The code of the package nicematrix*

F. Pantigny
fpantigny@wanadoo.fr

February 1, 2026

Abstract

This document is the documented code of the LaTeX package nicematrix. It is not its user’s
guide. The guide of utilisation is the document nicematrix.pdf (with a French translation:
nicematrix-french.pdf).

The development of the extension nicematrix is done on the following GitHub depot:
https://github.com/fpantigny/nicematrix

1 Declaration of the package and packages loaded

The prefix nicematrix has been registered for this package.
See: http://mirrors.ctan.org/macros/latex/contrib/13kernel/13prefixes.pdf
<@@=nicematrix>

First, we load pgfcore and the module shapes. We do so because it’s not possible to use \usepgfmodule
in \ExplSyntaxOn.

1 \RequirePackage{pgfcore}
> \usepgfmodule{shapes}

We give the traditional declaration of a package written with the L3 programming layer.

; \ProvidesExplPackage
+ {nicematrix}
5 {\myfiledate}
6 {\myfileversion}
{Enhanced arrays with the help of PGF/TikZ}

s \msg_new:nnn { nicematrix } { latex-too-old }

o {

10 Your~LaTeX~release~is~too~old. \\

1 You~need~at~least~the~version~of~2025-06-01. \\

12 If~you~use~Overleaf,~you~need~at~least~"TeXLive~2025".\\
13 The~package~'nicematrix'~won't~be~loaded.

14 }

15 \providecommand { \IfFormatAtLeastTF } { \@ifl@t@r \fmtversion }
16 \IfFormatAtLeastTF

7 { 2025-06-01 }

s {1}

1o { \msg_critical:nn { nicematrix } { latex-too-old } }

*This document corresponds to the version 7.6 of nicematrix, at the date of 2026/02/01.

The command for the treatment of the options of \usepackage is at the end of this package for
technical reasons.

)

o \RequirePackage { amsmath }

21 \RequirePackage{array}[=2025/06/08] ¥ v2.6j

2> \cs_new_protected:Npn \@@_error:n { \msg_error:nn { nicematrix } }

>3 \cs_new_protected:Npn \@@_warning:n { \msg_warning:nn { nicematrix } }
2 \cs_new_protected:Npn \@@_error:nn { \msg_error:nnn { nicematrix } }
> \cs_generate_variant:Nn \@Q@_error:nn { n e }

2 \cs_new_protected:Npn \@@_error:nnn { \msg_error:nnnn { nicematrix } }
27 \cs_new_protected:Npn \@@_fatal:n { \msg_fatal:nn { nicematrix } }

25 \cs_new_protected:Npn \@0_fatal:nn { \msg_fatal:nnn { nicematrix } }
20 \cs_new_protected:Npn \@@_msg_new:nn { \msg_new:nnn { nicematrix } }

With Overleaf (and also in TeXPage), by default, a document is compiled in non-stop mode. When
there is an error, there is no way to the user to use the key H in order to have more information.
That’s why we decide to put that piece of information (for the messages with such information) in
the main part of the message when the key messages-for-0Overleaf is used (at load-time).

50 \cs_new_protected:Npn \Q@_msg_new:nnn #1 #2 #3

31 {

32 \bool_if:NTF \g_0@_messages_for_0Overleaf_bool

33 { \msg_new:nnn { nicematrix } { #1 } { #2 \\ #3 } }

34 { \msg_new:nnnn { nicematrix } { #1 } { #2 > { #3 } }
SR

We also create a command which will generate usually an error but only a warning on Overleaf. The
argument is given by curryfication.

56 \cs_new_protected:Npn \@@_error_or_warning:n

37 {

38 \bool_if:NTF \g_0@_messages_for_0verleaf_bool
39 { \@@_warning:n }

40 { \@@_error:n }

41 }

We try to detect whether the compilation is done on Overleaf. We use \c_sys_jobname_str because,
with Overleaf, the value of \c_sys_jobname_str is always “output”.

