_set:Ne \l_tmpb_tl { \int_eval:n { \l_tmpb_tl + 1 } }
8515 \int_step_inline:nnn { \l_@@_tmpd_tl } { \l_tmpb_tl }
8516 {
8517 \use:e
8518 {
8519 \@@_vline:n
8520 {
8521 position = ##1 ,
8522 start = \l_@@_tmpc_tl ,
8523 end = \int_eval:n { \l_tmpa_tl - 1 } ,
8524 total-width = \dim_use:N \l_@@_line_width_dim
8525 }
8526 }
8527 }
8528 \group_end:
8529 }

8530 \cs_new_protected:Npn \@@_hlines_block:nnn #1 #2 #3
8531 {
8532 \group_begin:
8533 \dim_set_eq:NN \l_@@_line_width_dim \arrayrulewidth
8534 \keys_set_known:nn { nicematrix / BlockBorders } { #1 }
8535 \dim_set_eq:NN \arrayrulewidth \l_@@_line_width_dim
8536 \@@_cut_on_hyphen:w #2 \q_stop
8537 \tl_set_eq:NN \l_@@_tmpc_tl \l_tmpa_tl
8538 \tl_set_eq:NN \l_@@_tmpd_tl \l_tmpb_tl
8539 \@@_cut_on_hyphen:w #3 \q_stop
8540 \tl_set:Ne \l_tmpa_tl { \int_eval:n { \l_tmpa_tl + 1 } }
8541 \tl_set:Ne \l_tmpb_tl { \int_eval:n { \l_tmpb_tl + 1 } }
8542 \int_step_inline:nnn { \l_@@_tmpc_tl } { \l_tmpa_tl }
8543 {
8544 \use:e
8545 {
8546 \@@_hline:n
8547 {
8548 position = ##1 ,
8549 start = \l_@@_tmpd_tl ,
8550 end = \int_eval:n { \l_tmpb_tl - 1 } ,
8551 total-width = \dim_use:N \l_@@_line_width_dim
8552 }
8553 }
8554 }
8555 \group_end:
8556 }

The first argument of \@@_stroke_borders_block:nnn is a list of options for the borders that you
will stroke. The second argument is the upper-left cell of the block (with, as usual, the syntax i-j)
and the third is the last cell of the block (with the same syntax).

8557 \cs_new_protected:Npn \@@_stroke_borders_block:nnn #1 #2 #3
8558 {
8559 \dim_set_eq:NN \l_@@_line_width_dim \arrayrulewidth
8560 \keys_set_known:nn { nicematrix / BlockBorders } { #1 }
8561 \dim_compare:nNnTF { \l_@@_rounded_corners_dim } > { \c_zero_dim }
8562 { \@@_error:n { borders~forbidden } }

201

8563 {
8564 \tl_clear_new:N \l_@@_borders_tikz_tl
8565 \keys_set:no
8566 { nicematrix / OnlyForTikzInBorders }
8567 \l_@@_borders_clist
8568 \@@_cut_on_hyphen:w #2 \q_stop
8569 \tl_set_eq:NN \l_@@_tmpc_tl \l_tmpa_tl
8570 \tl_set_eq:NN \l_@@_tmpd_tl \l_tmpb_tl
8571 \@@_cut_on_hyphen:w #3 \q_stop
8572 \tl_set:Ne \l_tmpa_tl { \int_eval:n { \l_tmpa_tl + 1 } }
8573 \tl_set:Ne \l_tmpb_tl { \int_eval:n { \l_tmpb_tl + 1 } }
8574 \@@_stroke_borders_block_i:
8575 }
8576 }

8577 \hook_gput_code:nnn { begindocument } { . }
8578 {
8579 \cs_new_protected:Npe \@@_stroke_borders_block_i:
8580 {
8581 \c_@@_pgfortikzpicture_tl
8582 \@@_stroke_borders_block_ii:
8583 \c_@@_endpgfortikzpicture_tl
8584 }
8585 }

8586 \cs_new_protected:Npn \@@_stroke_borders_block_ii:
8587 {
8588 \pgfrememberpicturepositiononpagetrue
8589 \pgf@relevantforpicturesizefalse
8590 \CT@arc@
8591 \pgfsetlinewidth { 1.1 \l_@@_line_width_dim }
8592 \clist_if_in:NnT \l_@@_borders_clist { right }
8593 { \@@_stroke_vertical:n \l_tmpb_tl }
8594 \clist_if_in:NnT \l_@@_borders_clist { left }
8595 { \@@_stroke_vertical:n \l_@@_tmpd_tl }
8596 \clist_if_in:NnT \l_@@_borders_clist { bottom }
8597 { \@@_stroke_horizontal:n \l_tmpa_tl }
8598 \clist_if_in:NnT \l_@@_borders_clist { top }
8599 { \@@_stroke_horizontal:n \l_@@_tmpc_tl }
8600 }

8601 \keys_define:nn { nicematrix / OnlyForTikzInBorders }
8602 {
8603 tikz .code:n =
8604 \cs_if_exist:NTF \tikzpicture
8605 { \tl_set:Nn \l_@@_borders_tikz_tl { #1 } }
8606 { \@@_error:n { tikz~in~borders~without~tikz } } ,
8607 tikz .value_required:n = true ,
8608 top .code:n = ,
8609 bottom .code:n = ,
8610 left .code:n = ,
8611 right .code:n = ,
8612 unknown .code:n = \@@_error:n { bad~border }
8613 }

The following command is used to stroke the left border and the right border. The argument #1 is
the number of column (in the sense of the col node).

8614 \cs_new_protected:Npn \@@_stroke_vertical:n #1
8615 {
8616 \@@_qpoint:n \l_@@_tmpc_tl
8617 \dim_set:Nn \l_tmpb_dim { \pgf@y + 0.5 \l_@@_line_width_dim }
8618 \@@_qpoint:n \l_tmpa_tl
8619 \dim_set:Nn \l_@@_tmpc_dim { \pgf@y + 0.5 \l_@@_line_width_dim }
8620 \@@_qpoint:n { #1 }
8621 \tl_if_empty:NTF \l_@@_borders_tikz_tl

202

8622 {
8623 \pgfpathmoveto { \pgfpoint \pgf@x \l_tmpb_dim }
8624 \pgfpathlineto { \pgfpoint \pgf@x \l_@@_tmpc_dim }
8625 \pgfusepathqstroke
8626 }
8627 {
8628 \use:e { \exp_not:N \draw [\l_@@_borders_tikz_tl] }
8629 (\pgf@x , \l_tmpb_dim) -- (\pgf@x , \l_@@_tmpc_dim) ;
8630 }
8631 }

The following command is used to stroke the top border and the bottom border. The argument #1
is the number of row (in the sense of the row node).

8632 \cs_new_protected:Npn \@@_stroke_horizontal:n #1
8633 {
8634 \@@_qpoint:n \l_@@_tmpd_tl
8635 \clist_if_in:NnTF \l_@@_borders_clist { left }
8636 { \dim_set:Nn \l_tmpa_dim { \pgf@x - 0.5 \l_@@_line_width_dim } }
8637 { \dim_set:Nn \l_tmpa_dim { \pgf@x + 0.5 \l_@@_line_width_dim } }
8638 \@@_qpoint:n \l_tmpb_tl
8639 \dim_set:Nn \l_tmpb_dim { \pgf@x + 0.5 \l_@@_line_width_dim }
8640 \@@_qpoint:n { #1 }
8641 \tl_if_empty:NTF \l_@@_borders_tikz_tl
8642 {
8643 \pgfpathmoveto { \pgfpoint \l_tmpa_dim \pgf@y }
8644 \pgfpathlineto { \pgfpoint \l_tmpb_dim \pgf@y }
8645 \pgfusepathqstroke
8646 }
8647 {
8648 \use:e { \exp_not:N \draw [\l_@@_borders_tikz_tl] }
8649 (\l_tmpa_dim , \pgf@y) -- (\l_tmpb_dim , \pgf@y) ;
8650 }
8651 }

Here is the set of keys for the command \@@_stroke_borders_block:nnn.
8652 \keys_define:nn { nicematrix / BlockBorders }
8653 {
8654 borders .clist_set:N = \l_@@_borders_clist ,
8655 rounded-corners .dim_set:N = \l_@@_rounded_corners_dim ,
8656 rounded-corners .default:n = 4 pt ,
8657 line-width .dim_set:N = \l_@@_line_width_dim
8658 }

The following command will be used if the key tikz has been used for the command \Block.
#1 is a list of lists of TikZ keys used with the path.
Example: {{offset=1pt,draw,red},{offset=2pt,draw,blue}}
which arises from a command such as :
\Block[tikz={offset=1pt,draw,red},tikz={offset=2pt,draw,blue}]{2-2}{}
The arguments #2 and #3 are the coordinates of the first cell and #4 and #5 the coordinates of the
last cell of the block.

8659 \cs_new_protected:Npn \@@_block_tikz:nnnnn #1 #2 #3 #4 #5
8660 {
8661 \begin { tikzpicture }
8662 \@@_clip_with_rounded_corners:

We use clist_map_inline:nn because #5 is a list of lists.
8663 \clist_map_inline:nn { #1 }
8664 {

203

We extract the key offset which is not a key of TikZ but a key added by nicematrix.
8665 \keys_set_known:nnN { nicematrix / SpecialOffset } { ##1 } \l_tmpa_tl
8666 \use:e { \exp_not:N \path [\l_tmpa_tl] }
8667 (
8668 [
8669 xshift = \dim_use:N \l_@@_offset_dim ,
8670 yshift = - \dim_use:N \l_@@_offset_dim
8671]
8672 #2 -| #3
8673)
8674 rectangle
8675 (
8676 [
8677 xshift = - \dim_use:N \l_@@_offset_dim ,
8678 yshift = \dim_use:N \l_@@_offset_dim
8679]
8680 \int_eval:n { #4 + 1 } -| \int_eval:n { #5 + 1 }
8681) ;
8682 }
8683 \end { tikzpicture }
8684 }
8685 \cs_generate_variant:Nn \@@_block_tikz:nnnnn { o }

8686 \keys_define:nn { nicematrix / SpecialOffset }
8687 { offset .dim_set:N = \l_@@_offset_dim }

In some circonstancies, we want to nullify the command \Block. In order to reach that goal, we will
link the command \Block to the following command \@@_NullBlock: which has the same syntax as
the standard command \Block but which is no-op.

8688 \cs_new_protected:Npn \@@_NullBlock:
8689 { \@@_collect_options:n { \@@_NullBlock_i: } }
8690 \NewExpandableDocumentCommand \@@_NullBlock_i: { m m D < > { } +m }
8691 { }

The following command will be linked to \cellcolor in the sub-cells of a block which contains
ampersands (&). Of course, &-in-blocks must be in force.

8692 \NewDocumentCommand \@@_subcellcolor { O { } m }
8693 {
8694 \tl_gput_right:Ne \g_@@_pre_code_before_tl
8695 {

We must not expand the color (#2) because the color may contain the token ! which may be activated
by some packages (ex.: babel with the option french on latex and pdflatex).

8696 \@@_subcellcolor:nnnnnnn
8697 {
8698 \tl_if_blank:nTF { #1 }
8699 { { \exp_not:n { #2 } } }
8700 { [#1] { \exp_not:n { #2 } } }
8701 }
8702 { \int_use:N \l_@@_first_row_int } % first row of the block
8703 { \int_use:N \l_@@_first_col_int } % first column of the block
8704 { \int_use:N \l_@@_last_row_int } % last row of the block
8705 { \int_use:N \l_@@_last_col_int } % last column of the block
8706 { \int_use:N \l_@@_split_int }
8707 { \int_use:N \l_@@_split_i_int }
8708 }
8709 \ignorespaces
8710 }

8711 \cs_new_protected:Npn \@@_subcellcolor:nnnnnnn #1 #2 #3 #4 #5 #6 #7
8712 {
8713 \@@_color_opacity: #1

204

8714 \pgfpicture
8715 \pgf@relevantforpicturesizefalse
8716 \@@_qpoint:n { col - #3 }
8717 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@x
8718 \@@_qpoint:n { col - \int_eval:n { #5 + 1 } }
8719 \dim_set:Nn \l_tmpa_dim { (\pgf@x - \l_@@_tmpc_dim) / #6 }
8720 \dim_set:Nn \l_tmpb_dim { \l_@@_tmpc_dim + #7 \l_tmpa_dim }
8721 \@@_qpoint:n { row - \int_eval:n { #4 + 1 } }
8722 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
8723 \@@_qpoint:n { row - #2 }
8724 \pgfpathrectanglecorners
8725 { \pgfpoint { \l_tmpb_dim - \l_tmpa_dim } { \l_@@_tmpc_dim } }
8726 { \pgfpoint { \l_tmpb_dim } { \pgf@y } }
8727 \pgfusepathqfill
8728 \endpgfpicture
8729 }

27 How to draw the dotted lines transparently

8730 \cs_set_protected:Npn \@@_renew_matrix:
8731 {
8732 \RenewDocumentEnvironment { pmatrix } { }
8733 { \pNiceMatrix }
8734 { \endpNiceMatrix }
8735 \RenewDocumentEnvironment { vmatrix } { }
8736 { \vNiceMatrix }
8737 { \endvNiceMatrix }
8738 \RenewDocumentEnvironment { Vmatrix } { }
8739 { \VNiceMatrix }
8740 { \endVNiceMatrix }
8741 \RenewDocumentEnvironment { bmatrix } { }
8742 { \bNiceMatrix }
8743 { \endbNiceMatrix }
8744 \RenewDocumentEnvironment { Bmatrix } { }
8745 { \BNiceMatrix }
8746 { \endBNiceMatrix }
8747 }

28 Automatic arrays

We will extract some keys and pass the other keys to the environment {NiceArrayWithDelims}.
8748 \keys_define:nn { nicematrix / Auto }
8749 {
8750 columns-type .tl_set:N = \l_@@_columns_type_tl ,
8751 columns-type .value_required:n = true ,
8752 l .meta:n = { columns-type = l } ,
8753 r .meta:n = { columns-type = r } ,
8754 c .meta:n = { columns-type = c } ,
8755 delimiters / color .tl_set:N = \l_@@_delimiters_color_tl ,
8756 delimiters / color .value_required:n = true ,
8757 delimiters / max-width .bool_set:N = \l_@@_delimiters_max_width_bool ,
8758 delimiters / max-width .default:n = true ,
8759 delimiters .code:n = \keys_set:nn { nicematrix / delimiters } { #1 } ,
8760 delimiters .value_required:n = true ,
8761 rounded-corners .dim_set:N = \l_@@_tab_rounded_corners_dim ,
8762 rounded-corners .default:n = 4 pt
8763 }

205

8764 \NewDocumentCommand \AutoNiceMatrixWithDelims
8765 { m m O { } > { \SplitArgument { 1 } { - } } m O { } m ! O { } }
8766 { \@@_auto_nice_matrix:nnnnnn { #1 } { #2 } #4 { #6 } { #3 , #5 , #7 } }

8767 \cs_new_protected:Npn \@@_auto_nice_matrix:nnnnnn #1 #2 #3 #4 #5 #6
8768 {

The group is for the protection of the keys.
8769 \group_begin:
8770 \keys_set_known:nnN { nicematrix / Auto } { #6 } \l_tmpa_tl
8771 \use:e
8772 {
8773 \exp_not:N \begin { NiceArrayWithDelims } { #1 } { #2 }
8774 { * { #4 } { \exp_not:o \l_@@_columns_type_tl } }
8775 [\exp_not:o \l_tmpa_tl]
8776 }
8777 \int_if_zero:nT { \l_@@_first_row_int }
8778 {
8779 \int_if_zero:nT { \l_@@_first_col_int } { & }
8780 \prg_replicate:nn { #4 - 1 } { & }
8781 \int_compare:nNnT { \l_@@_last_col_int } > { -1 } { & } \\
8782 }
8783 \prg_replicate:nn { #3 }
8784 {
8785 \int_if_zero:nT { \l_@@_first_col_int } { & }

We put { } before #6 to avoid a hasty expansion of a potential \arabic{iRow} at the beginning of
the row which would result in an incorrect value of that iRow (since iRow is incremented in the first
cell of the row of the \halign).

8786 \prg_replicate:nn { #4 - 1 } { { } #5 & } #5
8787 \int_compare:nNnT { \l_@@_last_col_int } > { -1 } { & } \\
8788 }
8789 \int_compare:nNnT { \l_@@_last_row_int } > { -2 }
8790 {
8791 \int_if_zero:nT { \l_@@_first_col_int } { & }
8792 \prg_replicate:nn { #4 - 1 } { & }
8793 \int_compare:nNnT { \l_@@_last_col_int } > { -1 } { & } \\
8794 }
8795 \end { NiceArrayWithDelims }
8796 \group_end:
8797 }

8798 \cs_set_protected:Npn \@@_define_com:NNN #1 #2 #3
8799 {
8800 \cs_set_protected:cpn { #1 AutoNiceMatrix }
8801 {
8802 \bool_gset_true:N \g_@@_delims_bool
8803 \str_gset:Ne \g_@@_name_env_str { #1 AutoNiceMatrix }
8804 \AutoNiceMatrixWithDelims { #2 } { #3 }
8805 }
8806 }

We define also a command \AutoNiceMatrix similar to the environment {NiceMatrix}.
8807 \NewDocumentCommand \AutoNiceMatrix { O { } m O { } m ! O { } }
8808 {
8809 \group_begin:
8810 \bool_gset_false:N \g_@@_delims_bool
8811 \AutoNiceMatrixWithDelims . . { #2 } { #4 } [#1 , #3 , #5]
8812 \group_end:
8813 }

206

29 The redefinition of the command \dotfill

8814 \cs_set_eq:NN \@@_old_dotfill: \dotfill
8815 \cs_new_protected:Npn \@@_dotfill:
8816 {

First, we insert \@@_dotfill (which is the saved version of \dotfill) in case of use of \dotfill
“internally” in the cell (e.g. \hbox to 1cm {\dotfill}).