2 \bool_new:N \g_0@_messages_for_Overleaf_bool
23 \bool_gset:Nn \g_00@_messages_for_Overleaf_bool

44 {

45 \str_if_eq_p:on \c_sys_jobname_str { _region_ } % for Emacs
46 |l \str_if_eq_p:ee \c_sys_jobname_str { output } % for Overleaf
s}

s \@@_msg_new:nn { mdwtab~loaded }

49 {

50 The~packages~'mdwtab'~and~'nicematrix'~are~incompatible.~
51 This~error~is~fatal.

2}

52 \hook_gput_code:nnn { begindocument / end } { . }
ss { \IfPackageLoadedT { mdwtab } { \@@_fatal:n { mdwtab~loaded } } }

2 Collecting options

The following technique allows to create user commands with the ability to put an arbitrary number
of [list of (key=val)] after the name of the command.

FEzxzample :

\@@_collect_options:n { \F } [x=a,y=b] [z=c,t=d] { arg }

will be transformed in : \F{x=a,y=b,z=c,t=d}{arg}

Therefore, by writing : \def\G{\@@_collect_options:n{\F}},

the command \G takes in an arbitrary number of optional arguments between square brackets.
Be careful: that command is not “fully expandable” (because of \peek_meaning:NTF).

55 \cs_new_protected:Npn \Q@@_collect_options:n #1

56 {

57 \peek_meaning:NTF [

58 { \@@_collect_options:nw { #1 } }
59 {#1 {21}

60 3

We use \NewDocumentCommand in order to be able to allow nested brackets within the argument
between [and].

61 \NewDocumentCommand \@@_collect_options:nw { m r[] }

e { \@@_collect_options:nn { #1 } { #2 } }

63

e \cs_new_protected:Npn \@@_collect_options:nn #1 #2

s

66 \peek_meaning:NTF [

67 { \@@_collect_options:nnw { #1 } { #2 } }
68 {#1 {#2 1} 1}

69 3

70
71 \cs_new_protected:Npn \@@_collect_options:nnw #1#2[#3]
72 { \@@_collect_options:nn { #1 } { #2 , #3 } }

3 Technical definitions

The following constants are defined only for efficiency in the tests.

72 \tl_const:Nn \c_@@_c_t1 {
74 \tl_const:Nn \c_@@_1_t1 {
75 \tl_const:Nn \c_@@_r_tl1 {
76 \tl_const:Nn \c_@@_all_tl
77 \tl_const:Nn \c_@@_dot_tl
72 \str_const:Nn \c_@@_r_str
70 \str_const:Nn \c_@@_c_str
50 \str_const:Nn \c_@@_1_str

N e i s)
[e
]
(o)

Ho R -

S S I

g1 \tl_const:Nn \c_@@_brace_tl { nicematrix/brace }
2 \tl_const:Nn \c_@@_mirrored_brace_tl { nicematrix/mirrored-brace }

The following token list will be used for definitions of user commands (with \NewDocumentCommand)
with an embellishment using an underscore (there may be problems because of the catcode of the
underscore).

53 \tl_new:N \1_0@_argspec_tl

s \cs_generate_variant:Nn \seq_set_split:Nnn { N o }

s \cs_generate_variant:Nn \str_set:Nn { N o }

s \cs_generate_variant:Nn \tl_build_put_right:Nn { N o }

s7 \prg_generate_conditional_variant:Nnn \clist_if_in:Nn { Ne } { T , F, TF }

s¢ \prg_generate_conditional_variant:Nnn \tl_if_empty:n { e } { T }

s \prg_generate_conditional_variant:Nnn \tl_if_head_eq_meaning:nN { o N } { TF }
o0 \cs_generate_variant:Nn \dim_min:nn { v }

o1 \cs_generate_variant:Nn \dim_max:nn { v }

o> \hook_gput_code:nnn { begindocument } { . }
93 {

04 \IfPackageLoadedTF { tikz }

9 {

In some constructions, we will have to use a {pgfpicture} which must be replaced by a
{tikzpicture} if TikZ is loaded. However, this switch between {pgfpicture} and {tikzpicture}
can’t be done dynamically with a conditional because, when the TikZ library external is loaded by
the user, the pair \tikzpicture-\endtikpicture (or \begin{tikzpicture}-\end{tikzpicture})
must be statically “visible” (even when externalization is not activated).

That’s why we create \c_0@_pgfortikzpicture_t1l and \c_Q@_endpgfortikzpicture_t1 which will
be used to construct in a \hook_gput_code:nnn { begindocument } { . } the correct version of
some commands. The tokens \exp_not:N are mandatory.

9% \tl_const:Nn \c_@@_pgfortikzpicture_tl { \exp_not:N \tikzpicture }

o7 \tl_const:Nn \c_@@_endpgfortikzpicture_tl { \exp_not:N \endtikzpicture }
99 {

100 \tl_const:Nn \c_@@_pgfortikzpicture_tl { \exp_not:N \pgfpicture }

101 \tl_const:Nn \c_0@@_endpgfortikzpicture_tl { \exp_not:N \endpgfpicture }
102 }

103 }

We test whether the current class is revtex4-1 (deprecated) or revtex4-2 because these classes redefines
\array (of array) in a way incompatible with our programmation. At the date April 2025, the current
version revtex4-2 is 4.2f (compatible with booktabs).

104 \IfClassLoadedTF { revtex4-1 }
105 { \bool_const:Nn \c_@@_revtex_bool { \c_true_bool } }

106 {

107 \IfClassLoadedTF { revtex4-2 }

108 { \bool_const:Nn \c_@@_revtex_bool { \c_true_bool } }
109 {

Maybe one of the previous classes will be loaded inside another class... We try to detect that situation.
110 \cs_if_exist:NT \rvtx@ifformat@geq
111 { \bool_const:Nn \c_@@_revtex_bool { \c_true_bool } }
112 { \bool_const:Nn \c_@@_revtex_bool { \c_false_bool } }

If the final user uses nicematrix, PGF/TikZ will write instruction \pgfsyspdfmark in the aux file.
If he changes its mind and no longer loads nicematrix, an error may occur at the next compilation
because of remanent instructions \pgfsyspdfmark in the aux file. With the following code, we try
to avoid that situation.

115 \cs_new_protected:Npn \@@_provide_pgfsyspdfmark:

116 {

17 \iow_now:Nn \@mainaux

118 {

119 \ExplSyntaxOn

120 \cs_if_free:NT \pgfsyspdfmark

121 { \cs_set_eq:NN \pgfsyspdfmark \@gobblethree }

122 \ExplSyntax0ff

123 }

124 \cs_gset_eq:NN \@@_provide_pgfsyspdfmark: \prg_do_nothing:
125 3

We define a command \iddots similar to \ddots (*.) but with dots going forward (.*"). We use
\ProvideDocumentCommand and so, if the command \iddots has already been defined (for example
by the package mathdots), we don’t define it again.

126 \ProvideDocumentCommand \iddots { }

127 {

128 \mathinner

120 {

130 \mkern 1 mu

131 \box_move_up:nn { 1 pt } { \hbox { . } }
132 \mkern 2 mu

133 \box_move_up:nn { 4 pt } { \hbox { . } }
134 \mkern 2 mu

135 \box_move_up:nn { 7 pt }

136 { \vbox:n { \kern 7 pt \hbox { . } } }
137 \mkern 1 mu

138 }

139 }

This definition is a variant of the standard definition of \ddots.

In the aux file, we will have the references of the PGF/TikZ nodes created by nicematrix. However,
when booktabs is used, some nodes (more precisely, some row nodes) will be defined twice because
their position will be modified. In order to avoid an error message in this case, we will redefine
\pgfutil@check@rerun in the aux file.