8817 \@@_old_dotfill:
8818 \tl_gput_right:Nn \g_@@_cell_after_hook_tl \@@_dotfill_i:
8819 }

Now, if the box if not empty (unfornately, we can’t actually test whether the box is empty and that’s
why we only consider it’s width), we insert \@@_dotfill (which is the saved version of \dotfill) in
the cell of the array, and it will extend, since it is no longer in \l_@@_cell_box.

8820 \cs_new_protected:Npn \@@_dotfill_i:
8821 {
8822 \dim_compare:nNnT { \box_wd:N \l_@@_cell_box } = { \c_zero_dim }
8823 { \@@_old_dotfill: }
8824 }

30 The command \diagbox

The command \diagbox will be linked to \diagbox:nn in the environments of nicematrix. However,
there are also redefinitions of \diagbox in other circonstancies.

8825 \cs_new_protected:Npn \@@_diagbox:nn #1 #2
8826 {
8827 \tl_gput_right:Ne \g_@@_pre_code_after_tl
8828 {
8829 \@@_actually_diagbox:nnnnnn
8830 { \int_use:N \c@iRow }
8831 { \int_use:N \c@jCol }
8832 { \int_use:N \c@iRow }
8833 { \int_use:N \c@jCol }

\g_@@_row_style_tl contains several instructions of the form:
\@@_if_row_less_than:nn { number } { instructions }

The command \@@_if_row_less:nn is fully expandable and, thus, the instructions will be inserted
in the \g_@@_pre_code_after_tl only if \diagbox is used in a row which is the scope of that chunk
of instructions.

8834 { \g_@@_row_style_tl \exp_not:n { #1 } }
8835 { \g_@@_row_style_tl \exp_not:n { #2 } }
8836 }

We put the cell with \diagbox in the sequence \g_@@_pos_of_blocks_seq because a cell with
\diagbox must be considered as non empty by the key corners.

8837 \seq_gput_right:Ne \g_@@_pos_of_blocks_seq
8838 {
8839 { \int_use:N \c@iRow }
8840 { \int_use:N \c@jCol }
8841 { \int_use:N \c@iRow }
8842 { \int_use:N \c@jCol }

The last argument is for the name of the block.
8843 { }
8844 }
8845 }

207

The command \diagbox is also redefined locally when we draw a block.
The first four arguments of \@@_actually_diagbox:nnnnnn correspond to the rectangle (=block) to
slash (we recall that it’s possible to use \diagbox in a \Block). The other two are the elements to
draw below and above the diagonal line.

8846 \cs_new_protected:Npn \@@_actually_diagbox:nnnnnn #1 #2 #3 #4 #5 #6
8847 {
8848 \pgfpicture
8849 \pgf@relevantforpicturesizefalse
8850 \pgfrememberpicturepositiononpagetrue
8851 \@@_qpoint:n { row - #1 }
8852 \dim_set_eq:NN \l_tmpa_dim \pgf@y
8853 \@@_qpoint:n { col - #2 }
8854 \dim_set_eq:NN \l_tmpb_dim \pgf@x
8855 \pgfpathmoveto { \pgfpoint \l_tmpb_dim \l_tmpa_dim }
8856 \@@_qpoint:n { row - \int_eval:n { #3 + 1 } }
8857 \dim_set_eq:NN \l_@@_tmpc_dim \pgf@y
8858 \@@_qpoint:n { col - \int_eval:n { #4 + 1 } }
8859 \dim_set_eq:NN \l_@@_tmpd_dim \pgf@x
8860 \pgfpathlineto { \pgfpoint \l_@@_tmpd_dim \l_@@_tmpc_dim }
8861 {

The command \CT@arc@ is a command of colortbl which sets the color of the rules in the array. The
package nicematrix uses it even if colortbl is not loaded.

8862 \CT@arc@
8863 \pgfsetroundcap
8864 \pgfusepathqstroke
8865 }
8866 \pgfset { inner~sep = 1 pt }
8867 \pgfscope
8868 \pgftransformshift { \pgfpoint \l_tmpb_dim \l_@@_tmpc_dim }
8869 \pgfnode { rectangle } { south~west }
8870 {
8871 \begin { minipage } { 20 cm }

The \scan_stop: avoids an error in math mode when the argument #5 is empty.
8872 \@@_math_toggle: \scan_stop: #5 \@@_math_toggle:
8873 \end { minipage }
8874 }
8875 { }
8876 { }
8877 \endpgfscope
8878 \pgftransformshift { \pgfpoint \l_@@_tmpd_dim \l_tmpa_dim }
8879 \pgfnode { rectangle } { north~east }
8880 {
8881 \begin { minipage } { 20 cm }
8882 \raggedleft
8883 \@@_math_toggle: \scan_stop: #6 \@@_math_toggle:
8884 \end { minipage }
8885 }
8886 { }
8887 { }
8888 \endpgfpicture
8889 }

31 The keyword \CodeAfter

In fact, in this subsection, we define the user command \CodeAfter for the case of the “normal
syntax”. For the case of “light-syntax”, see the definition of the environment {@@-light-syntax} on
p. 90.

208

In the environments of nicematrix, \CodeAfter will be linked to \@@_CodeAfter:. That macro must
not be protected since it begins with \omit.

8890 \cs_new:Npn \@@_CodeAfter: { \omit \@@_CodeAfter_ii:n }

However, in each cell of the environment, the command \CodeAfter will be linked to the following
command \@@_CodeAfter_ii:n which begins with \\.

8891 \cs_new_protected:Npn \@@_CodeAfter_i: { \\ \omit \@@_CodeAfter_ii:n }

We have to catch everything until the end of the current environment (of nicematrix). First, we go
until the next command \end.

8892 \cs_new_protected:Npn \@@_CodeAfter_ii:n #1 \end
8893 {
8894 \tl_gput_right:Nn \g_nicematrix_code_after_tl { #1 }
8895 \@@_CodeAfter_iv:n
8896 }

We catch the argument of the command \end (in #1).
8897 \cs_new_protected:Npn \@@_CodeAfter_iv:n #1
8898 {

If this is really the end of the current environment (of nicematrix), we put back the command \end
and its argument in the TeX flow.

8899 \str_if_eq:eeTF { \@currenvir } { #1 }
8900 { \end { #1 } }

If this is not the \end we are looking for, we put those tokens in \g_nicematrix_code_after_tl
and we go on searching for the next command \end with a recursive call to the command
\@@_CodeAfter:n.

8901 {
8902 \tl_gput_right:Nn \g_nicematrix_code_after_tl { \end { #1 } }
8903 \@@_CodeAfter_ii:n
8904 }
8905 }

32 The delimiters in the preamble

The command \@@_delimiter:nnn will be used to draw delimiters inside the matrix when delimiters
are specified in the preamble of the array. It does not concern the exterior delimiters added by
{NiceArrayWithDelims} (and {pNiceArray}, {pNiceMatrix}, etc.).
A delimiter in the preamble of the array will write an instruction \@@_delimiter:nnn in the
\g_@@_pre_code_after_tl (and also potentially add instructions in the preamble provided to \array
in order to add space between columns).
The first argument is the type of delimiter ((, [, \{,),] or \}). The second argument is the number
of column. The third argument is a boolean equal to \c_true_bool (resp. \c_false_true) when
the delimiter must be put on the left (resp. right) side.

8906 \cs_new_protected:Npn \@@_delimiter:nnn #1 #2 #3
8907 {
8908 \pgfpicture
8909 \pgfrememberpicturepositiononpagetrue
8910 \pgf@relevantforpicturesizefalse

\l_@@_y_initial_dim and \l_@@_y_final_dim will be the y-values of the extremities of the delimiter
we will have to construct.

8911 \@@_qpoint:n { row - 1 }
8912 \dim_set_eq:NN \l_@@_y_initial_dim \pgf@y
8913 \@@_qpoint:n { row - \int_eval:n { \c@iRow + 1 } }
8914 \dim_set_eq:NN \l_@@_y_final_dim \pgf@y

209

We will compute in \l_tmpa_dim the x-value where we will have to put our delimiter (on the left
side or on the right side).

8915 \bool_if:nTF { #3 }
8916 { \dim_set_eq:NN \l_tmpa_dim \c_max_dim }
8917 { \dim_set:Nn \l_tmpa_dim { - \c_max_dim } }
8918 \int_step_inline:nnn { \l_@@_first_row_int } { \g_@@_row_total_int }
8919 {
8920 \cs_if_exist:cT
8921 { pgf @ sh @ ns @ \@@_env: - ##1 - #2 }
8922 {
8923 \pgfpointanchor
8924 { \@@_env: - ##1 - #2 }
8925 { \bool_if:nTF { #3 } { west } { east } }
8926 \dim_set:Nn \l_tmpa_dim
8927 {
8928 \bool_if:nTF { #3 }
8929 { \dim_min:nn }
8930 { \dim_max:nn }
8931 \l_tmpa_dim
8932 { \pgf@x }
8933 }
8934 }
8935 }

Now we can put the delimiter with a node of pgf.
8936 \pgfset { inner~sep = \c_zero_dim }
8937 \dim_zero:N \nulldelimiterspace
8938 \pgftransformshift
8939 {
8940 \pgfpoint
8941 { \l_tmpa_dim }
8942 { (\l_@@_y_initial_dim + \l_@@_y_final_dim + \arrayrulewidth) / 2 }
8943 }
8944 \pgfnode
8945 { rectangle }
8946 { \bool_if:nTF { #3 } { east } { west } }
8947 {

Here is the content of the pgf node, that is to say the delimiter, constructed with its right size.
8948 \nullfont
8949 $ % $
8950 \@@_color:o \l_@@_delimiters_color_tl
8951 \bool_if:nTF { #3 } { \left #1 } { \left . }
8952 \vcenter
8953 {
8954 \nullfont
8955 \hrule \@height
8956 \dim_eval:n { \l_@@_y_initial_dim - \l_@@_y_final_dim }
8957 \@depth \c_zero_dim
8958 \@width \c_zero_dim
8959 }
8960 \bool_if:nTF { #3 } { \right . } { \right #1 }
8961 $ % $
8962 }
8963 { }
8964 { }
8965 \endpgfpicture
8966 }

33 The command \SubMatrix

210

8967 \keys_define:nn { nicematrix / sub-matrix }
8968 {
8969 extra-height .dim_set:N = \l_@@_submatrix_extra_height_dim ,
8970 extra-height .value_required:n = true ,
8971 left-xshift .dim_set:N = \l_@@_submatrix_left_xshift_dim ,
8972 left-xshift .value_required:n = true ,
8973 right-xshift .dim_set:N = \l_@@_submatrix_right_xshift_dim ,
8974 right-xshift .value_required:n = true ,
8975 xshift .meta:n = { left-xshift = #1, right-xshift = #1 } ,
8976 xshift .value_required:n = true ,
8977 delimiters / color .tl_set:N = \l_@@_delimiters_color_tl ,
8978 delimiters / color .value_required:n = true ,
8979 slim .bool_set:N = \l_@@_submatrix_slim_bool ,
8980 slim .default:n = true ,
8981 hlines .clist_set:N = \l_@@_submatrix_hlines_clist ,
8982 hlines .default:n = all ,
8983 vlines .clist_set:N = \l_@@_submatrix_vlines_clist ,
8984 vlines .default:n = all ,
8985 hvlines .meta:n = { hlines, vlines } ,
8986 hvlines .value_forbidden:n = true
8987 }
8988 \keys_define:nn { nicematrix }
8989 {
8990 SubMatrix .inherit:n = nicematrix / sub-matrix ,
8991 NiceArray / sub-matrix .inherit:n = nicematrix / sub-matrix ,
8992 pNiceArray / sub-matrix .inherit:n = nicematrix / sub-matrix ,
8993 NiceMatrixOptions / sub-matrix .inherit:n = nicematrix / sub-matrix ,
8994 }

The following keys set is for the command \SubMatrix itself (not the tuning of \SubMatrix that can
be done elsewhere).

8995 \keys_define:nn { nicematrix / SubMatrix }
8996 {
8997 delimiters / color .tl_set:N = \l_@@_delimiters_color_tl ,
8998 delimiters / color .value_required:n = true ,
8999 hlines .clist_set:N = \l_@@_submatrix_hlines_clist ,
9000 hlines .default:n = all ,
9001 vlines .clist_set:N = \l_@@_submatrix_vlines_clist ,
9002 vlines .default:n = all ,
9003 hvlines .meta:n = { hlines, vlines } ,
9004 hvlines .value_forbidden:n = true ,
9005 name .code:n =
9006 \tl_if_empty:nTF { #1 }
9007 { \@@_error:n { Invalid~name } }
9008 {
9009 \regex_if_match:nnTF { \A[A-Za-z][A-Za-z0-9]*\Z } { #1 }
9010 {
9011 \seq_if_in:NnTF \g_@@_submatrix_names_seq { #1 }
9012 { \@@_error:nn { Duplicate~name~for~SubMatrix } { #1 } }
9013 {
9014 \str_set:Nn \l_@@_submatrix_name_str { #1 }
9015 \seq_gput_right:Nn \g_@@_submatrix_names_seq { #1 }
9016 }
9017 }
9018 { \@@_error:n { Invalid~name } }
9019 } ,
9020 name .value_required:n = true ,
9021 rules .code:n = \keys_set:nn { nicematrix / rules } { #1 } ,
9022 rules .value_required:n = true ,
9023 code .tl_set:N = \l_@@_code_tl ,
9024 code .value_required:n = true ,
9025 unknown .code:n = \@@_error:n { Unknown~key~for~SubMatrix }
9026 }

211

9027 \NewDocumentCommand \@@_SubMatrix_in_code_before { m m m m ! O { } }
9028 {
9029 \tl_gput_right:Ne \g_@@_pre_code_after_tl
9030 {
9031 \SubMatrix { #1 } { #2 } { #3 } { #4 }
9032 [
9033 delimiters / color = \l_@@_delimiters_color_tl ,
9034 hlines = \l_@@_submatrix_hlines_clist ,
9035 vlines = \l_@@_submatrix_vlines_clist ,
9036 extra-height = \dim_use:N \l_@@_submatrix_extra_height_dim ,
9037 left-xshift = \dim_use:N \l_@@_submatrix_left_xshift_dim ,
9038 right-xshift = \dim_use:N \l_@@_submatrix_right_xshift_dim ,
9039 slim = \bool_to_str:N \l_@@_submatrix_slim_bool ,
9040 #5
9041]
9042 }
9043 \@@_SubMatrix_in_code_before_i { #2 } { #3 }
9044 \ignorespaces
9045 }

9046 \NewDocumentCommand \@@_SubMatrix_in_code_before_i
9047 { > { \SplitArgument { 1 } { - } } m > { \SplitArgument { 1 } { - } } m }
9048 { \@@_SubMatrix_in_code_before_i:nnnn #1 #2 }

9049 \cs_new_protected:Npn \@@_SubMatrix_in_code_before_i:nnnn #1 #2 #3 #4
9050 {
9051 \seq_gput_right:Ne \g_@@_submatrix_seq
9052 {

We use \str_if_eq:eeTF because it is fully expandable (and slightly faster than \tl_if_eq:nnTF).
9053 { \str_if_eq:eeTF { #1 } { last } { \int_use:N \c@iRow } { #1 } }
9054 { \str_if_eq:eeTF { #2 } { last } { \int_use:N \c@jCol } { #2 } }
9055 { \str_if_eq:eeTF { #3 } { last } { \int_use:N \c@iRow } { #3 } }
9056 { \str_if_eq:eeTF { #4 } { last } { \int_use:N \c@jCol } { #4 } }
9057 }
9058 }

The following macro will compute \l_@@_first_i_tl, \l_@@_first_j_tl, \l_@@_last_i_tl and
\l_@@_last_j_tl from the arguments of the command as provided by the user (for example 2-3 and
5-last).

9059 \NewDocumentCommand \@@_compute_i_j:nn
9060 { > { \SplitArgument { 1 } { - } } m > { \SplitArgument { 1 } { - } } m }
9061 { \@@_compute_i_j:nnnn #1 #2 }

9062 \cs_new_protected:Npn \@@_compute_i_j:nnnn #1 #2 #3 #4
9063 {
9064 \def \l_@@_first_i_tl { #1 }
9065 \def \l_@@_first_j_tl { #2 }
9066 \def \l_@@_last_i_tl { #3 }
9067 \def \l_@@_last_j_tl { #4 }
9068 \tl_if_eq:NnT \l_@@_first_i_tl { last }
9069 { \tl_set:NV \l_@@_first_i_tl \c@iRow }
9070 \tl_if_eq:NnT \l_@@_first_j_tl { last }
9071 { \tl_set:NV \l_@@_first_j_tl \c@jCol }
9072 \tl_if_eq:NnT \l_@@_last_i_tl { last }
9073 { \tl_set:NV \l_@@_last_i_tl \c@iRow }
9074 \tl_if_eq:NnT \l_@@_last_j_tl { last }
9075 { \tl_set:NV \l_@@_last_j_tl \c@jCol }
9076 }

In the pre-code-after and in the \CodeAfter the following command \@@_SubMatrix will be linked
to \SubMatrix.

• #1 is the left delimiter;

• #2 is the upper-left cell of the matrix with the format i-j;

212

• #3 is the lower-right cell of the matrix with the format i-j;

• #4 is the right delimiter;

• #5 is the list of options of the command;

• #6 is the potential subscript;

• #7 is the potential superscript.

For explanations about the construction with rescanning of the preamble, see the documentation for
the user command \Cdots.