10 \hook_gput_code:nnn { begindocument } { . }

141 {

142 \IfPackageLoadedT { booktabs }

143 { \iow_now:Nn \@mainaux { \nicematrix@redefine@check@rerun } }
144 }

s \cs_set_protected:Npn \nicematrix@redefine@check@rerun

146 {

147 \let \@@_old_pgfutil@check@rerun \pgfutil@check@rerun

The new version of \pgfutil@check@rerun will not check the PGF nodes whose names start with
nm- (which is the prefix for the nodes created by nicematrix).

148 \cs_set_protected:Npn \pgfutil@check@rerun ##1 ##2
149 {
\str_if_eq:ee(TF) is slightly faster than \str_if_eq:nn(TF).
150 \str_if_eq:eeF { nm- } { \tl_range:nnn { ##1 } {1} {3 } }
151 { \@@_old_pgfutil@check@rerun { ##1 } { ##2 } }
152 }
153 }

We have to know whether colortbl is loaded in particular for the redefinition of \everycr. The
command \@@_everycr: will be used only in \@@_some_initialization:, itself in \ar@ialign.

152 \hook_gput_code:nnn { begindocument } { . }

155 {

156 \cs_set_protected:Npe \@@_everycr:

157 {

158 \IfPackageLoadedTF { colortbl } { \CT@everycr } { \everycr }
150 { \noalign { \@@_in_everycr: } }

160 }

161 \IfPackageLoadedTF { colortbl }

162 {

163 \cs_new_eq:NN \@@_old_cellcolor: \cellcolor

164 \cs_new_eq:NN \Q@@_old_rowcolor: \rowcolor

165 \cs_new_protected:Npn \@@_revert_colortbl:

166 {

167 \hook_gput_code:nnn { env / tabular / begin } { nicematrix }
168 {

160 \cs_set_eq:NN \cellcolor \@@_old_cellcolor:

170 \cs_set_eq:NN \rowcolor \@@_old_rowcolor:

171 }

172 }
When colortbl is used, we have to catch the tokens \columncolor in the preamble because, otherwise,
colortbl will catch them and the colored panels won’t be drawn by nicematrix but by colortbl (with an
output which is not perfect).

173 \cs_new_protected:Npn \Q@_replace_columncolor:
174 {

175 \tl_replace_all:Nnn \g_0@_array_preamble_tl
176 { \columncolor }

177 { \@@_columncolor_preamble }

\@@_column_preamble, despite its name, will be defined with \NewDocumentCommand because it takes
in an optional argument between square brackets in first position for the colorimetric space.

178 T

179 }

180 {

181 \cs_new_protected:Npn \Q@@_revert_colortbl: { }

182 \cs_new_protected:Npn \@@_replace_columncolor:

183 { \cs_set_eq:NN \columncolor \@@_columncolor_preamble }

The command \CT@arc@ is a command of colortbl which sets the color of the rules in the array. We
will use it to store the instruction of color for the rules even if colortbl is not loaded.

184 \def \CT@arce@ { }
185 \def \arrayrulecolor #1 # { \CT@arc { #1 } }
186 \def \CTQarc #1 #2
187 {
188 \dim_compare:nNnT { \baselineskip } = { \c_zero_dim } { \noalign }
189 { \cs_gset_nopar:Npn \CT@arc@ { \color #1 { #2 } } }
190 3
Idem for \CT@drse@.
101 \def \doublerulesepcolor #1 # { \CT@drs { #1 } }
192 \def \CTQdrs #1 #2
193 {
104 \dim_compare:nNnT { \baselineskip } = { \c_zero_dim } { \noalign }
105 { \cs_gset:Npn \CT@drsc@ { \color #1 { #2 } } }
196 ¥
197 \def \hline
198 {
199 \noalign { \ifnum 0 = "} \fi
200 \cs_set_eq:NN \hskip \vskip
201 \cs_set_eq:NN \vrule \hrule
202 \cs_set_eq:NN \Q@width \Gheight
203 { \CT@arc@ \vline }
204 \futurelet \reserved®a
205 \@xhline
206 }
207 }
208 ¥

We have to redefine \cline for several reasons. The command \@@_cline: will be linked to \cline
in the beginning of {NiceArrayWithDelims}. The following commands must not be protected.

200 \cs_set_nopar:Npn \Q@_standard_cline: #1 { \Q@@_standard_cline:w #1 \q_stop }
210 \cs_set_nopar:Npn \@@_standard_cline:w #1-#2 \g_stop

211 {

212 \int_if_zero:nT { \1_@@_first_col_int } { \omit & }
213 \int_compare:nNnT { #1 } > { \c_one_int }

214 { \multispan { \int_eval:n { #1 - 1 } } & }

215 \multispan { \int_eval:n { #2 - #1 + 1 } }

216 {

217 \CT@arc@

218 \leaders \hrule \@height \arrayrulewidth \hfill

The following \skip_horizontal:N \c_zero_dim is to prevent a potential \unskip to delete the
\leaders!

219 \skip_horizontal:N \c_zero_dim

220 ¥
Our \everycr has been modified. In particular, the creation of the row node is in the \everycr
(maybe we should put it with the incrementation of \c@iRow). Since the following \cr correspond
to a “false row”, we have to nullify \everycr.

21 \everycr { }

222 \cr

223 \noalign { \skip_vertical:n { - \arrayrulewidth } }
224 3

The following version of \cline spreads the array of a quantity equal to \arrayrulewidth as does
\hline. It will be loaded excepted if the key standard-cline has been used.

25 \cs_set:Npn \@@_cline:
We have to act in a fully expandable way since there may be \noalign (in the \multispan) to detect.
That’s why we use \@@_cline_i:en.

26 { \@@_cline_i:en { \1_@@_first_col_int } }
The command \cline_i:nn has two arguments. The first is the number of the current column (it

must be used in that column). The second is a standard argument of \cline of the form i-j or the
form 1.

227 \cs_set:Npn \@Q_cline_i:nn #1 #2 { \@0_cline_i:w #1|#2- \g_stop }

25 \cs_generate_variant:Nn \@@_cline_i:nn { e }

29 \cs_set:Npn \@@_cline_i:w #1|#2-#3 \q_stop

230 {

231 \tl_if_empty:nTF { #3 }

232 { \@@_cline_iii:w #1|#2-#2 \qg_stop }
233 { \@@_cline_ii:w #1|#2-#3 \q_stop }
234 }

235 \cs_set:Npn \@Q_cline_ii:w #1|#2-#3- \q_stop

236 { \@@_cline_iii:w #1|#2-#3 \q_stop }

237 \cs_set:Npn \Q@@_cline_iii:w #1|#2-#3 \g_stop

238 {
Now, #1 is the number of the current column and we have to draw a line from the column #2 to the
column #3 (both included).

239 \int_compare:nNnT { #1 } < { #2 }

240 { \multispan { \int_eval:n { #2 - #1 } } & }

241 \multispan { \int_eval:n { #3 - #2 + 1 } }

242 {

243 \CT@arc@

244 \leaders \hrule \@height \arrayrulewidth \hfill

25 \skip_horizontal:N \c_zero_dim
246 }
You look whether there is another \cline to draw (the final user may put several \cline).
247 \peek_meaning_remove_ignore_spaces:NTF \cline
248 { & \@@_cline_i:en { \int_eval:n { #3 + 1 } } }

249 { \everycr { } \cr }
250 }

The following command will be nullified in the environment {NiceTabular}, {NiceTabular*} and
{NiceTabularX}.

21 \cs_set:Nn \@@_math_toggle: { $ } % $

1See question 99041 on TeX StackExchange.