9077 \hook_gput_code:nnn { begindocument } { . }
9078 {
9079 \tl_set_rescan:Nnn \l_tmpa_tl { } { m m m m O { } E { _ ^ } { { } { } } }
9080 \exp_args:NNo \NewDocumentCommand \@@_SubMatrix \l_tmpa_tl
9081 { \@@_sub_matrix:nnnnnnn { #1 } { #2 } { #3 } { #4 } { #5 } { #6 } { #7 } }
9082 }

9083 \cs_new_protected:Npn \@@_sub_matrix:nnnnnnn #1 #2 #3 #4 #5 #6 #7
9084 {
9085 \group_begin:

The four following token lists correspond to the position of the \SubMatrix.
9086 \@@_compute_i_j:nn { #2 } { #3 }
9087 \int_compare:nNnT { \l_@@_first_i_tl } = { \l_@@_last_i_tl }
9088 { \def \arraystretch { 1 } }
9089 \bool_lazy_or:nnTF
9090 { \int_compare_p:nNn { \l_@@_last_i_tl } > { \g_@@_row_total_int } }
9091 { \int_compare_p:nNn { \l_@@_last_j_tl } > { \g_@@_col_total_int } }
9092 { \@@_error:nn { Construct~too~large } { \SubMatrix } }
9093 {
9094 \str_clear_new:N \l_@@_submatrix_name_str
9095 \keys_set:nn { nicematrix / SubMatrix } { #5 }
9096 \pgfpicture
9097 \pgfrememberpicturepositiononpagetrue
9098 \pgf@relevantforpicturesizefalse
9099 \pgfset { inner~sep = \c_zero_dim }
9100 \dim_set_eq:NN \l_@@_x_initial_dim \c_max_dim
9101 \dim_set:Nn \l_@@_x_final_dim { - \c_max_dim }

The last value of \int_step_inline:nnn is provided by curryfication.
9102 \bool_if:NTF \l_@@_submatrix_slim_bool
9103 { \int_step_inline:nnn { \l_@@_first_i_tl } { \l_@@_last_i_tl } }
9104 { \int_step_inline:nnn { \l_@@_first_row_int } { \g_@@_row_total_int } }
9105 {
9106 \cs_if_exist:cT
9107 { pgf @ sh @ ns @ \@@_env: - ##1 - \l_@@_first_j_tl }
9108 {
9109 \pgfpointanchor { \@@_env: - ##1 - \l_@@_first_j_tl } { west }
9110 \dim_compare:nNnT { \pgf@x } < { \l_@@_x_initial_dim }
9111 { \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x }
9112 }
9113 \cs_if_exist:cT
9114 { pgf @ sh @ ns @ \@@_env: - ##1 - \l_@@_last_j_tl }
9115 {
9116 \pgfpointanchor { \@@_env: - ##1 - \l_@@_last_j_tl } { east }
9117 \dim_compare:nNnT { \pgf@x } > { \l_@@_x_final_dim }
9118 { \dim_set_eq:NN \l_@@_x_final_dim \pgf@x }
9119 }
9120 }
9121 \dim_compare:nNnTF { \l_@@_x_initial_dim } = { \c_max_dim }
9122 { \@@_error:nn { Impossible~delimiter } { left } }
9123 {
9124 \dim_compare:nNnTF { \l_@@_x_final_dim } = { - \c_max_dim }

213

9125 { \@@_error:nn { Impossible~delimiter } { right } }
9126 { \@@_sub_matrix_i:nnnn { #1 } { #4 } { #6 } { #7 } }
9127 }
9128 \endpgfpicture
9129 }
9130 \group_end:
9131 \ignorespaces
9132 }

#1 is the left delimiter, #2 is the right one, #3 is the subscript and #4 is the superscript.
9133 \cs_new_protected:Npn \@@_sub_matrix_i:nnnn #1 #2 #3 #4
9134 {
9135 \@@_qpoint:n { row - \l_@@_first_i_tl - base }
9136 \dim_set:Nn \l_@@_y_initial_dim
9137 {
9138 \fp_to_dim:n
9139 {
9140 \pgf@y
9141 + (\box_ht:N \strutbox + \extrarowheight) * \arraystretch
9142 }
9143 }
9144 \@@_qpoint:n { row - \l_@@_last_i_tl - base }
9145 \dim_set:Nn \l_@@_y_final_dim
9146 { \fp_to_dim:n { \pgf@y - (\box_dp:N \strutbox) * \arraystretch } }
9147 \int_step_inline:nnn { \l_@@_first_col_int } { \g_@@_col_total_int }
9148 {
9149 \cs_if_exist:cT
9150 { pgf @ sh @ ns @ \@@_env: - \l_@@_first_i_tl - ##1 }
9151 {
9152 \pgfpointanchor { \@@_env: - \l_@@_first_i_tl - ##1 } { north }
9153 \dim_set:Nn \l_@@_y_initial_dim
9154 { \dim_max:nn { \l_@@_y_initial_dim } { \pgf@y } }
9155 }
9156 \cs_if_exist:cT
9157 { pgf @ sh @ ns @ \@@_env: - \l_@@_last_i_tl - ##1 }
9158 {
9159 \pgfpointanchor { \@@_env: - \l_@@_last_i_tl - ##1 } { south }
9160 \dim_compare:nNnT { \pgf@y } < { \l_@@_y_final_dim }
9161 { \dim_set_eq:NN \l_@@_y_final_dim \pgf@y }
9162 }
9163 }
9164 \dim_set:Nn \l_tmpa_dim
9165 {
9166 \l_@@_y_initial_dim - \l_@@_y_final_dim +
9167 \l_@@_submatrix_extra_height_dim - \arrayrulewidth
9168 }
9169 \dim_zero:N \nulldelimiterspace

We will draw the rules in the \SubMatrix.
9170 \group_begin:
9171 \pgfsetlinewidth { 1.1 \arrayrulewidth }
9172 \@@_set_CTarc:o \l_@@_rules_color_tl
9173 \CT@arc@

Now, we draw the potential vertical rules specified in the preamble of the environments with the
letter fixed with the key vlines-in-sub-matrix. The list of the columns where there is such rule to
draw is in \g_@@_cols_vlism_seq.

9174 \seq_map_inline:Nn \g_@@_cols_vlism_seq
9175 {
9176 \int_compare:nNnT { \l_@@_first_j_tl } < { ##1 }
9177 {
9178 \int_compare:nNnT
9179 { ##1 } < { \int_eval:n { \l_@@_last_j_tl + 1 } }

214

9180 {

First, we extract the value of the abscissa of the rule we have to draw.
9181 \@@_qpoint:n { col - ##1 }
9182 \pgfpathmoveto { \pgfpoint \pgf@x \l_@@_y_initial_dim }
9183 \pgfpathlineto { \pgfpoint \pgf@x \l_@@_y_final_dim }
9184 \pgfusepathqstroke
9185 }
9186 }
9187 }

Now, we draw the vertical rules specified in the key vlines of \SubMatrix. The last argument of
\int_step_inline:nn or \clist_map_inline:Nn is given by curryfication.

9188 \str_if_eq:eeTF { \l_@@_submatrix_vlines_clist } { all }
9189 { \int_step_inline:nn { \l_@@_last_j_tl - \l_@@_first_j_tl } }
9190 { \clist_map_inline:Nn \l_@@_submatrix_vlines_clist }
9191 {
9192 \bool_lazy_and:nnTF
9193 { \int_compare_p:nNn { ##1 } > { \c_zero_int } }
9194 {
9195 \int_compare_p:nNn
9196 { ##1 } < { \l_@@_last_j_tl - \l_@@_first_j_tl + 1 } }
9197 {
9198 \@@_qpoint:n { col - \int_eval:n { ##1 + \l_@@_first_j_tl } }
9199 \pgfpathmoveto { \pgfpoint \pgf@x \l_@@_y_initial_dim }
9200 \pgfpathlineto { \pgfpoint \pgf@x \l_@@_y_final_dim }
9201 \pgfusepathqstroke
9202 }
9203 { \@@_error:nnn { Wrong~line~in~SubMatrix } { vertical } { ##1 } }
9204 }

Now, we draw the horizontal rules specified in the key hlines of \SubMatrix. The last argument of
\int_step_inline:nn or \clist_map_inline:Nn is given by curryfication.

9205 \str_if_eq:eeTF { \l_@@_submatrix_hlines_clist } { all }
9206 { \int_step_inline:nn { \l_@@_last_i_tl - \l_@@_first_i_tl } }
9207 { \clist_map_inline:Nn \l_@@_submatrix_hlines_clist }
9208 {
9209 \bool_lazy_and:nnTF
9210 { \int_compare_p:nNn { ##1 } > { \c_zero_int } }
9211 {
9212 \int_compare_p:nNn
9213 { ##1 } < { \l_@@_last_i_tl - \l_@@_first_i_tl + 1 } }
9214 {
9215 \@@_qpoint:n { row - \int_eval:n { ##1 + \l_@@_first_i_tl } }

We use a group to protect \l_tmpa_dim and \l_tmpb_dim.
9216 \group_begin:

We compute in \l_tmpa_dim the x-value of the left end of the rule.
9217 \dim_set:Nn \l_tmpa_dim
9218 { \l_@@_x_initial_dim - \l_@@_submatrix_left_xshift_dim }
9219 \str_case:nn { #1 }
9220 {
9221 ({ \dim_sub:Nn \l_tmpa_dim { 0.9 mm } }
9222 [{ \dim_sub:Nn \l_tmpa_dim { 0.2 mm } }
9223 \{ { \dim_sub:Nn \l_tmpa_dim { 0.9 mm } }
9224 }
9225 \pgfpathmoveto { \pgfpoint \l_tmpa_dim \pgf@y }

We compute in \l_tmpb_dim the x-value of the right end of the rule.
9226 \dim_set:Nn \l_tmpb_dim
9227 { \l_@@_x_final_dim + \l_@@_submatrix_right_xshift_dim }
9228 \str_case:nn { #2 }
9229 {
9230) { \dim_add:Nn \l_tmpb_dim { 0.9 mm } }

215

9231] { \dim_add:Nn \l_tmpb_dim { 0.2 mm } }
9232 \} { \dim_add:Nn \l_tmpb_dim { 0.9 mm } }
9233 }
9234 \pgfpathlineto { \pgfpoint \l_tmpb_dim \pgf@y }
9235 \pgfusepathqstroke
9236 \group_end:
9237 }
9238 { \@@_error:nnn { Wrong~line~in~SubMatrix } { horizontal } { ##1 } }
9239 }

If the key name has been used for the command \SubMatrix, we create a PGF node with that name
for the submatrix (this node does not encompass the delimiters that we will put after).

9240 \str_if_empty:NF \l_@@_submatrix_name_str
9241 {
9242 \@@_pgf_rect_node:nnnnn \l_@@_submatrix_name_str
9243 \l_@@_x_initial_dim \l_@@_y_initial_dim
9244 \l_@@_x_final_dim \l_@@_y_final_dim
9245 }
9246 \group_end:

The group was for \CT@arc@ (the color of the rules).

Now, we deal with the left delimiter. Of course, the environment {pgfscope} is for the
\pgftransformshift.

9247 \begin { pgfscope }
9248 \pgftransformshift
9249 {
9250 \pgfpoint
9251 { \l_@@_x_initial_dim - \l_@@_submatrix_left_xshift_dim }
9252 { (\l_@@_y_initial_dim + \l_@@_y_final_dim) / 2 }
9253 }
9254 \str_if_empty:NTF \l_@@_submatrix_name_str
9255 { \@@_node_left:nn #1 { } }
9256 { \@@_node_left:nn #1 { \@@_env: - \l_@@_submatrix_name_str - left } }
9257 \end { pgfscope }

Now, we deal with the right delimiter.
9258 \pgftransformshift
9259 {
9260 \pgfpoint
9261 { \l_@@_x_final_dim + \l_@@_submatrix_right_xshift_dim }
9262 { (\l_@@_y_initial_dim + \l_@@_y_final_dim) / 2 }
9263 }
9264 \str_if_empty:NTF \l_@@_submatrix_name_str
9265 { \@@_node_right:nnnn #2 { } { #3 } { #4 } }
9266 {
9267 \@@_node_right:nnnn #2
9268 { \@@_env: - \l_@@_submatrix_name_str - right } { #3 } { #4 }
9269 }

Now, we deal with the key code of \SubMatrix. That key should contain a TikZ instruction and
the nodes in that instruction will be relative to the current \SubMatrix. That’s why we need a
redefinition of \pgfpointanchor.

9270 \cs_set_eq:NN \pgfpointanchor \@@_pgfpointanchor:n
9271 \flag_clear_new:N \l_@@_code_flag
9272 \l_@@_code_tl
9273 }

In the key code of the command \SubMatrix there may be TikZ instructions. We want that, in these
instructions, the i and j in specifications of nodes of the forms i-j, row-i, col-j and i-|j refer to
the number of row and column relative of the current \SubMatrix. That’s why we will patch (locally
in the \SubMatrix) the command \pgfpointanchor.

9274 \cs_set_eq:NN \@@_old_pgfpointanchor: \pgfpointanchor

216

The following command will be linked to \pgfpointanchor just before the execution of the option
code of the command \SubMatrix. In this command, we catch the argument #1 of \pgfpointanchor
and we apply to it the command \@@_pgfpointanchor_i:nn before passing it to the original
\pgfpointanchor. We have to act in an expandable way because the command \pgfpointanchor is
used in names of TikZ nodes which are computed in an expandable way.
The original command \pgfpointanchor takes in two arguments: the name of the name and the name
of the anchor. However, you don’t have to modify the anchor, and that’s why we do a redefinition of
\pgfpointanchor by curryfication.

9275 \cs_new:Npn \@@_pgfpointanchor:n #1
9276 { \exp_args:Ne \@@_old_pgfpointanchor: { \@@_pgfpointanchor_i:n { #1 } } }

First, we must detect whether the argument is of the form \tikz@pp@name{...} (the command
\tikz@pp@name is a command of TikZ that adds the prefix and the suffix of the name. If the name
refers to a TikZ node which does not exist, there isn’t the wrapper \tikz@pp@name.

9277 \cs_new:Npn \@@_pgfpointanchor_i:n #1
9278 { \@@_pgfpointanchor_ii:w #1 \tikz@pp@name \q_stop }

9279 \cs_new:Npn \@@_pgfpointanchor_ii:w #1 \tikz@pp@name #2 \q_stop
9280 {

The command \str_if_empty:nTF is “fully expandable”.
9281 \str_if_empty:nTF { #1 }

First, when the name of the name begins with \tikz@pp@name.
9282 { \@@_pgfpointanchor_iv:w #2 }

And now, when there is no \tikz@pp@name.
9283 { \@@_pgfpointanchor_ii:n { #1 } }
9284 }

In the case where the name begins with \tikz@pp@name, we must retrieve the second \tikz@pp@name,
that is to say to marker that we have added at the end (cf. \@@_pgfpointanchor_i:n).

9285 \cs_new:Npn \@@_pgfpointanchor_iv:w #1 \tikz@pp@name
9286 { \@@_pgfpointanchor_ii:n { #1 } }

With the command \@@_pgfpointanchor_ii:n, we deal with the actual name of the node (without
the \tikz@pp@name). First, we have to detect whether it is of the form i of the form i-j (with an
hyphen).
Remark: It would be possible to test the presence of the hyphen in an expandable way to using
\etl_if_in:nnTF of the package etl but, as of now, we do not load etl.

9287 \cs_new:Npn \@@_pgfpointanchor_ii:n #1 { \@@_pgfpointanchor_i:w #1- \q_stop }

9288 \cs_new:Npn \@@_pgfpointanchor_i:w #1-#2 \q_stop
9289 {

The command \str_if_empty:nTF is “fully expandable”.
9290 \str_if_empty:nTF { #2 }

First the case where the argument does not contain an hyphen.
9291 { \@@_pgfpointanchor_iii:n { #1 } }

And now the case the argument contains a hyphen. In that case, we have a weird construction because
we must retreive the extra hyphen we have added as marker (cf. \@@_pgfpointanchor_ii:n).

9292 { \@@_pgfpointanchor_iii:w { #1 } #2 }
9293 }

The following function is for the case when the name contains an hyphen.
9294 \cs_new:Npn \@@_pgfpointanchor_iii:w #1 #2 -
9295 {

We have to add the prefix \@@_env: “by hand” since we have retreived the potential \tikz@pp@name.
9296 \@@_env:
9297 - \int_eval:n { #1 + \l_@@_first_i_tl - 1 }
9298 - \int_eval:n { #2 + \l_@@_first_j_tl - 1 }
9299 }

217

Since \seq_if_in:NnTF and \clist_if_in:NnTF are not expandable, we will use the following token
list and \str_case:nVTF to test whether we have an integer or not.

9300 \tl_const:Nn \c_@@_integers_alist_tl
9301 {
9302 { 1 } { } { 2 } { } { 3 } { } { 4 } { } { 5 } { }
9303 { 6 } { } { 7 } { } { 8 } { } { 9 } { } { 10 } { }
9304 { 11 } { } { 12 } { } { 13 } { } { 14 } { } { 15 } { }
9305 { 16 } { } { 17 } { } { 18 } { } { 19 } { } { 20 } { }
9306 }

9307 \cs_new:Npn \@@_pgfpointanchor_iii:n #1
9308 {

If there is no hyphen, that means that the node is of the form of a single number (ex.: 5 or 11).
In that case, we are in an analysis which result from a specification of node of the form i-|j. That
special form is the reason of the special form of the argument of \pgfpointanchor which arises witht
its command \name_of_command (see above).
In that case, the i of the number of row arrives first (and alone) in a \pgfpointanchor and, the, the
j arrives (alone) in the following \pgfpointanchor. In order to know whether we have a number of
row or a number of column, we keep track of the number of such treatments by the expandable flag
called nicematrix.