252 \cs_new_protected:Npn \@@_set_CTarc:n #1

253 {

254 \tl_if_blank:nF { #1 }

255 {

256 \tl_if_head_eq_meaning:nNTF { #1 } [
257 { \def \CT@arc@ { \color #1 } }

258 { \def \CT@arc@ { \color { #1 } } }
259 }

260 }

261 \cs_generate_variant:Nn \@@_set_CTarc:n { o }

262 \cs_new_protected:Npn \@Q_set_CTdrsc:n #1

263 {

264 \tl_if_head_eq_meaning:nNTF { #1 } [
265 { \def \CT@drsc@ { \color #1 } }

266 { \def \CT@drsc@ { \color { #1 } } }
267 }

The following command must not be protected since it will be used to write instructions in the
\g_0@_pre_code_before_tl.
265 \cs_new:Npn \Q@@_exp_color_arg:Nn #1 #2

269 {

270 \tl_if_head_eq_meaning:nNTF { #2 } [
271 { #1 #2 }

272 {#1 {#2 } }

273 i3

274 \cs_generate_variant:Nn \@@_exp_color_arg:Nn { N o }
The following command must be protected because of its use of the command \color.

o5 \cs_new_protected:Npn \@@_color:n #1
o6 { \tl_if_blank:nF { #1 } { \@@_exp_color_arg:Nn \color { #1 } } }
277 \cs_generate_variant:Nn \@@_color:n { o }

27s \cs_new_protected:Npn \@@_rescan_for_spanish:N #1

279 {

280 \tl_set_rescan:Nno

281 #1

282 {

283 \char_set_catcode_other:N >
284 \char_set_catcode_other:N <
285 }

286 #1

287 }

The L3 programming layer provides scratch dimensions \1_tmpa_dim and \1_tmpb_dim. We create
several more in the same spirit.

255 \dim_new:N \1_Q@_tmpc_dim
250 \dim_new:N \1_Q@_tmpd_dim

200 \tl_new:N \1_Q@_tmpc_tl
200 \tl_new:N \1_Q@_tmpd_tl

202 \int_new:N \1_0@_tmpc_int

4 Parameters

The following counter will count the environments {NiceArray}. The value of this counter will be
used to prefix the names of the TikZ nodes created in the array.

203 \int_new:N \g_0@@_env_int

The following command is only a syntaxic shortcut. It must not be protected (it will be used in
names of PGF nodes).

204 \cs_new:Npn \@@_env: { nm - \int_use:N \g_0@_env_int }

The command \NiceMatrixLastEnv is not used by the package nicematrix. It’s only a facility given
to the final user. It gives the number of the last environment (in fact the number of the current
environment but it’s meant to be used after the environment in order to refer to that environment
— and its nodes — without having to give it a name). This command must be expandable since it
will be used in pgf nodes.

205 \NewExpandableDocumentCommand \NiceMatrixLastEnv { } { \int_use:N \g_0@_env_int }

The array will be composed in a box (named \1_@@_the_array_box) because we have to do manip-
ulations concerning the potential exterior rows.

206 \box_new:N \1_0@_the_array_box

The following command is only a syntaxic shortcut. The q in qpoint means quick.

207 \cs_new_protected:Npn \@Q_gpoint:n #1
208 { \pgfpointanchor { \@@_env: - #1 } { center } }

If the user uses {NiceTabular}, {NiceTabular*} or {NiceTabularX}, we will raise the following
flag.
200 \bool_new:N \1_@@_tabular_bool

\g_0@_delims_bool will be true for the environments with delimiters (ex. : {pNiceMatrix},
{pNiceArray}, \pAutoNiceMatrix, etc.).

30 \bool_new:N \g_0@_delims_bool
01 \bool_gset_true:N \g_00_delims_bool

In fact, if there is delimiters in the preamble of {NiceArray} (eg: [ccccl), this boolean will be set
to false.

The following boolean will be equal to true in the environments which have a preamble (provided
by the final user): {NiceTabular}, {NiceArray}, {pNiceArray}, etc.

500 \bool_new:N \1_0@_preamble_bool
503 \bool_set_true:N \1_Q@_preamble_bool

We need a special treatment for {NiceMatrix} when vlines is not used, in order to retrieve
\arraycolsep on both sides.

30 \bool_new:N \1_0@_NiceMatrix_without_vlines_bool

The following counter will count the environments {NiceMatrixBlock}.

505 \int_new:N \g_@@_NiceMatrixBlock_int

It’s possible to put tabular notes (with \tabularnote) in the caption if that caption is composed
above the tabular. In such case, we will count in \g_@@_notes_caption_int the number of uses of
the command \tabularnote without optional argument in that caption.

506 \int_new:N \g_0@@_notes_caption_int

The dimension \1_@@_columns_width_dim will be used when the options specify that all the columns
must have the same width (but, if the key columns-width is used with the special value auto, the
boolean \1_0@_auto_columns_width_bool also will be raised).

307 \dim_new:N \1_@@_columns_width_dim

The dimension \1_0@_col_width_dim will be available in each cell which belongs to a column of
fixed width: w{...3{.. .} w{...}...}, p{...}, m{...}, b{.. .} but also X (when the actual width
of that column is known, that is to say after the first compilation). It’s the width of that column. It
will be used by some commands \Block. A non positive value means that the column has no fixed
width (it’s a column of type c, r, 1, etc.).

306 \dim_new:N \1_@@_col_width_dim
300 \dim_set:Nn \1_@@_col_width_dim { -1 cm }

The following counters will be used to count the numbers of rows and columns of the array.

310 \int_new:N \g_@@_row_total_int
511 \int_new:N \g_0@_col_total_int

The following parameter will be used by \@@_create_row_node: to avoid to create the same row-node
twice (at the end of the array).

512 \int_new:N \g_@@_last_row_node_int

The following counter corresponds to the key nb-rows of the command \RowStyle.
513 \int_new:N \1_@@_key_nb_rows_int

The following token list will contain the type of horizontal alignment of the current cell as provided by
the corresponding column. The possible values are r, 1, ¢ and j. For example, a column p[1]{3cm}
will provide the value 1 for all the cells of the column.

52 \tl_new:N \1_Q@_hpos_cell_tl

315 \t1l_set_eq:NN \1_0@_hpos_cell_tl \c_@0_c_tl

When there is a mono-column block (created by the command \Block), we want to take into account
the width of that block for the width of the column. That’s why we compute the width of that block
in the \g_00@_blocks_wd_dim and, after the construction of the box \1_@@_cell_box, we change the
width of that box to take into account the length \g_@@_blocks_wd_dim.

316 \dim_new:N \g_0@_blocks_wd_dim

Idem for the mono-row blocks.

317 \dim_new:N \g_0@_blocks_ht_dim
315 \dim_new:N \g_0@_blocks_dp_dim

The following dimension correspond to the key width (which may be fixed in \NiceMatrixOptions
but also in an environment {NiceTabular}).

3190 \dim_new:N \1_@@_width_dim

The clist \g_0@_names_clist will be the list of all the names of environments used (via the option
name) in the document: two environments must not have the same name. However, it’s possible to
use the option allow-duplicate-names.

20 \clist_new:N \g_0@_names_clist

We want to know whether we are in an environment of nicematrix because we will raise an error if
the user tries to use nested environments.

321 \bool_new:N \1_@@_in_env_bool
The following key corresponds to the key notes/detect_duplicates.

322 \bool_new:N \1_0@_notes_detect_duplicates_bool
223 \bool_set_true:N \1_Q@@_notes_detect_duplicates_bool

10

32 \bool_new:N \1_@@_initial_open_bool
325 \bool_new:N \1_@@_final_open_bool
326 \bool_new:N \1_@@_Vbrace_bool

If the user uses {NiceTabular*}, the width of the tabular (in the first argument of the environment
{NiceTabularx}) will be stored in the following dimension.

37 \dim_new:N \1_@@_tabular_width_dim

The following dimension will be used for the total width of composite rules (total means that the
spaces on both sides are included).

328 \dim_new:N \1_@@_rule_width_dim

(Ll”

The key color in a command of rule such as \Hline (or the specifier in the preamble of an

environment).
20 \tl_new:N \1_Q@_rule_color_tl

The following boolean will be raised when the command \rotate is used.
330 \bool_new:N \g_@@_rotate_bool

The following boolean will be raise then the command \rotate is used with the key c.
331 \bool_new:N \g_0@_rotate_c_bool

In a cell, it will be possible to know whether we are in a cell of a column of type X thanks to that flag
(the X columns of nicematrix are inspired by those of tabularx). You will use that flag for the blocks.