9309 \str_case:nVTF { #1 } \c_@@_integers_alist_tl
9310 {
9311 \flag_raise:N \l_@@_code_flag

We have to add the prefix \@@_env: “by hand” since we have retreived the potential \tikz@pp@name.
9312 \@@_env: -
9313 \int_if_even:nTF { \flag_height:N \l_@@_code_flag }
9314 { \int_eval:n { #1 + \l_@@_first_i_tl - 1 } }
9315 { \int_eval:n { #1 + \l_@@_first_j_tl - 1 } }
9316 }
9317 {
9318 \str_if_eq:eeTF { #1 } { last }
9319 {
9320 \flag_raise:N \l_@@_code_flag
9321 \@@_env: -
9322 \int_if_even:nTF { \flag_height:N \l_@@_code_flag }
9323 { \int_eval:n { \l_@@_last_i_tl + 1 } }
9324 { \int_eval:n { \l_@@_last_j_tl + 1 } }
9325 }
9326 { #1 }
9327 }
9328 }

The command \@@_node_left:nn puts the left delimiter with the correct size. The argument #1 is
the delimiter to put. The argument #2 is the name we will give to this PGF node (if the key name
has been used in \SubMatrix).

9329 \cs_new_protected:Npn \@@_node_left:nn #1 #2
9330 {
9331 \pgfnode
9332 { rectangle }
9333 { east }
9334 {
9335 \nullfont
9336 $ % $
9337 \@@_color:o \l_@@_delimiters_color_tl
9338 \left #1
9339 \vcenter
9340 {
9341 \nullfont
9342 \hrule \@height \l_tmpa_dim
9343 \@depth \c_zero_dim

218

9344 \@width \c_zero_dim
9345 }
9346 \right .
9347 $ % $
9348 }
9349 { #2 }
9350 { }
9351 }

The command \@@_node_right:nn puts the right delimiter with the correct size. The argument #1
is the delimiter to put. The argument #2 is the name we will give to this PGF node (if the key name
has been used in \SubMatrix). The argument #3 is the subscript and #4 is the superscript.

9352 \cs_new_protected:Npn \@@_node_right:nnnn #1 #2 #3 #4
9353 {
9354 \pgfnode
9355 { rectangle }
9356 { west }
9357 {
9358 \nullfont
9359 $ % $
9360 \colorlet { current-color } { . }
9361 \@@_color:o \l_@@_delimiters_color_tl
9362 \left .
9363 \vcenter
9364 {
9365 \nullfont
9366 \hrule \@height \l_tmpa_dim
9367 \@depth \c_zero_dim
9368 \@width \c_zero_dim
9369 }
9370 \right #1
9371 \tl_if_empty:nF { #3 } { _ { \smash { #3 } } }
9372 ^ { \color { current-color } \smash { #4 } }
9373 $ % $
9374 }
9375 { #2 }
9376 { }
9377 }

34 Les commandes \UnderBrace et \OverBrace

The following commands will be linked to \UnderBrace and \OverBrace in the \CodeAfter.
9378 \NewDocumentCommand \@@_UnderBrace { O { } m m m O { } }
9379 {
9380 \@@_brace:nnnnn { #2 } { #3 } { #4 } { #1 , #5 } { under }
9381 \ignorespaces
9382 }

9383 \NewDocumentCommand \@@_OverBrace { O { } m m m O { } }
9384 {
9385 \@@_brace:nnnnn { #2 } { #3 } { #4 } { #1 , #5 } { over }
9386 \ignorespaces
9387 }

9388 \keys_define:nn { nicematrix / Brace }
9389 {
9390 left-shorten .bool_set:N = \l_@@_brace_left_shorten_bool ,
9391 left-shorten .default:n = true ,
9392 left-shorten .value_forbidden:n = true ,

219

9393 right-shorten .bool_set:N = \l_@@_brace_right_shorten_bool ,
9394 right-shorten .default:n = true ,
9395 right-shorten .value_forbidden:n = true ,
9396 shorten .meta:n = { left-shorten , right-shorten } ,
9397 shorten .value_forbidden:n = true ,
9398 yshift .dim_set:N = \l_@@_brace_yshift_dim ,
9399 yshift .value_required:n = true ,
9400 yshift .initial:n = \c_zero_dim ,
9401 color .tl_set:N = \l_tmpa_tl ,
9402 color .value_required:n = true ,
9403 unknown .code:n =
9404 \@@_unknown_key:nn
9405 { nicematrix / Brace }
9406 { Unknown~key~for~Brace }
9407 }

#1 is the first cell of the rectangle (with the syntax i-|j; #2 is the last cell of the rectangle; #3 is the
label of the text; #4 is the optional argument (a list of key-value pairs); #5 is equal to under or over.

9408 \cs_new_protected:Npn \@@_brace:nnnnn #1 #2 #3 #4 #5
9409 {
9410 \group_begin:

The four following token lists correspond to the position of the sub-matrix to which a brace will be
attached.

9411 \@@_compute_i_j:nn { #1 } { #2 }
9412 \bool_lazy_or:nnTF
9413 { \int_compare_p:nNn { \l_@@_last_i_tl } > { \g_@@_row_total_int } }
9414 { \int_compare_p:nNn { \l_@@_last_j_tl } > { \g_@@_col_total_int } }
9415 {
9416 \str_if_eq:eeTF { #5 } { under }
9417 { \@@_error:nn { Construct~too~large } { \UnderBrace } }
9418 { \@@_error:nn { Construct~too~large } { \OverBrace } }
9419 }
9420 {
9421 \tl_clear:N \l_tmpa_tl
9422 \keys_set:nn { nicematrix / Brace } { #4 }
9423 \tl_if_empty:NF \l_tmpa_tl { \color { \l_tmpa_tl } }
9424 \pgfpicture
9425 \pgfrememberpicturepositiononpagetrue
9426 \pgf@relevantforpicturesizefalse
9427 \bool_if:NT \l_@@_brace_left_shorten_bool
9428 {
9429 \dim_set_eq:NN \l_@@_x_initial_dim \c_max_dim
9430 \int_step_inline:nnn { \l_@@_first_i_tl } { \l_@@_last_i_tl }
9431 {
9432 \cs_if_exist:cT
9433 { pgf @ sh @ ns @ \@@_env: - ##1 - \l_@@_first_j_tl }
9434 {
9435 \pgfpointanchor { \@@_env: - ##1 - \l_@@_first_j_tl } { west }
9436

9437 \dim_compare:nNnT { \pgf@x } < { \l_@@_x_initial_dim }
9438 { \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x }
9439 }
9440 }
9441 }
9442 \bool_lazy_or:nnT
9443 { \bool_not_p:n \l_@@_brace_left_shorten_bool }
9444 { \dim_compare_p:nNn { \l_@@_x_initial_dim } = { \c_max_dim } }
9445 {
9446 \@@_qpoint:n { col - \l_@@_first_j_tl }
9447 \dim_set_eq:NN \l_@@_x_initial_dim \pgf@x
9448 }
9449 \bool_if:NT \l_@@_brace_right_shorten_bool
9450 {

220

9451 \dim_set:Nn \l_@@_x_final_dim { - \c_max_dim }
9452 \int_step_inline:nnn { \l_@@_first_i_tl } { \l_@@_last_i_tl }
9453 {
9454 \cs_if_exist:cT
9455 { pgf @ sh @ ns @ \@@_env: - ##1 - \l_@@_last_j_tl }
9456 {
9457 \pgfpointanchor { \@@_env: - ##1 - \l_@@_last_j_tl } { east }
9458 \dim_compare:nNnT { \pgf@x } > { \l_@@_x_final_dim }
9459 { \dim_set_eq:NN \l_@@_x_final_dim \pgf@x }
9460 }
9461 }
9462 }
9463 \bool_lazy_or:nnT
9464 { \bool_not_p:n \l_@@_brace_right_shorten_bool }
9465 { \dim_compare_p:nNn { \l_@@_x_final_dim } = { - \c_max_dim } }
9466 {
9467 \@@_qpoint:n { col - \int_eval:n { \l_@@_last_j_tl + 1 } }
9468 \dim_set_eq:NN \l_@@_x_final_dim \pgf@x
9469 }
9470 \pgfset { inner~sep = \c_zero_dim }
9471 \str_if_eq:eeTF { #5 } { under }
9472 { \@@_underbrace_i:n { #3 } }
9473 { \@@_overbrace_i:n { #3 } }
9474 \endpgfpicture
9475 }
9476 \group_end:
9477 }

The argument is the text to put above the brace.
9478 \cs_new_protected:Npn \@@_overbrace_i:n #1
9479 {
9480 \@@_qpoint:n { row - \l_@@_first_i_tl }
9481 \pgftransformshift
9482 {
9483 \pgfpoint
9484 { (\l_@@_x_initial_dim + \l_@@_x_final_dim) / 2 }
9485 { \pgf@y + \l_@@_brace_yshift_dim - 3 pt }
9486 }
9487 \pgfnode
9488 { rectangle }
9489 { south }
9490 {
9491 \vtop
9492 {
9493 \group_begin:
9494 \everycr { }
9495 \halign
9496 {
9497 \hfil ## \hfil \crcr
9498 \bool_if:NTF \l_@@_tabular_bool
9499 { \begin { tabular } { c } #1 \end { tabular } }
9500 { $ \begin { array } { c } #1 \end { array } $ }
9501 \cr
9502 $ % $
9503 \overbrace
9504 {
9505 \hbox_to_wd:nn
9506 { \l_@@_x_final_dim - \l_@@_x_initial_dim }
9507 { }
9508 }
9509 $ % $
9510 \cr
9511 }
9512 \group_end:

221

9513 }
9514 }
9515 { }
9516 { }
9517 }

The argument is the text to put under the brace.
9518 \cs_new_protected:Npn \@@_underbrace_i:n #1
9519 {
9520 \@@_qpoint:n { row - \int_eval:n { \l_@@_last_i_tl + 1 } }
9521 \pgftransformshift
9522 {
9523 \pgfpoint
9524 { (\l_@@_x_initial_dim + \l_@@_x_final_dim) / 2 }
9525 { \pgf@y - \l_@@_brace_yshift_dim + 3 pt }
9526 }
9527 \pgfnode
9528 { rectangle }
9529 { north }
9530 {
9531 \group_begin:
9532 \everycr { }
9533 \vbox
9534 {
9535 \halign
9536 {
9537 \hfil ## \hfil \crcr
9538 $ % $
9539 \underbrace
9540 {
9541 \hbox_to_wd:nn
9542 { \l_@@_x_final_dim - \l_@@_x_initial_dim }
9543 { }
9544 }
9545 $ % $
9546 \cr
9547 \bool_if:NTF \l_@@_tabular_bool
9548 { \begin { tabular } { c } #1 \end { tabular } }
9549 { $ \begin { array } { c } #1 \end { array } $ }
9550 \cr
9551 }
9552 }
9553 \group_end:
9554 }
9555 { }
9556 { }
9557 }

35 The commands HBrace et VBrace

The TikZ style nicematrix/brace is a TikZ style used to draw the braces created by \Hbrace and
\Vbrace.
We can’t load that definition right away because of course, maybe the final user has not yet
loaded TikZ (\Hbrace and \Vbrace are available only when TikZ is loaded and also its library
decorations.pathreplacing).

9558 \AddToHook { package / tikz / after }
9559 {

222

9560 \tikzset
9561 {
9562 nicematrix / brace / .style =
9563 {
9564 decoration = { brace , raise = -0.15 em } ,
9565 decorate ,
9566 } ,

Unlike the previous one, the following set of keys is internal. It won’t be provided by the final user.
9567 nicematrix / mirrored-brace / .style =
9568 {
9569 nicematrix / brace ,
9570 decoration = mirror ,
9571 }
9572 }
9573 }

The following set of keys will be used only for security since the keys will be sent to the command
\Ldots or \Vdots.

9574 \keys_define:nn { nicematrix / Hbrace }
9575 {
9576 color .code:n = ,
9577 horizontal-label .code:n = ,
9578 horizontal-labels .code:n = ,
9579 shorten .code:n = ,
9580 shorten-start .code:n = ,
9581 shorten-end .code:n = ,
9582 shorten+ .code:n = ,
9583 shorten-start+ .code:n = ,
9584 shorten-end+ .code:n = ,
9585 shorten~+ .code:n = ,
9586 shorten-start~+ .code:n = ,
9587 shorten-end~+ .code:n = ,
9588 brace-shift .code:n = ,
9589 brace-shift+ .code:n = ,
9590 brace-shift~+ .code:n = ,
9591 unknown .code:n = \@@_fatal:n { Unknown~key~for~Hbrace }
9592 }

Here we need an “fully expandable” command.
9593 \NewExpandableDocumentCommand { \@@_Hbrace } { O { } m m }
9594 {
9595 \cs_if_exist:cTF { tikz@library@decorations.pathreplacing@loaded }
9596 { \@@_hbrace:nnn { #1 } { #2 } { #3 } }
9597 { \@@_error:nn { Hbrace~not~allowed } { \Hbrace } }
9598 }

The following command must not be protected because of the \Hdotsfor which contains a
\multicolumn (whereas the similar command \@@_vbrace:nnn must be protected).

9599 \cs_new:Npn \@@_hbrace:nnn #1 #2 #3
9600 {
9601 \int_compare:nNnTF { \c@iRow } < { 2 }
9602 {

We recall that \str_if_eq:nnTF is “fully expandable”.
9603 \str_if_eq:nnTF { #2 } { * }
9604 {
9605 \bool_set_true:N \l_@@_nullify_dots_bool
9606 \Ldots
9607 [
9608 line-style = nicematrix / brace ,
9609 #1 ,

223

9610 up =
9611 \bool_if:NT \l_@@_tabular_bool \text { \exp_not:n { #3 } }
9612]
9613 }
9614 {
9615 \Hdotsfor
9616 [
9617 line-style = nicematrix / brace ,
9618 #1 ,
9619 up =
9620 \bool_if:NT \l_@@_tabular_bool \text { \exp_not:n { #3 } }
9621]
9622 { #2 }
9623 }
9624 }
9625 {
9626 \str_if_eq:nnTF { #2 } { * }
9627 {
9628 \bool_set_true:N \l_@@_nullify_dots_bool
9629 \Ldots
9630 [
9631 line-style = nicematrix / mirrored-brace ,
9632 #1 ,
9633 down =
9634 \bool_if:NT \l_@@_tabular_bool \text { \exp_not:n { #3 } }
9635]
9636 }
9637 {
9638 \Hdotsfor
9639 [
9640 line-style = nicematrix / mirrored-brace ,
9641 #1 ,
9642 down =
9643 \bool_if:NT \l_@@_tabular_bool \text { \exp_not:n { #3 } }
9644]
9645 { #2 }
9646 }
9647 }
9648 \keys_set:nn { nicematrix / Hbrace } { #1 }
9649 }

9650 \NewDocumentCommand { \@@_Vbrace } { O { } m m }
9651 {
9652 \cs_if_exist:cTF { tikz@library@decorations.pathreplacing@loaded }
9653 { \@@_vbrace:nnn { #1 } { #2 } { #3 } }
9654 { \@@_error:nn { Hbrace~not~allowed } { \Vbrace } }
9655 }

The following command must be protected (whereas the similar command \@@_hbrace:nnn must
not.

9656 \cs_new_protected:Npn \@@_vbrace:nnn #1 #2 #3
9657 {
9658 \int_compare:nNnTF { \c@jCol } < { 2 }
9659 {
9660 \str_if_eq:nnTF { #2 } { * }
9661 {
9662 \bool_set_true:N \l_@@_nullify_dots_bool
9663 \Vdots
9664 [
9665 Vbrace ,
9666 line-style = nicematrix / mirrored-brace ,
9667 #1 ,
9668 down =

224

9669 \bool_if:NT \l_@@_tabular_bool \text { \exp_not:n { #3 } }
9670]
9671 }
9672 {
9673 \Vdotsfor
9674 [
9675 Vbrace ,
9676 line-style = nicematrix / mirrored-brace ,
9677 #1 ,
9678 down =
9679 \bool_if:NT \l_@@_tabular_bool \text { \exp_not:n { #3 } }
9680]
9681 { #2 }
9682 }
9683 }
9684 {
9685 \str_if_eq:nnTF { #2 } { * }
9686 {
9687 \bool_set_true:N \l_@@_nullify_dots_bool
9688 \Vdots
9689 [
9690 Vbrace ,
9691 line-style = nicematrix / brace ,
9692 #1 ,
9693 up =
9694 \bool_if:NT \l_@@_tabular_bool \text { \exp_not:n { #3 } }
9695]
9696 }
9697 {
9698 \Vdotsfor
9699 [
9700 Vbrace ,
9701 line-style = nicematrix / brace ,
9702 #1 ,
9703 up =
9704 \bool_if:NT \l_@@_tabular_bool \text { \exp_not:n { #3 } }
9705]
9706 { #2 }
9707 }
9708 }
9709 \keys_set:nn { nicematrix / Hbrace } { #1 }
9710 }

36 The command TikzEveryCell

9711 \bool_new:N \l_@@_not_empty_bool
9712 \bool_new:N \l_@@_empty_bool
9713

9714 \keys_define:nn { nicematrix / TikzEveryCell }
9715 {
9716 not-empty .code:n =
9717 \bool_lazy_or:nnTF
9718 { \l_@@_in_code_after_bool }
9719 { \g_@@_create_cell_nodes_bool }
9720 { \bool_set_true:N \l_@@_not_empty_bool }
9721 { \@@_error:n { detection~of~empty~cells } } ,
9722 not-empty .value_forbidden:n = true ,
9723 empty .code:n =
9724 \bool_lazy_or:nnTF

225

9725 { \l_@@_in_code_after_bool }
9726 { \g_@@_create_cell_nodes_bool }
9727 { \bool_set_true:N \l_@@_empty_bool }
9728 { \@@_error:n { detection~of~empty~cells } } ,
9729 empty .value_forbidden:n = true ,
9730 unknown .code:n = \@@_error:n { Unknown~key~for~TikzEveryCell }
9731 }
9732

9733

9734 \NewDocumentCommand { \@@_TikzEveryCell } { O { } m }
9735 {
9736 \IfPackageLoadedTF { tikz }
9737 {
9738 \group_begin:
9739 \keys_set:nn { nicematrix / TikzEveryCell } { #1 }

The inner pair of braces in the following line is mandatory because, the last argument of
\@@_tikz:nnnnn is a list of lists of TikZ keys.

9740 \tl_set:Nn \l_tmpa_tl { { #2 } }
9741 \seq_map_inline:Nn \g_@@_pos_of_blocks_seq
9742 { \@@_for_a_block:nnnnn ##1 }
9743 \@@_all_the_cells:
9744 \group_end:
9745 }
9746 { \@@_error:n { TikzEveryCell~without~tikz } }
9747 }
9748

9749

9750 \cs_new_protected:Nn \@@_all_the_cells:
9751 {
9752 \int_step_inline:nn \c@iRow
9753 {
9754 \int_step_inline:nn \c@jCol
9755 {
9756 \cs_if_exist:cF { cell - ##1 - ####1 }
9757 {
9758 \clist_if_in:NeF \l_@@_corners_cells_clist
9759 { ##1 - ####1 }
9760 {
9761 \bool_set_false:N \l_tmpa_bool
9762 \cs_if_exist:cTF
9763 { pgf @ sh @ ns @ \@@_env: - ##1 - ####1 }
9764 {
9765 \bool_if:NF \l_@@_empty_bool
9766 { \bool_set_true:N \l_tmpa_bool }
9767 }
9768 {
9769 \bool_if:NF \l_@@_not_empty_bool
9770 { \bool_set_true:N \l_tmpa_bool }
9771 }
9772 \bool_if:NT \l_tmpa_bool
9773 {
9774 \@@_block_tikz:onnnn
9775 \l_tmpa_tl { ##1 } { ####1 } { ##1 } { ####1 }
9776 }
9777 }
9778 }
9779 }
9780 }
9781 }
9782

9783 \cs_new_protected:Nn \@@_for_a_block:nnnnn
9784 {
9785 \bool_if:NF \l_@@_empty_bool

226

9786 {
9787 \@@_block_tikz:onnnn
9788 \l_tmpa_tl { #1 } { #2 } { #3 } { #4 }
9789 }
9790 \@@_mark_cells_of_block:nnnn { #1 } { #2 } { #3 } { #4 }
9791 }
9792

9793 \cs_new_protected:Nn \@@_mark_cells_of_block:nnnn
9794 {
9795 \int_step_inline:nnn { #1 } { #3 }
9796 {
9797 \int_step_inline:nnn { #2 } { #4 }
9798 { \cs_set_nopar:cpn { cell - ##1 - ####1 } { } }
9799 }
9800 }

37 The command \CreateBlocksInColumn

9801 \cs_new_protected:Npn \@@_create_blocks_in_col:n #1
9802 { \clist_gput_right:Nn \g_@@_cbic_clist { #1 } }

9803 \cs_new_protected:Npn \@@_cbic:
9804 {
9805 \clist_map_inline:Nn \g_@@_cbic_clist
9806 {
9807 \cs_set:cpn
9808 {
9809 pgf @ sh @ ns @ \@@_env:
9810 - \int_eval:n { \c@iRow + 1 } - ##1 }
9811 { rien }

\l_tmpa_int will be the first row of the block being created.
9812 \int_set:Nn \l_tmpa_int { 1 }
9813 \int_step_inline:nn { \c@iRow + 1 }
9814 {
9815 \cs_if_exist:cT
9816 { pgf @ sh @ ns @ \@@_env: - ####1 - ##1 }
9817 {
9818 \int_compare:nNnT { ####1 } > { \l_tmpa_int + 1 }
9819 {
9820 \seq_gput_right:Ne \g_@@_pos_of_blocks_seq
9821 {
9822 { \int_use:N \l_tmpa_int }
9823 { ##1 }
9824 { \int_eval:n { ####1 - 1 } }
9825 { ##1 }
9826 { }
9827 }
9828 }
9829 \int_set:Nn \l_tmpa_int { ####1 }
9830 }
9831 }
9832 }
9833 \clist_gclear:N \g_@@_cbic_clist
9834 }

38 The command \ShowCellNames

9835 \NewDocumentCommand \@@_ShowCellNames { }
9836 {
9837 \bool_if:NT \l_@@_in_code_after_bool

227

9838 {
9839 \pgfpicture
9840 \pgfrememberpicturepositiononpagetrue
9841 \pgf@relevantforpicturesizefalse
9842 \pgfpathrectanglecorners
9843 { \@@_qpoint:n { 1 } }
9844 {
9845 \@@_qpoint:n
9846 { \int_eval:n { \int_max:nn { \c@iRow } { \c@jCol } + 1 } }
9847 }
9848 \pgfsetfillopacity { 0.75 }
9849 \pgfsetfillcolor { white }
9850 \pgfusepathqfill
9851 \endpgfpicture
9852 }
9853 \dim_gzero_new:N \g_@@_tmpc_dim
9854 \dim_gzero_new:N \g_@@_tmpd_dim
9855 \dim_gzero_new:N \g_@@_tmpe_dim
9856 \int_step_inline:nn { \c@iRow }
9857 {
9858 \bool_if:NTF \l_@@_in_code_after_bool
9859 {
9860 \pgfpicture
9861 \pgfrememberpicturepositiononpagetrue
9862 \pgf@relevantforpicturesizefalse
9863 }
9864 { \begin { pgfpicture } }
9865 \@@_qpoint:n { row - ##1 }
9866 \dim_set_eq:NN \l_tmpa_dim \pgf@y
9867 \@@_qpoint:n { row - \int_eval:n { ##1 + 1 } }
9868 \dim_gset:Nn \g_tmpa_dim { (\l_tmpa_dim + \pgf@y) / 2 }
9869 \dim_gset:Nn \g_tmpb_dim { \l_tmpa_dim - \pgf@y }
9870 \bool_if:NTF \l_@@_in_code_after_bool
9871 { \endpgfpicture }
9872 { \end { pgfpicture } }
9873 \int_step_inline:nn { \c@jCol }
9874 {
9875 \hbox_set:Nn \l_tmpa_box
9876 {
9877 \normalfont \Large \sffamily \bfseries
9878 \bool_if:NTF \l_@@_in_code_after_bool
9879 { \color { red } }
9880 { \color { red ! 50 } }
9881 ##1 - ####1
9882 }
9883 \bool_if:NTF \l_@@_in_code_after_bool
9884 {
9885 \pgfpicture
9886 \pgfrememberpicturepositiononpagetrue
9887 \pgf@relevantforpicturesizefalse
9888 }
9889 { \begin { pgfpicture } }
9890 \@@_qpoint:n { col - ####1 }
9891 \dim_gset_eq:NN \g_@@_tmpc_dim \pgf@x
9892 \@@_qpoint:n { col - \int_eval:n { ####1 + 1 } }
9893 \dim_gset:Nn \g_@@_tmpd_dim { \pgf@x - \g_@@_tmpc_dim }
9894 \dim_gset_eq:NN \g_@@_tmpe_dim \pgf@x
9895 \bool_if:NTF \l_@@_in_code_after_bool
9896 { \endpgfpicture }
9897 { \end { pgfpicture } }
9898 \fp_set:Nn \l_tmpa_fp
9899 {
9900 \fp_min:nn

228

9901 {
9902 \fp_min:nn
9903 { \dim_ratio:nn \g_@@_tmpd_dim { \box_wd:N \l_tmpa_box } }
9904 { \dim_ratio:nn \g_tmpb_dim { \box_ht_plus_dp:N \l_tmpa_box } }
9905 }
9906 { 1.0 }
9907 }
9908 \box_scale:Nnn \l_tmpa_box { \fp_use:N \l_tmpa_fp } { \fp_use:N \l_tmpa_fp }
9909 \pgfpicture
9910 \pgfrememberpicturepositiononpagetrue
9911 \pgf@relevantforpicturesizefalse
9912 \pgftransformshift
9913 {
9914 \pgfpoint
9915 { 0.5 * (\g_@@_tmpc_dim + \g_@@_tmpe_dim) }
9916 { \dim_use:N \g_tmpa_dim }
9917 }
9918 \pgfnode
9919 { rectangle }
9920 { center }
9921 { \box_use:N \l_tmpa_box }
9922 { }
9923 { }
9924 \endpgfpicture
9925 }
9926 }
9927 }

39 We process the options at package loading

We process the options when the package is loaded (with \usepackage) but we recommend to use
\NiceMatrixOptions instead.
We must process these options after the definition of the environment {NiceMatrix} because the
option renew-matrix executes the code \cs_set_eq:NN \env@matrix \NiceMatrix.
Of course, the command \NiceMatrix must be defined before such an instruction is executed.

The boolean \g_@@_footnotehyper_bool will indicate if the option footnotehyper is used.
9928 \bool_new:N \g_@@_footnotehyper_bool

The boolean \g_@@_footnote_bool will indicate if the option footnote is used, but quickly, it will
also be set to true if the option footnotehyper is used.

9929 \bool_new:N \g_@@_footnote_bool

9930 \msg_new:nnnn { nicematrix } { Unknown~key~for~package }
9931 {
9932 You~have~used~the~key~' \l_keys_key_str '~when~loading~nicematrix~
9933 but~that~key~is~unknown. \\
9934 It~will~be~ignored. \\
9935 For~a~list~of~the~available~keys,~type~H~<return>.
9936 }
9937 {
9938 The~available~keys~are~(in~alphabetic~order):~
9939 footnote,~
9940 footnotehyper,~
9941 messages-for-Overleaf,~
9942 renew-dots~and~
9943 renew-matrix.
9944 }

9945 \keys_define:nn { nicematrix }
9946 {
9947 renew-dots .bool_set:N = \l_@@_renew_dots_bool ,

229

9948 renew-dots .value_forbidden:n = true ,
9949 renew-matrix .code:n = \@@_renew_matrix: ,
9950 renew-matrix .value_forbidden:n = true ,
9951 messages-for-Overleaf .bool_set:N = \g_@@_messages_for_Overleaf_bool ,
9952 footnote .bool_set:N = \g_@@_footnote_bool ,
9953 footnotehyper .bool_set:N = \g_@@_footnotehyper_bool ,
9954 unknown .code:n = \@@_error:n { Unknown~key~for~package }
9955 }
9956 \ProcessKeyOptions

9957 \@@_msg_new:nn { footnote~with~footnotehyper~package }
9958 {
9959 You~can't~use~the~option~'footnote'~because~the~package~
9960 footnotehyper~has~already~been~loaded.~
9961 If~you~want,~you~can~use~the~option~'footnotehyper'~and~the~footnotes~
9962 within~the~environments~of~nicematrix~will~be~extracted~with~the~tools~
9963 of~the~package~footnotehyper.\\
9964 The~package~footnote~won't~be~loaded.
9965 }

9966 \@@_msg_new:nn { footnotehyper~with~footnote~package }
9967 {
9968 You~can't~use~the~option~'footnotehyper'~because~the~package~
9969 footnote~has~already~been~loaded.~
9970 If~you~want,~you~can~use~the~option~'footnote'~and~the~footnotes~
9971 within~the~environments~of~nicematrix~will~be~extracted~with~the~tools~
9972 of~the~package~footnote.\\
9973 The~package~footnotehyper~won't~be~loaded.
9974 }

9975 \bool_if:NT \g_@@_footnote_bool
9976 {

The class beamer has its own system to extract footnotes and that’s why we have nothing to do if
beamer is used.

9977 \IfClassLoadedTF { beamer }
9978 { \bool_set_false:N \g_@@_footnote_bool }
9979 {
9980 \IfPackageLoadedTF { footnotehyper }
9981 { \@@_error:n { footnote~with~footnotehyper~package } }
9982 { \usepackage { footnote } }
9983 }
9984 }

9985 \bool_if:NT \g_@@_footnotehyper_bool
9986 {

The class beamer has its own system to extract footnotes and that’s why we have nothing to do if
beamer is used.

9987 \IfClassLoadedTF { beamer }
9988 { \bool_set_false:N \g_@@_footnote_bool }
9989 {
9990 \IfPackageLoadedTF { footnote }
9991 { \@@_error:n { footnotehyper~with~footnote~package } }
9992 { \usepackage { footnotehyper } }
9993 }
9994 \bool_set_true:N \g_@@_footnote_bool
9995 }

The flag \g_@@_footnote_bool is raised and so, we will only have to test \g_@@_footnote_bool in
order to know if we have to insert an environment {savenotes}.

230

40 About the package underscore

If the user loads the package underscore, it must be loaded before the package nicematrix. If it is
loaded after, we raise an error.

9996 \bool_new:N \l_@@_underscore_loaded_bool
9997 \IfPackageLoadedT { underscore }
9998 { \bool_set_true:N \l_@@_underscore_loaded_bool }

9999 \hook_gput_code:nnn { begindocument } { . }
10000 {
10001 \bool_if:NF \l_@@_underscore_loaded_bool
10002 {
10003 \IfPackageLoadedT { underscore }
10004 { \@@_error:n { underscore~after~nicematrix } }
10005 }
10006 }

41 Error messages of the package

When there is a unknown key, maybe the user has tried to use an inexistent “additive syntax” for
that key. Of course, in that case, the last character of the name of the key is +.
#1 is a clist of names of sets of keys and #2 is the error message to send.

10007 \cs_new_protected:Npn \@@_unknown_key:nn #1 #2
10008 {
10009 \str_if_eq:eeTF
10010 { \str_item:Nn \l_keys_key_str { \str_count:N \l_keys_key_str } }
10011 { + }
10012 {
10013 \str_set:Ne \l_tmpa_str
10014 { \str_range:Nnn \l_keys_key_str { 1 } { \str_count:N \l_keys_key_str - 1 } }
10015 \bool_set_false:N \l_tmpa_bool
10016 \clist_map_inline:nn { #1 }
10017 {
10018 \keys_if_exist:neT { ##1 } { \l_tmpa_str }
10019 {
10020 \@@_error:n { key~without~+~exists }
10021 \bool_set_true:N \l_tmpa_bool
10022 \clist_map_break:
10023 }
10024 }
10025 \bool_if:NF \l_tmpa_bool
10026 {
10027 \str_set:Ne \l_keys_key_str { \tl_trim_right_spaces:V \l_tmpa_str }
10028 \@@_unknown_key_i:nn { #1 } { #2 }
10029 }
10030 }
10031 { \@@_unknown_key_i:nn { #1 } { #2 } }
10032 }

We try a normalisation of the name of the key, and, when that normal form exists, we add that
information in the error message.
The normal form is the lower case form of the key, with all the spaces replaced by hyphens (there is
never spaces in the keys of nicematrix).
#1 is a clist of names of sets of keys and #2 is the error message to send.

10033 \cs_new_protected:Npn \@@_unknown_key_i:nn #1 #2

231

10034 {
10035 \str_set_eq:NN \l_tmpa_str \l_keys_key_str
10036 \str_replace_all:Nnn \l_tmpa_str { ~ } { - }
10037 \str_set:Ne \l_tmpa_str { \str_lowercase:f { \l_tmpa_str } }
10038 \bool_set_false:N \l_tmpa_bool
10039 \clist_map_inline:nn { #1 }
10040 {
10041 \keys_if_exist:neT { ##1 } { \l_tmpa_str }
10042 {
10043 \@@_error:n { key~with~normal~form~exists }
10044 \bool_set_true:N \l_tmpa_bool
10045 \clist_map_break:
10046 }
10047 }
10048 \bool_if:NF \l_tmpa_bool { \@@_error:n { #2 } }
10049 }

10050 \@@_msg_new:nn { key~without~+~exists }
10051 {
10052 The~key~'\tl_trim_right_spaces:V \l_tmpa_str'~exists~but~does~not~accept~an~
10053 additive~syntax~(with~+=).\\
10054 It~will~be~ignored.\\
10055 }

10056 \@@_msg_new:nn { key~with~normal~form~exists }
10057 {
10058 The~key~'\l_keys_key_str'~does~not~exists.\\
10059 It~will~be~ignored.\\
10060 Maybe~you~want~to~use~the~key~'\l_tmpa_str'.
10061 }

10062 \str_const:Ne \c_@@_available_keys_str
10063 {
10064 \bool_if:nT { ! \g_@@_messages_for_Overleaf_bool }
10065 { For~a~list~of~the~available~keys,~type~H~<return>. }
10066 }

10067 \seq_new:N \g_@@_types_of_matrix_seq
10068 \seq_gset_from_clist:Nn \g_@@_types_of_matrix_seq
10069 {
10070 NiceMatrix ,
10071 pNiceMatrix , bNiceMatrix , vNiceMatrix, BNiceMatrix, VNiceMatrix
10072 }
10073 \seq_gset_map_e:NNn \g_@@_types_of_matrix_seq \g_@@_types_of_matrix_seq
10074 { \tl_to_str:n { #1 } }

If the user uses too much columns, the command \@@_err_too_many_cols: is triggered. This com-
mand raises an error but also tries to give the best information to the user in the error message. The
command \seq_if_in:NoF is not expandable and that’s why we can’t put it in the error message
itself. We have to do the test before the \@@_fatal:n.

10075 \cs_new_protected:Npn \@@_err_too_many_cols:
10076 {
10077 \seq_if_in:NoF \g_@@_types_of_matrix_seq \g_@@_name_env_str
10078 { \@@_fatal:nn { too~many~cols~for~array } }
10079 \int_compare:nNnT { \l_@@_last_col_int } = { -2 }
10080 { \@@_fatal:n { too~many~cols~for~matrix } }
10081 \int_compare:nNnT { \l_@@_last_col_int } = { -1 }
10082 { \@@_fatal:n { too~many~cols~for~matrix } }
10083 \bool_if:NF \l_@@_last_col_without_value_bool
10084 { \@@_fatal:n { too~many~cols~for~matrix~with~last~col } }
10085 }

The following command must not be protected since it’s used in an error message.
10086 \cs_new:Npn \@@_message_hdotsfor:
10087 {

232

10088 \tl_if_empty:oF \g_@@_HVdotsfor_lines_tl
10089 { ~Maybe~your~use~of~ \token_to_str:N \Hdotsfor \ or~
10090 \token_to_str:N \Hbrace \ is~incorrect. }
10091 }

10092 \cs_new_protected:Npn \@@_Hline_in_cell:
10093 { \@@_fatal:n { Misuse~of~Hline } }

10094 \@@_msg_new:nn { Misuse~of~Hline }
10095 {
10096 Misuse~of~Hline. \\
10097 Error~in~your~row~ \int_eval:n { \c@iRow }. \\
10098 \token_to_str:N \Hline\ must~be~used~only~at~the~beginning~of~a~row.\\
10099 That~error~is~fatal.
10100 }

10101 \@@_msg_new:nn { hvlines,~rounded-corners~and~corners }
10102 {
10103 Incompatible~options.\\
10104 You~should~not~use~'hvlines',~'rounded-corners'~and~'corners'~at~the~same~time.\\
10105 The~output~will~not~be~reliable.
10106 }

10107 \@@_msg_new:nn { Body~alone }
10108 {
10109 \token_to_str:N \Body\ alone. \\
10110 You~have~used~\token_to_str:N \Body\ without~\token_to_str:N \CodeBefore.\\
10111 That~error~is~fatal.
10112 }

10113 \@@_msg_new:nn { cellcolor~in~Block }
10114 {
10115 Bad~use~of~\token_to_str:N \cellcolor \\
10116 You~can't~use~\token_to_str:N \cellcolor\ in~\token_to_str:N \Block\
10117 (except~in~a~sub-block).\\
10118 That~command~will~be~ignored.
10119 }

10120 \@@_msg_new:nn { rowcolor~in~Block }
10121 {
10122 Bad~use~of~\token_to_str:N \rowcolor \\
10123 You~can't~use~\token_to_str:N \rowcolor\ in~\token_to_str:N \Block.\\
10124 That~command~will~be~ignored.
10125 }

10126 \@@_msg_new:nn { key~color-inside }
10127 {
10128 Deleted~key.\\
10129 The~key~'color-inside'~(and~its~alias~'colortbl-like')~has~been~deleted~in
10130 ~'nicematrix'~and~must~not~be~used.\\
10131 This~error~is~fatal.
10132 }

10133 \@@_msg_new:nn { invalid~weight }
10134 {
10135 Unknown~key.\\
10136 The~key~' \l_keys_key_str '~of~your~column~X~is~unknown~and~will~be~ignored.
10137 }

10138 \@@_msg_new:nn { last~col~not~used }
10139 {
10140 Column~not~used.\\
10141 The~key~'last-col'~is~in~force~but~you~have~not~used~that~last~column~
10142 in~your~\@@_full_name_env: .~
10143 However,~you~can~go~on.
10144 }

10145 \@@_msg_new:nn { too~many~cols~for~matrix~with~last~col }
10146 {

233

10147 Too~many~columns.\\
10148 In~the~row~ \int_eval:n { \c@iRow },~
10149 you~try~to~use~more~columns~
10150 than~allowed~by~your~ \@@_full_name_env: .
10151 \@@_message_hdotsfor: \
10152 The~maximal~number~of~columns~is~ \int_eval:n { \l_@@_last_col_int - 1 }~
10153 (plus~the~exterior~columns).~This~error~is~fatal.
10154 }

10155 \@@_msg_new:nn { too~many~cols~for~matrix }
10156 {
10157 Too~many~columns.\\
10158 In~the~row~ \int_eval:n { \c@iRow } ,~
10159 you~try~to~use~more~columns~than~allowed~by~your~ \@@_full_name_env: .
10160 \@@_message_hdotsfor: \
10161 Recall~that~the~maximal~number~of~columns~for~a~matrix~
10162 (excepted~the~potential~exterior~columns)~is~fixed~by~the~
10163 LaTeX~counter~'MaxMatrixCols'.~
10164 Its~current~value~is~ \int_use:N \c@MaxMatrixCols \
10165 (use~ \token_to_str:N \setcounter \ to~change~that~value).~
10166 This~error~is~fatal.
10167 }

10168 \@@_msg_new:nn { too~many~cols~for~array }
10169 {
10170 Too~many~columns.\\
10171 In~the~row~ \int_eval:n { \c@iRow } ,~
10172 ~you~try~to~use~more~columns~than~allowed~by~your~
10173 \@@_full_name_env: . \@@_message_hdotsfor: \ The~maximal~number~of~columns~is~
10174 \int_use:N \g_@@_static_num_of_col_int \
10175 \bool_if:nT
10176 { \int_compare_p:n { \l_@@_first_col_int = 0 } || \g_@@_last_col_found_bool }
10177 { (plus~the~exterior~ones)~}
10178 since~the~preamble~is~' \g_@@_user_preamble_tl '.\\
10179 This~error~is~fatal.
10180 }

10181 \@@_msg_new:nn { columns~not~used }
10182 {
10183 Columns~not~used.\\
10184 The~preamble~of~your~ \@@_full_name_env: \ is~' \g_@@_user_preamble_tl '.~
10185 It~announces~ \int_use:N \g_@@_static_num_of_col_int \
10186 columns~but~you~only~used~ \int_use:N \c@jCol .\\
10187 The~columns~you~did~not~used~won't~be~created.\\
10188 You~won't~have~similar~warning~till~the~end~of~the~document.
10189 }

10190 \@@_msg_new:nn { empty~preamble }
10191 {
10192 Empty~preamble.\\
10193 The~preamble~of~your~ \@@_full_name_env: \ is~empty.\\
10194 This~error~is~fatal.
10195 }

10196 \@@_msg_new:nn { in~first~col }
10197 {
10198 Erroneous~use.\\
10199 You~can't~use~the~command~#1 in~the~first~column~(number~0)~of~the~array.\\
10200 That~command~will~be~ignored.
10201 }

10202 \@@_msg_new:nn { in~last~col }
10203 {
10204 Erroneous~use.\\
10205 You~can't~use~the~command~#1 in~the~last~column~(exterior)~of~the~array.\\
10206 That~command~will~be~ignored.
10207 }

234

10208 \@@_msg_new:nn { in~first~row }
10209 {
10210 Erroneous~use.\\
10211 You~can't~use~the~command~#1 in~the~first~row~(number~0)~of~the~array.\\
10212 That~command~will~be~ignored.
10213 }

10214 \@@_msg_new:nn { in~last~row }
10215 {
10216 Erroneous~use.\\
10217 You~can't~use~the~command~#1 in~the~last~row~(exterior)~of~the~array.\\
10218 That~command~will~be~ignored.
10219 }

10220 \@@_msg_new:nn { TopRule~without~booktabs }
10221 {
10222 Erroneous~use.\\
10223 You~can't~use~the~command~ #1 because~'booktabs'~is~not~loaded.\\
10224 That~command~will~be~ignored.
10225 }

10226 \@@_msg_new:nn{ rotate~in~p~col }
10227 {
10228 \token_to_str:N \rotate\ forbidden.\\
10229 You~should~not~use~\token_to_str:N \rotate\ in~a~column~of~type~'p',~
10230 'b',~'m'\IfPackageLoadedTF { varwidth } { ,~'X'~or~'V' } { ~or~'X'}.~
10231 If~you~go~on,~maybe~you~won't~have~the~expected~output.
10232 }

10233 \@@_msg_new:nn { TopRule~without~tikz }
10234 {
10235 Erroneous~use.\\
10236 You~can't~use~the~command~ #1 because~'tikz'~is~not~loaded.\\
10237 That~command~will~be~ignored.
10238 }

10239 \@@_msg_new:nn { caption~outside~float }
10240 {
10241 Key~caption~forbidden.\\
10242 You~can't~use~the~key~'caption'~because~you~are~not~in~a~floating~
10243 environment~(such~as~\{table\}).~This~key~will~be~ignored.
10244 }

10245 \@@_msg_new:nn { short-caption~without~caption }
10246 {
10247 You~should~not~use~the~key~'short-caption'~without~'caption'.~
10248 However,~your~'short-caption'~will~be~used~as~'caption'.
10249 }

10250 \@@_msg_new:nn { double~closing~delimiter }
10251 {
10252 Double~delimiter.\\
10253 You~can't~put~a~second~closing~delimiter~"#1"~just~after~a~first~closing~
10254 delimiter.~This~delimiter~will~be~ignored.
10255 }

10256 \@@_msg_new:nn { delimiter~after~opening }
10257 {
10258 Double~delimiter.\\
10259 You~can't~put~a~second~delimiter~"#1"~just~after~a~first~opening~
10260 delimiter.~That~delimiter~will~be~ignored.
10261 }

10262 \@@_msg_new:nn { bad~option~for~line-style }
10263 {
10264 Bad~line~style.\\
10265 Since~you~haven't~loaded~TikZ,~the~only~value~you~can~give~to~'line-style'~
10266 is~'standard'.~That~key~will~be~ignored.
10267 }

235

10268 \@@_msg_new:nn { corners~with~no-cell-nodes }
10269 {
10270 Incompatible~keys.\\
10271 You~can't~use~the~key~'corners'~here~because~the~key~'no-cell-nodes'~
10272 is~in~force.\\
10273 If~you~go~on,~that~key~will~be~ignored.
10274 }

10275 \@@_msg_new:nn { extra-nodes~with~no-cell-nodes }
10276 {
10277 Incompatible~keys.\\
10278 You~can't~create~'extra~nodes'~here~because~the~key~'no-cell-nodes'~
10279 is~in~force.\\
10280 If~you~go~on,~those~extra~nodes~won't~be~created.
10281 }

10282 \@@_msg_new:nn { Identical~notes~in~caption }
10283 {
10284 Identical~tabular~notes.\\
10285 You~can't~put~several~notes~with~the~same~content~in~
10286 \token_to_str:N \caption \ (but~you~can~in~the~main~tabular).\\
10287 If~you~go~on,~the~output~will~probably~be~erroneous.
10288 }

10289 \@@_msg_new:nn { tabularnote~below~the~tabular }
10290 {
10291 \token_to_str:N \tabularnote \ forbidden\\
10292 You~can't~use~ \token_to_str:N \tabularnote \ in~the~caption~
10293 of~your~tabular~because~the~caption~will~be~composed~below~
10294 the~tabular.~If~you~want~the~caption~above~the~tabular~use~the~
10295 key~'caption-above'~in~ \token_to_str:N \NiceMatrixOptions .\\
10296 Your~ \token_to_str:N \tabularnote \ will~be~discarded~and~
10297 no~similar~error~will~raised~in~this~document.
10298 }

10299 \@@_msg_new:nn { Unknown~key~for~rules }
10300 {
10301 Unknown~key.\\
10302 There~is~only~two~keys~available~here:~width~and~color.\\
10303 Your~key~' \l_keys_key_str '~will~be~ignored.
10304 }

10305 \@@_msg_new:nn { Unknown~key~for~Hbrace }
10306 {
10307 Unknown~key.\\
10308 You~have~used~the~key~' \l_keys_key_str '~but~the~only~
10309 keys~allowed~for~the~commands~ \token_to_str:N \Hbrace \
10310 and~ \token_to_str:N \Vbrace \ are:~'brace-shift(+)',~'color',~
10311 'horizontal-label(s)',~'shorten'~'shorten-end'~
10312 and~'shorten-start'.\\
10313 That~error~is~fatal.
10314 }

10315 \@@_msg_new:nn { Unknown~key~for~TikzEveryCell }
10316 {
10317 Unknown~key.\\
10318 There~is~only~two~keys~available~here:~
10319 'empty'~and~'not-empty'.\\
10320 Your~key~' \l_keys_key_str '~will~be~ignored.
10321 }

10322 \@@_msg_new:nn { Unknown~key~for~rotate }
10323 {
10324 Unknown~key.\\
10325 The~only~key~available~here~is~'c'.\\
10326 Your~key~' \l_keys_key_str '~will~be~ignored.
10327 }

236

10328 \@@_msg_new:nnn { Unknown~key~for~custom-line }
10329 {
10330 Unknown~key.\\
10331 The~key~' \l_keys_key_str '~is~unknown~in~a~'custom-line'.~
10332 It~you~go~on,~you~will~probably~have~other~errors. \\
10333 \c_@@_available_keys_str
10334 }
10335 {
10336 The~available~keys~are~(in~alphabetic~order):~
10337 ccommand,~
10338 color,~
10339 command,~
10340 dotted,~
10341 letter,~
10342 multiplicity,~
10343 sep-color,~
10344 tikz,~and~total-width.
10345 }

10346 \@@_msg_new:nnn { Unknown~key~for~xdots }
10347 {
10348 Unknown~key.\\
10349 The~key~' \l_keys_key_str '~is~unknown~for~a~command~for~drawing~dotted~rules.\\
10350 \c_@@_available_keys_str
10351 }
10352 {
10353 The~available~keys~are~(in~alphabetic~order):~
10354 'color',~
10355 'horizontal(s)-labels',~
10356 'inter',~
10357 'line-style',~
10358 'nullify',~
10359 'radius',~
10360 'shorten',~
10361 'shorten-end'~and~'shorten-start'.
10362 }

10363 \@@_msg_new:nn { Unknown~key~for~rowcolors }
10364 {
10365 Unknown~key.\\
10366 As~for~now,~there~is~only~two~keys~available~here:~'cols'~and~'respect-blocks'~
10367 (and~you~try~to~use~' \l_keys_key_str ')\\
10368 That~key~will~be~ignored.
10369 }

10370 \@@_msg_new:nn { label~without~caption }
10371 {
10372 You~can't~use~the~key~'label'~in~your~\{NiceTabular\}~because~
10373 you~have~not~used~the~key~'caption'.~The~key~'label'~will~be~ignored.
10374 }

10375 \@@_msg_new:nn { W~warning }
10376 {
10377 Line~ \msg_line_number: .~The~cell~is~too~wide~for~your~column~'W'~
10378 (row~ \int_use:N \c@iRow).
10379 }

10380 \@@_msg_new:nn { Construct~too~large }
10381 {
10382 Construct~too~large.\\
10383 Your~command~ \token_to_str:N #1
10384 can't~be~drawn~because~your~matrix~is~too~small.\\
10385 That~command~will~be~ignored.
10386 }

10387 \@@_msg_new:nn { underscore~after~nicematrix }
10388 {

237

10389 Problem~with~'underscore'.\\
10390 The~package~'underscore'~should~be~loaded~before~'nicematrix'.~
10391 You~can~go~on~but~you~won't~be~able~to~write~something~such~as:\\
10392 ' \token_to_str:N \Cdots \token_to_str:N _
10393 \{ n \token_to_str:N \text \{ ~times \} \}'.
10394 }

10395 \@@_msg_new:nn { ampersand~in~light-syntax }
10396 {
10397 Ampersand~forbidden.\\
10398 You~can't~use~an~ampersand~(\token_to_str:N &)~to~separate~columns~because~
10399 ~the~key~'light-syntax'~is~in~force.~This~error~is~fatal.
10400 }

10401 \@@_msg_new:nn { double-backslash~in~light-syntax }
10402 {
10403 Double~backslash~forbidden.\\
10404 You~can't~use~ \token_to_str:N \\
10405 ~to~separate~rows~because~the~key~'light-syntax'~
10406 is~in~force.~You~must~use~the~character~' \l_@@_end_of_row_tl '~
10407 (set~by~the~key~'end-of-row').~This~error~is~fatal.
10408 }

10409 \@@_msg_new:nn { hlines~with~color }
10410 {
10411 Incompatible~keys.\\
10412 You~can't~use~the~keys~'hlines',~'vlines'~or~'hvlines'~for~a~
10413 \token_to_str:N \Block \ when~the~key~'color'~or~'draw'~is~used.\\
10414 However,~you~can~put~several~commands~ \token_to_str:N \Block.\\
10415 Your~key~will~be~discarded.
10416 }

10417 \@@_msg_new:nn { bad~value~for~baseline }
10418 {
10419 Bad~value~for~baseline.\\
10420 The~value~given~to~'baseline'~(\int_use:N \l_tmpa_int)~is~not~
10421 valid.~The~value~must~be~between~\int_use:N \l_@@_first_row_int\ and~
10422 \int_use:N \g_@@_row_total_int \ or~equal~to~'t',~'c'~or~'b'~or~of~
10423 the~form~'line-i'.\\
10424 A~value~of~1~will~be~used.
10425 }

10426 \@@_msg_new:nn { bad~value~for~baseline-line }
10427 {
10428 Bad~value~for~baseline~with~line.\\
10429 The~value~given~to~'baseline'~(\int_use:N \l_tmpa_int)~is~not~
10430 valid.~The~number~of~the~line~must~be~between~1~and~
10431 \int_eval:n { \c@iRow + 1 } \\
10432 A~value~of~'line-1'~will~be~used.
10433 }

10434 \@@_msg_new:nn { detection~of~empty~cells }
10435 {
10436 Problem~with~'not-empty'\\
10437 For~technical~reasons,~you~must~activate~
10438 'create-cell-nodes'~in~ \token_to_str:N \CodeBefore \
10439 in~order~to~use~the~key~' \l_keys_key_str '.\\
10440 That~key~will~be~ignored.
10441 }

10442 \@@_msg_new:nn { siunitx~not~loaded }
10443 {
10444 siunitx~not~loaded\\
10445 You~can't~use~the~columns~'S'~because~'siunitx'~is~not~loaded.\\
10446 That~error~is~fatal.
10447 }

10448 \@@_msg_new:nn { Invalid~name }

238

10449 {
10450 Invalid~name.\\
10451 You~can't~give~the~name~' \l_keys_value_tl '~to~a~ \token_to_str:N
10452 \SubMatrix \ of~your~ \@@_full_name_env: .\\
10453 A~name~must~be~accepted~by~the~regular~expression~[A-Za-z][A-Za-z0-9]*.\\
10454 This~key~will~be~ignored.
10455 }

10456 \@@_msg_new:nn { Hbrace~not~allowed }
10457 {
10458 Command~not~allowed.\\
10459 You~can't~use~the~command~ \token_to_str:N #1
10460 because~you~have~not~loaded~
10461 \IfPackageLoadedTF { tikz }
10462 { the~TikZ~library~'decorations.pathreplacing'.~Use~ }
10463 { TikZ.~ Use:~ \token_to_str:N \usepackage \{tikz\}~and~ }
10464 \token_to_str:N \usetikzlibrary \{decorations.pathreplacing\}. \\
10465 That~command~will~be~ignored.
10466 }

10467 \@@_msg_new:nn { Vbrace~not~allowed }
10468 {
10469 Command~not~allowed.\\
10470 You~can't~use~the~command~ \token_to_str:N \Vbrace \
10471 because~you~have~not~loaded~TikZ~
10472 and~the~TikZ~library~'decorations.pathreplacing'.\\
10473 Use: ~\token_to_str:N \usepackage \{tikz\}~
10474 \token_to_str:N \usetikzlibrary \{decorations.pathreplacing\} \\
10475 That~command~will~be~ignored.
10476 }

10477 \@@_msg_new:nn { Wrong~line~in~SubMatrix }
10478 {
10479 Wrong~line.\\
10480 You~try~to~draw~a~#1~line~of~number~'#2'~in~a~
10481 \token_to_str:N \SubMatrix \ of~your~ \@@_full_name_env: \ but~that~
10482 number~is~not~valid.~It~will~be~ignored.
10483 }

10484 \@@_msg_new:nn { Impossible~delimiter }
10485 {
10486 Impossible~delimiter.\\
10487 It's~impossible~to~draw~the~#1~delimiter~of~your~
10488 \token_to_str:N \SubMatrix \ because~all~the~cells~are~empty~
10489 in~that~column.
10490 \bool_if:NT \l_@@_submatrix_slim_bool
10491 { ~Maybe~you~should~try~without~the~key~'slim'. } \\
10492 This~ \token_to_str:N \SubMatrix \ will~be~ignored.
10493 }

10494 \@@_msg_new:nnn { width~without~X~columns }
10495 {
10496 You~have~used~the~key~'width'~but~you~have~put~no~'X'~column~in~
10497 the~preamble~(' \g_@@_user_preamble_tl ')~of~your~ \@@_full_name_env: .\\
10498 That~key~will~be~ignored.
10499 }
10500 {
10501 This~message~is~the~message~'width~without~X~columns'~
10502 of~the~module~'nicematrix'.~
10503 The~experimented~users~can~disable~that~message~with~
10504 \token_to_str:N \msg_redirect_name:nnn .\\
10505 }
10506

10507 \@@_msg_new:nn { key~multiplicity~with~dotted }
10508 {
10509 Incompatible~keys. \\

239

10510 You~have~used~the~key~'multiplicity'~with~the~key~'dotted'~
10511 in~a~'custom-line'.~They~are~incompatible. \\
10512 The~key~'multiplicity'~will~be~discarded.
10513 }

10514 \@@_msg_new:nn { empty~environment }
10515 {
10516 Empty~environment.\\
10517 Your~ \@@_full_name_env: \ is~empty.~This~error~is~fatal.
10518 }

10519 \@@_msg_new:nn { No~letter~and~no~command }
10520 {
10521 Erroneous~use.\\
10522 Your~use~of~'custom-line'~is~no-op~since~you~don't~have~used~the~
10523 key~'letter'~(for~a~letter~for~vertical~rules)~nor~the~keys~'command'~or~
10524 ~'ccommand'~(to~draw~horizontal~rules).\\
10525 However,~you~can~go~on.
10526 }

10527 \@@_msg_new:nn { Forbidden~letter }
10528 {
10529 Forbidden~letter.\\
10530 You~can't~use~the~letter~'#1'~for~a~customized~line.~
10531 It~will~be~ignored.\\
10532 The~forbidden~letters~are:~\c_@@_forbidden_letters_str
10533 }

10534 \@@_msg_new:nn { Several~letters }
10535 {
10536 Wrong~name.\\
10537 You~must~use~only~one~letter~as~value~for~the~key~'letter'~(and~you~
10538 have~used~' \l_@@_letter_str ').\\
10539 It~will~be~ignored.
10540 }

10541 \@@_msg_new:nn { Delimiter~with~small }
10542 {
10543 Delimiter~forbidden.\\
10544 You~can't~put~a~delimiter~in~the~preamble~of~your~
10545 \@@_full_name_env: \
10546 because~the~key~'small'~is~in~force.\\
10547 This~error~is~fatal.
10548 }

10549 \@@_msg_new:nn { unknown~cell~for~line~in~CodeAfter }
10550 {
10551 Unknown~cell.\\
10552 Your~command~ \token_to_str:N \line \{ #1 \} \{ #2 \}~in~
10553 the~ \token_to_str:N \CodeAfter \ of~your~ \@@_full_name_env: \
10554 can't~be~executed~because~a~cell~doesn't~exist.\\
10555 This~command~ \token_to_str:N \line \ will~be~ignored.
10556 }

10557 \@@_msg_new:nnn { Duplicate~name~for~SubMatrix }
10558 {
10559 Duplicate~name.\\
10560 The~name~'#1'~is~already~used~for~a~ \token_to_str:N \SubMatrix \
10561 in~this~ \@@_full_name_env: .\\
10562 This~key~will~be~ignored.\\
10563 \bool_if:NF \g_@@_messages_for_Overleaf_bool
10564 { For~a~list~of~the~names~already~used,~type~H~<return>. }
10565 }
10566 {
10567 The~names~already~defined~in~this~ \@@_full_name_env: \ are:~
10568 \seq_use:Nnnn \g_@@_submatrix_names_seq { ~and~ } { ,~ } { ~and~ } .
10569 }

240

10570 \@@_msg_new:nn { r~or~l~with~preamble }
10571 {
10572 Erroneous~use.\\
10573 You~can't~use~the~key~' \l_keys_key_str '~in~your~ \@@_full_name_env: .~
10574 You~must~specify~the~alignment~of~your~columns~with~the~preamble~of~
10575 your~ \@@_full_name_env: .\\
10576 This~key~will~be~ignored.
10577 }

10578 \@@_msg_new:nn { Hdotsfor~in~col~0 }
10579 {
10580 Erroneous~use.\\
10581 You~can't~use~ \token_to_str:N \Hdotsfor\ or~\token_to_str:N \Hbrace\
10582 in~an~exterior~column~of~
10583 the~array.~This~error~is~fatal.
10584 }

10585 \@@_msg_new:nn { bad~corner }
10586 {
10587 Bad~corner.\\
10588 #1~is~an~incorrect~specification~for~a~corner~(in~the~key~
10589 'corners').~The~available~values~are:~NW,~SW,~NE~and~SE.\\
10590 This~specification~of~corner~will~be~ignored.
10591 }

10592 \@@_msg_new:nn { bad~border }
10593 {
10594 Bad~border.\\
10595 \l_keys_key_str \space ~is~an~incorrect~specification~for~a~border~
10596 (in~the~key~'borders'~of~the~command~ \token_to_str:N \Block).~
10597 The~available~values~are:~left,~right,~top~and~bottom~(and~you~can~
10598 also~use~the~key~'tikz'
10599 \IfPackageLoadedF { tikz }
10600 { ~if~you~load~the~LaTeX~package~'tikz' }).\\
10601 This~specification~of~border~will~be~ignored.
10602 }

10603 \@@_msg_new:nn { TikzEveryCell~without~tikz }
10604 {
10605 TikZ~not~loaded.\\
10606 You~can't~use~ \token_to_str:N \TikzEveryCell \
10607 because~you~have~not~loaded~tikz.~
10608 This~command~will~be~ignored.
10609 }

10610 \@@_msg_new:nn { tikz~key~without~tikz }
10611 {
10612 TikZ~not~loaded.\\
10613 You~can't~use~the~key~'tikz'~for~the~command~' \token_to_str:N
10614 \Block '~because~you~have~not~loaded~tikz.~
10615 This~key~will~be~ignored.
10616 }

10617 \@@_msg_new:nn { Bad~argument~for~Block }
10618 {
10619 Bad~argument.\\
10620 The~first~mandatory~argument~of~\token_to_str:N \Block\ must~
10621 be~of~the~form~'i-j'~(or~completely~empty)~and~you~have~used:~
10622 '#1'. \\
10623 If~you~go~on,~the~\token_to_str:N \Block\ will~be~mono-cell~(as~if~
10624 the~argument~was~empty).
10625 }

10626 \@@_msg_new:nn { last-col~non~empty~for~NiceArray }
10627 {
10628 Erroneous~use.\\
10629 In~the~ \@@_full_name_env: ,~you~must~use~the~key~
10630 'last-col'~without~value.\\

241

10631 However,~you~can~go~on~for~this~time~
10632 (the~value~' \l_keys_value_tl '~will~be~ignored).
10633 }

10634 \@@_msg_new:nn { last-col~non~empty~for~NiceMatrixOptions }
10635 {
10636 Erroneous~use. \\
10637 In~\token_to_str:N \NiceMatrixOptions ,~you~must~use~the~key~
10638 'last-col'~without~value. \\
10639 However,~you~can~go~on~for~this~time~
10640 (the~value~' \l_keys_value_tl '~will~be~ignored).
10641 }

10642 \@@_msg_new:nn { Block~too~large~1 }
10643 {
10644 Block~too~large. \\
10645 You~try~to~draw~a~block~in~the~cell~#1-#2~of~your~matrix~but~the~matrix~is~
10646 too~small~for~that~block. \\
10647 This~block~and~maybe~others~will~be~ignored.
10648 }

10649 \@@_msg_new:nn { Block~too~large~2 }
10650 {
10651 Block~too~large. \\
10652 The~preamble~of~your~ \@@_full_name_env: \ announces~ \int_use:N
10653 \g_@@_static_num_of_col_int \
10654 columns~but~you~use~only~ \int_use:N \c@jCol \ and~that's~why~a~block~
10655 specified~in~the~cell~#1-#2~can't~be~drawn.~You~should~add~some~ampersands~
10656 (&)~at~the~end~of~the~first~row~of~your~ \@@_full_name_env: . \\
10657 This~block~and~maybe~others~will~be~ignored.
10658 }

10659 \@@_msg_new:nn { unknown~column~type }
10660 {
10661 Bad~column~type. \\
10662 The~column~type~'#1'~in~your~ \@@_full_name_env: \
10663 is~unknown. \\
10664 This~error~is~fatal.
10665 }

10666 \@@_msg_new:nn { unknown~column~type~multicolumn }
10667 {
10668 Bad~column~type. \\
10669 The~column~type~'#1'~in~the~command~\token_to_str:N \multicolumn \
10670 ~of~your~ \@@_full_name_env: \
10671 is~unknown. \\
10672 This~error~is~fatal.
10673 }

10674 \@@_msg_new:nn { unknown~column~type~S }
10675 {
10676 Bad~column~type. \\
10677 The~column~type~'S'~in~your~ \@@_full_name_env: \ is~unknown. \\
10678 If~you~want~to~use~the~column~type~'S'~of~siunitx,~you~should~
10679 load~that~package. \\
10680 This~error~is~fatal.
10681 }

10682 \@@_msg_new:nn { unknown~column~type~S~multicolumn }
10683 {
10684 Bad~column~type. \\
10685 The~column~type~'S'~in~the~command~\token_to_str:N \multicolumn \
10686 of~your~ \@@_full_name_env: \ is~unknown. \\
10687 If~you~want~to~use~the~column~type~'S'~of~siunitx,~you~should~
10688 load~that~package. \\
10689 This~error~is~fatal.
10690 }

242

10691 \@@_msg_new:nn { tabularnote~forbidden }
10692 {
10693 Forbidden~command. \\
10694 You~can't~use~the~command~ \token_to_str:N \tabularnote \
10695 ~here.~This~command~is~available~only~in~
10696 \{NiceTabular\},~\{NiceTabular*\}~and~\{NiceTabularX\}~or~in~
10697 the~argument~of~a~command~\token_to_str:N \caption \ included~
10698 in~an~environment~\{table\}. \\
10699 This~command~will~be~ignored.
10700 }

10701 \@@_msg_new:nn { borders~forbidden }
10702 {
10703 Forbidden~key.\\
10704 You~can't~use~the~key~'borders'~of~the~command~ \token_to_str:N \Block \
10705 because~the~option~'rounded-corners'~
10706 is~in~force~with~a~non-zero~value.\\
10707 This~key~will~be~ignored.
10708 }

10709 \@@_msg_new:nn { bottomrule~without~booktabs }
10710 {
10711 booktabs~not~loaded.\\
10712 You~can't~use~the~key~'tabular/bottomrule'~because~you~haven't~
10713 loaded~'booktabs'.\\
10714 This~key~will~be~ignored.
10715 }

10716 \@@_msg_new:nn { enumitem~not~loaded }
10717 {
10718 enumitem~not~loaded. \\
10719 You~can't~use~the~command~ \token_to_str:N \tabularnote \
10720 ~because~you~haven't~loaded~'enumitem'. \\
10721 All~the~commands~ \token_to_str:N \tabularnote \ will~be~
10722 ignored~in~the~document.
10723 }

10724 \@@_msg_new:nn { tikz~without~tikz }
10725 {
10726 TikZ~not~loaded. \\
10727 You~can't~use~the~key~'tikz'~here~because~TikZ~is~not~
10728 loaded.~If~you~go~on,~that~key~will~be~ignored.
10729 }

10730 \@@_msg_new:nn { tikz~in~custom-line~without~tikz }
10731 {
10732 TikZ~not~loaded. \\
10733 You~have~used~the~key~'tikz'~in~the~definition~of~a~
10734 customized~line~(with~'custom-line')~but~TikZ~is~not~loaded.~
10735 You~can~go~on~but~you~will~have~another~error~if~you~actually~
10736 use~that~custom~line.
10737 }

10738 \@@_msg_new:nn { tikz~in~borders~without~tikz }
10739 {
10740 TikZ~not~loaded. \\
10741 You~have~used~the~key~'tikz'~in~a~key~'borders'~(of~a~
10742 command~' \token_to_str:N \Block ')~but~TikZ~is~not~loaded.~
10743 That~key~will~be~ignored.
10744 }

10745 \@@_msg_new:nn { color~in~custom-line~with~tikz }
10746 {
10747 Erroneous~use.\\
10748 In~a~'custom-line',~you~have~used~both~'tikz'~and~'color',~
10749 which~is~forbidden~(you~should~use~'color'~inside~the~key~'tikz').~
10750 The~key~'color'~will~be~discarded.
10751 }

243

10752 \@@_msg_new:nn { Wrong~last~row }
10753 {
10754 Wrong~number.\\
10755 You~have~used~'last-row= \int_use:N \l_@@_last_row_int '~but~your~
10756 \@@_full_name_env: \ seems~to~have~ \int_use:N \c@iRow \ rows.~
10757 If~you~go~on,~the~value~of~ \int_use:N \c@iRow \ will~be~used~for~
10758 last~row~but~you~should~correct~your~code.~You~can~avoid~this~
10759 problem~by~using~'last-row'~without~value~(more~compilations~
10760 might~be~necessary).
10761 }

10762 \@@_msg_new:nn { Yet~in~env }
10763 {
10764 Nested~environments.\\
10765 Environments~of~nicematrix~can't~be~nested.\\
10766 This~error~is~fatal.
10767 }

10768 \@@_msg_new:nn { Outside~math~mode }
10769 {
10770 Outside~math~mode.\\
10771 The~\@@_full_name_env: \ can~be~used~only~in~math~mode~
10772 (and~not~in~ \token_to_str:N \vcenter).\\
10773 This~error~is~fatal.
10774 }

10775 \@@_msg_new:nn { One~letter~allowed }
10776 {
10777 Bad~name.\\
10778 The~value~of~key~' \l_keys_key_str '~must~be~of~length~1~and~
10779 you~have~used~' \l_keys_value_tl '.\\
10780 It~will~be~ignored.
10781 }

10782 \@@_msg_new:nn { TabularNote~in~CodeAfter }
10783 {
10784 Environment~\{TabularNote\}~forbidden.\\
10785 You~must~use~\{TabularNote\}~at~the~end~of~your~\{NiceTabular\}~
10786 but~*before*~the~ \token_to_str:N \CodeAfter . \\
10787 This~environment~\{TabularNote\}~will~be~ignored.
10788 }

10789 \@@_msg_new:nn { varwidth~not~loaded }
10790 {
10791 varwidth~not~loaded.\\
10792 You~can't~use~the~column~type~'V'~because~'varwidth'~is~not~
10793 loaded.\\
10794 Your~column~will~behave~like~'p'.
10795 }

10796 \@@_msg_new:nn { varwidth~not~loaded~in~X }
10797 {
10798 varwidth~not~loaded.\\
10799 You~can't~use~the~key~'V'~in~your~column~'X'~
10800 because~'varwidth'~is~not~loaded.\\
10801 It~will~be~ignored. \\
10802 }

10803 \@@_msg_new:nnn { Unknown~key~for~RulesBis }
10804 {
10805 Unknown~key.\\
10806 Your~key~' \l_keys_key_str '~is~unknown~for~a~rule.\\
10807 \c_@@_available_keys_str
10808 }
10809 {
10810 The~available~keys~are~(in~alphabetic~order):~
10811 color,~
10812 dotted,~

244

10813 multiplicity,~
10814 sep-color,~
10815 tikz,~and~total-width.
10816 }
10817

10818 \@@_msg_new:nnn { Unknown~key~for~Block }
10819 {
10820 Unknown~key. \\
10821 The~key~' \l_keys_key_str '~is~unknown~for~the~command~
10822 \token_to_str:N \Block . \\
10823 It~will~be~ignored. \\
10824 \c_@@_available_keys_str
10825 }
10826 {
10827 The~available~keys~are~(in~alphabetic~order):~&-in-blocks,~ampersand-in-blocks,~
10828 b,~B,~borders,~c,~draw,~fill,~hlines,~hvlines,~l,~line-width,~name,~
10829 opacity,~rounded-corners,~r,~respect-arraystretch,~t,~T,~tikz,~transparent~
10830 and~vlines.
10831 }

10832 \@@_msg_new:nnn { Unknown~key~for~Brace }
10833 {
10834 Unknown~key.\\
10835 The~key~' \l_keys_key_str '~is~unknown~for~the~commands~
10836 \token_to_str:N \UnderBrace \ and~ \token_to_str:N \OverBrace . \\
10837 It~will~be~ignored. \\
10838 \c_@@_available_keys_str
10839 }
10840 {
10841 The~available~keys~are~(in~alphabetic~order):~color,~left-shorten,~
10842 right-shorten,~shorten~(which~fixes~both~left-shorten~and~
10843 right-shorten)~and~yshift.
10844 }

10845 \@@_msg_new:nnn { Unknown~key~for~CodeAfter }
10846 {
10847 Unknown~key.\\
10848 The~key~' \l_keys_key_str '~is~unknown.\\
10849 It~will~be~ignored. \\
10850 \c_@@_available_keys_str
10851 }
10852 {
10853 The~available~keys~are~(in~alphabetic~order):~
10854 delimiters/color,~
10855 rules~(with~the~subkeys~'color'~and~'width'),~
10856 sub-matrix~(several~subkeys)~
10857 and~xdots~(several~subkeys).~
10858 The~latter~is~for~the~command~ \token_to_str:N \line .
10859 }

10860 \@@_msg_new:nnn { Unknown~key~for~CodeBefore }
10861 {
10862 Unknown~key.\\
10863 The~key~' \l_keys_key_str '~is~unknown.\\
10864 It~will~be~ignored. \\
10865 \c_@@_available_keys_str
10866 }
10867 {
10868 The~available~keys~are~(in~alphabetic~order):~
10869 create-cell-nodes,~
10870 delimiters/color~and~
10871 sub-matrix~(several~subkeys).
10872 }

10873 \@@_msg_new:nnn { Unknown~key~for~SubMatrix }
10874 {

245

10875 Unknown~key.\\
10876 The~key~' \l_keys_key_str '~is~unknown.\\
10877 That~key~will~be~ignored. \\
10878 \c_@@_available_keys_str
10879 }
10880 {
10881 The~available~keys~are~(in~alphabetic~order):~
10882 'delimiters/color',~
10883 'extra-height',~
10884 'hlines',~
10885 'hvlines',~
10886 'left-xshift',~
10887 'name',~
10888 'right-xshift',~
10889 'rules'~(with~the~subkeys~'color'~and~'width'),~
10890 'slim',~
10891 'vlines'~and~'xshift'~(which~sets~both~'left-xshift'~
10892 and~'right-xshift').\\
10893 }

10894 \@@_msg_new:nnn { Unknown~key~for~notes }
10895 {
10896 Unknown~key.\\
10897 The~key~' \l_keys_key_str '~is~unknown.\\
10898 That~key~will~be~ignored. \\
10899 \c_@@_available_keys_str
10900 }
10901 {
10902 The~available~keys~are~(in~alphabetic~order):~
10903 bottomrule,~
10904 code-after,~
10905 code-before(+),~
10906 detect-duplicates,~
10907 enumitem-keys,~
10908 enumitem-keys-para,~
10909 para,~
10910 label-in-list,~
10911 label-in-tabular~and~
10912 style.
10913 }

10914 \@@_msg_new:nnn { Unknown~key~for~RowStyle }
10915 {
10916 Unknown~key.\\
10917 The~key~' \l_keys_key_str '~is~unknown~for~the~command~
10918 \token_to_str:N \RowStyle . \\
10919 That~key~will~be~ignored. \\
10920 \c_@@_available_keys_str
10921 }
10922 {
10923 The~available~keys~are~(in~alphabetic~order):~
10924 bold,~
10925 cell-space-top-limit(+),~
10926 cell-space-bottom-limit(+),~
10927 cell-space-limits(+),~
10928 color,~
10929 fill~(alias:~rowcolor),~
10930 nb-rows,~
10931 opacity~and~
10932 rounded-corners.
10933 }

10934 \@@_msg_new:nnn { Unknown~key~for~NiceMatrixOptions }
10935 {
10936 Unknown~key.\\
10937 The~key~' \l_keys_key_str '~is~unknown~for~the~command~

246

10938 \token_to_str:N \NiceMatrixOptions . \\
10939 That~key~will~be~ignored. \\
10940 \c_@@_available_keys_str
10941 }
10942 {
10943 The~available~keys~are~(in~alphabetic~order):~
10944 &-in-blocks,~
10945 allow-duplicate-names,~
10946 ampersand-in-blocks,~
10947 caption-above,~
10948 cell-space-bottom-limit(+),~
10949 cell-space-limits(+),~
10950 cell-space-top-limit(+),~
10951 code-for-first-col(+),~
10952 code-for-first-row(+),~
10953 code-for-last-col(+),~
10954 code-for-last-row(+),~
10955 corners,~
10956 custom-key,~
10957 create-extra-nodes,~
10958 create-medium-nodes,~
10959 create-large-nodes,~
10960 custom-line,~
10961 delimiters~(several~subkeys),~
10962 end-of-row,~
10963 first-col,~
10964 first-row,~
10965 hlines,~
10966 hvlines,~
10967 hvlines-except-borders,~
10968 last-col,~
10969 last-row,~
10970 left-margin,~
10971 light-syntax,~
10972 light-syntax-expanded,~
10973 matrix/columns-type,~
10974 no-cell-nodes,~
10975 notes~(several~subkeys),~
10976 nullify-dots,~
10977 pgf-node-code,~
10978 renew-dots,~
10979 renew-matrix,~
10980 respect-arraystretch,~
10981 rounded-corners,~
10982 right-margin,~
10983 rules~(with~the~subkeys~'color'~and~'width'),~
10984 small,~
10985 sub-matrix~(several~subkeys),~
10986 vlines,~
10987 xdots~(several~subkeys).
10988 }

For ‘{NiceArray}‘, the set of keys is the same as for {NiceMatrix} excepted that there is no l and
r.

10989 \@@_msg_new:nnn { Unknown~key~for~NiceArray }
10990 {
10991 Unknown~key.\\
10992 The~key~' \l_keys_key_str '~is~unknown~for~the~environment~
10993 \{NiceArray\}. \\
10994 That~key~will~be~ignored. \\
10995 \c_@@_available_keys_str
10996 }
10997 {
10998 The~available~keys~are~(in~alphabetic~order):~

247

10999 &-in-blocks,~
11000 ampersand-in-blocks,~
11001 b,~
11002 baseline,~
11003 c,~
11004 cell-space-bottom-limit,~
11005 cell-space-limits,~
11006 cell-space-top-limit,~
11007 code-after,~
11008 code-for-first-col(+),~
11009 code-for-first-row(+),~
11010 code-for-last-col(+),~
11011 code-for-last-row(+),~
11012 columns-width,~
11013 corners,~
11014 create-extra-nodes,~
11015 create-medium-nodes,~
11016 create-large-nodes,~
11017 extra-left-margin,~
11018 extra-right-margin,~
11019 first-col,~
11020 first-row,~
11021 hlines,~
11022 hvlines,~
11023 hvlines-except-borders,~
11024 last-col,~
11025 last-row,~
11026 left-margin,~
11027 light-syntax,~
11028 light-syntax-expanded,~
11029 name,~
11030 no-cell-nodes,~
11031 nullify-dots,~
11032 pgf-node-code,~
11033 renew-dots,~
11034 respect-arraystretch,~
11035 right-margin,~
11036 rounded-corners,~
11037 rules~(with~the~subkeys~'color'~and~'width'),~
11038 small,~
11039 t,~
11040 vlines,~
11041 xdots/color,~
11042 xdots/shorten-start(+),~
11043 xdots/shorten-end(+),~
11044 xdots/shorten(+)~and~
11045 xdots/line-style.
11046 }

This error message is used for the set of keys nicematrix/NiceMatrix and nicematrix/pNiceArray
(but not by nicematrix/NiceArray because, for this set of keys, there is no l and r).

11047 \@@_msg_new:nnn { Unknown~key~for~NiceMatrix }
11048 {
11049 Unknown~key.\\
11050 The~key~' \l_keys_key_str '~is~unknown~for~the~
11051 \@@_full_name_env: . \\
11052 That~key~will~be~ignored. \\
11053 \c_@@_available_keys_str
11054 }
11055 {
11056 The~available~keys~are~(in~alphabetic~order):~
11057 &-in-blocks,~
11058 ampersand-in-blocks,~

248

11059 b,~
11060 baseline,~
11061 c,~
11062 cell-space-bottom-limit,~
11063 cell-space-limits,~
11064 cell-space-top-limit,~
11065 code-after,~
11066 code-for-first-col(+),~
11067 code-for-first-row(+),~
11068 code-for-last-col(+),~
11069 code-for-last-row(+),~
11070 columns-type,~
11071 columns-width,~
11072 corners,~
11073 create-extra-nodes,~
11074 create-medium-nodes,~
11075 create-large-nodes,~
11076 extra-left-margin,~
11077 extra-right-margin,~
11078 first-col,~
11079 first-row,~
11080 hlines,~
11081 hvlines,~
11082 hvlines-except-borders,~
11083 l,~
11084 last-col,~
11085 last-row,~
11086 left-margin,~
11087 light-syntax,~
11088 light-syntax-expanded,~
11089 name,~
11090 no-cell-nodes,~
11091 nullify-dots,~
11092 pgf-node-code,~
11093 r,~
11094 renew-dots,~
11095 respect-arraystretch,~
11096 right-margin,~
11097 rounded-corners,~
11098 rules~(with~the~subkeys~'color'~and~'width'),~
11099 small,~
11100 t,~
11101 vlines,~
11102 xdots/color,~
11103 xdots/shorten-start(+),~
11104 xdots/shorten-end(+),~
11105 xdots/shorten(+)~and~
11106 xdots/line-style.
11107 }

11108 \@@_msg_new:nnn { Unknown~key~for~NiceTabular }
11109 {
11110 Unknown~key.\\
11111 The~key~' \l_keys_key_str '~is~unknown~for~the~environment~
11112 \{NiceTabular\}. \\
11113 That~key~will~be~ignored. \\
11114 \c_@@_available_keys_str
11115 }
11116 {
11117 The~available~keys~are~(in~alphabetic~order):~
11118 &-in-blocks,~
11119 ampersand-in-blocks,~
11120 b,~
11121 baseline,~

249

11122 c,~
11123 caption,~
11124 cell-space-bottom-limit,~
11125 cell-space-limits,~
11126 cell-space-top-limit,~
11127 code-after,~
11128 code-for-first-col(+),~
11129 code-for-first-row(+),~
11130 code-for-last-col(+),~
11131 code-for-last-row(+),~
11132 columns-width,~
11133 corners,~
11134 custom-line,~
11135 create-extra-nodes,~
11136 create-medium-nodes,~
11137 create-large-nodes,~
11138 extra-left-margin,~
11139 extra-right-margin,~
11140 first-col,~
11141 first-row,~
11142 hlines,~
11143 hvlines,~
11144 hvlines-except-borders,~
11145 label,~
11146 last-col,~
11147 last-row,~
11148 left-margin,~
11149 light-syntax,~
11150 light-syntax-expanded,~
11151 name,~
11152 no-cell-nodes,~
11153 notes~(several~subkeys),~
11154 nullify-dots,~
11155 pgf-node-code,~
11156 renew-dots,~
11157 respect-arraystretch,~
11158 right-margin,~
11159 rounded-corners,~
11160 rules~(with~the~subkeys~'color'~and~'width'),~
11161 short-caption,~
11162 t,~
11163 tabularnote,~
11164 vlines,~
11165 xdots/color,~
11166 xdots/shorten-start(+),~
11167 xdots/shorten-end(+),~
11168 xdots/shorten(+)~and~
11169 xdots/line-style.
11170 }

11171 \@@_msg_new:nnn { Duplicate~name }
11172 {
11173 Duplicate~name.\\
11174 The~name~' \l_keys_value_tl '~is~already~used~and~you~shouldn't~use~
11175 the~same~environment~name~twice.~You~can~go~on,~but,~
11176 maybe,~you~will~have~incorrect~results~especially~
11177 if~you~use~'columns-width=auto'.~If~you~don't~want~to~see~this~
11178 message~again,~use~the~key~'allow-duplicate-names'~in~
11179 ' \token_to_str:N \NiceMatrixOptions '.\\
11180 \bool_if:NF \g_@@_messages_for_Overleaf_bool
11181 { For~a~list~of~the~names~already~used,~type~H~<return>. }
11182 }
11183 {
11184 The~names~already~defined~in~this~document~are:~

250

11185 \clist_use:Nnnn \g_@@_names_clist { ~and~ } { ,~ } { ~and~ } .
11186 }

11187 \@@_msg_new:nn { caption-above~in~env }
11188 {
11189 The~key~'caption-above'~must~be~used~in~\token_to_str:N \NiceMatrixOptions.\\
11190 That~key~will~be~ignored.
11191 }

11192 \@@_msg_new:nn { show-cell-names }
11193 {
11194 There~is~no~key~'show-cell-names'~in~nicematrix.\\
11195 You~should~use~the~command~\token_to_str:N \ShowCellNames\
11196 in~the~\token_to_str:N \CodeBefore\ or~the~\token_to_str:N
11197 \CodeAfter. \\
11198 That~key~will~be~ignored.
11199 }

11200 \@@_msg_new:nn { Option~auto~for~columns-width }
11201 {
11202 Erroneous~use.\\
11203 You~can't~give~the~value~'auto'~to~the~key~'columns-width'~here.~
11204 That~key~will~be~ignored.
11205 }

11206 \@@_msg_new:nn { NiceTabularX~without~X }
11207 {
11208 NiceTabularX~without~X.\\
11209 You~should~not~use~\{NiceTabularX\}~without~X~columns.\\
11210 However,~you~can~go~on.
11211 }

11212 \@@_msg_new:nn { Preamble~forgotten }
11213 {
11214 Preamble~forgotten.\\
11215 You~have~probably~forgotten~the~preamble~of~your~
11216 \@@_full_name_env: . \\
11217 This~error~is~fatal.
11218 }

11219 \@@_msg_new:nn { Invalid~col~number }
11220 {
11221 Invalid~column~number.\\
11222 A~color~instruction~in~the~ \token_to_str:N \CodeBefore \
11223 specifies~a~column~which~is~outside~the~array.~It~will~be~ignored.
11224 }

11225 \@@_msg_new:nn { Invalid~row~number }
11226 {
11227 Invalid~row~number.\\
11228 A~color~instruction~in~the~ \token_to_str:N \CodeBefore \
11229 specifies~a~row~which~is~outside~the~array.~It~will~be~ignored.
11230 }

11231 \@@_define_com:NNN p ()
11232 \@@_define_com:NNN b []
11233 \@@_define_com:NNN v | |
11234 \@@_define_com:NNN V \| \|
11235 \@@_define_com:NNN B \{ \}

251

Contents

1 Declaration of the package and packages loaded 1

2 Collecting options 3

3 Technical definitions 3

4 Parameters 9

5 The command \tabularnote 20

6 Command for creation of rectangle nodes 25

7 The options 26

8 Important code used by {NiceArrayWithDelims} 38

9 The \CodeBefore 54

10 The environment {NiceArrayWithDelims} 58

11 Construction of the preamble of the array 63

12 The redefinition of \multicolumn 80

13 The environment {NiceMatrix} and its variants 97

14 {NiceTabular}, {NiceTabularX} and {NiceTabular*} 98

15 After the construction of the array 100

16 We draw the dotted lines 106

17 The actual instructions for drawing the dotted lines with TikZ 124

18 User commands available in the new environments 130

19 The command \line accessible in code-after 136

20 The command \RowStyle 138

21 Colors of cells, rows and columns 141

22 The vertical and horizontal rules 153

23 The empty corners 170

24 The environment {NiceMatrixBlock} 172

25 The extra nodes 174

26 The blocks 178

27 How to draw the dotted lines transparently 205

28 Automatic arrays 205

29 The redefinition of the command \dotfill 207

30 The command \diagbox 207

252

31 The keyword \CodeAfter 208

32 The delimiters in the preamble 209

33 The command \SubMatrix 210

34 Les commandes \UnderBrace et \OverBrace 219

35 The commands HBrace et VBrace 222

36 The command TikzEveryCell 225

37 The command \CreateBlocksInColumn 227

38 The command \ShowCellNames 227

39 We process the options at package loading 229

40 About the package underscore 231

41 Error messages of the package 231

253

	1 Declaration of the package and packages loaded
	2 Collecting options
	3 Technical definitions
	4 Parameters
	5 The command \tabularnote
	6 Command for creation of rectangle nodes
	7 The options
	8 Important code used by {NiceArrayWithDelims}
	9 The \CodeBefore
	10 The environment {NiceArrayWithDelims}
	11 Construction of the preamble of the array
	12 The redefinition of \multicolumn
	13 The environment {NiceMatrix} and its variants
	14 {NiceTabular}, {NiceTabularX} and {NiceTabular*}
	15 After the construction of the array
	16 We draw the dotted lines
	17 The actual instructions for drawing the dotted lines with TikZ
	18 User commands available in the new environments
	19 The command \line accessible in code-after
	20 The command \RowStyle
	21 Colors of cells, rows and columns
	22 The vertical and horizontal rules
	23 The empty corners
	24 The environment {NiceMatrixBlock}
	25 The extra nodes
	26 The blocks
	27 How to draw the dotted lines transparently
	28 Automatic arrays
	29 The redefinition of the command \dotfill
	30 The command \diagbox
	31 The keyword \CodeAfter
	32 The delimiters in the preamble
	33 The command \SubMatrix
	34 Les commandes \UnderBrace et \OverBrace
	35 The commands HBrace et VBrace
	36 The command TikzEveryCell
	37 The command \CreateBlocksInColumn
	38 The command \ShowCellNames
	39 We process the options at package loading
	40 About the package underscore
	41 Error messages of the package
	Contents