332 \bool_new:N \1_0@@_X_bool

\1_@@_V_of_X_bool during the construction of the preamble when a column of type X uses the key
V (whose name is inspired by the columns V of the extension varwidth).

333 \bool_new:N \1_@@_V_of_X_bool

The flag g_00@_V_of _X_bool will be raised when there is at least in the tabular a column of type X
using the key V.

33 \bool_new:N \g_@@_V_of_X_bool

335 \bool_new:N \g_0@_caption_finished_bool

The following boolean will be raised when the key no-cell-nodes is used.
336 \bool_new:N \1_@@_no_cell_nodes_bool

We will write in \g_0@_aux_t1 all the instructions that we have to write on the aux file for the
current environment. The contain of that token list will be written on the aux file at the end of the
environment (in an instruction \tl_gset:cn { g_0@@_ \int_use:N \g_00@_env_int _ t1 }).

337 \tl_new:N \g_0@_aux_tl
During the second run, if information concerning the current environment has been found in the aux
file, the following flag will be raised. It will be used, for instance to disable several constructions
(continuous dotted lines, and colored backgrounds) during the first compilation (in order to speed up
it).

;3 \bool_new:N \g_0@_aux_found_bool

In particuler, in that aux file, there will be, for each environment of nicematrix, an affectation for the

the following sequence that will contain information about the size of the array.

330 \seq_new:N \g_0@_size_seq

30 \tl_new:N \g_0@_left_delim_tl
31 \tl_new:N \g_0@_right_delim_tl

11

The token list \g_@@_user_preamble_t1 will contain the preamble provided by the the final user of
nicematrix (eg the preamble of an environment {NiceTabularl}).

32 \tl_new:N \g_0@_user_preamble_tl
The token list \g_0@_array_preamble_t1l will contain the preamble constructed by nicematrix for
the environment {array} (of array).

33 \tl_new:N \g_0@_array_preamble_tl
For \multicolumn.

34 \tl_new:N \g_0@_preamble_tl

The following parameter corresponds to the key columns-type of the environments {NiceMatrix},
{pNiceMatrix}, etc. and also the key matrix / columns-type of \NiceMatrixOptions.

35 \tl_new:N \1_Q@_columns_type_tl

36 \str_set:Nn \1_0@_columns_type_tl { c }

The following parameters correspond to the keys down, up and middle of a command such as \Cdots.
Usually, the final user doesn’t use that keys directly because he uses the syntax with the embellish-
ments _, ~ and :.

327 \tl_new:N \1_Q@_xdots_down_t1l

a5 \tl_new:N \1_Q@@_xdots_up_tl

30 \tl_new:N \1_@@_xdots_middle_t1

We will store in the following sequence information provided by the instructions \rowlistcolors in
the main array (not in the \CodeBefore).

350 \seq_new:N \g_00@_rowlistcolors_seq

551 \cs_new_protected:Npn \Q@@_test_if_math_mode:

352 {

353 \if_mode_math: \else:

354 \@@_fatal:n { Outside~math~mode }
355 \fi:

356 }

The list of the columns where vertical lines in sub-matrices (vlism) must be drawn. Of course, the
actual value of this sequence will be known after the analysis of the preamble of the array.

;57 \seq_new:N \g_0@_cols_vlism_seq

The following colors will be used to memorize the color of the potential “first col” and the potential
“first row”.

355 \colorlet { nicematrix-last-col } { . }
350 \colorlet { nicematrix-last-row } { . }

The following string is the name of the current environment or the current command of nicematrix
(despite its name which contains env).

30 \str_new:N \g_@@_name_env_str

The following string will contain the word command or environment whether we are in a command
of nicematrix or in an environment of nicematrix. The default value is environment.

361 \str_new:N \g_0@_com_or_env_str
52 \str_gset:Nn \g_00_com_or_env_str { environment }

363 \bool_new:N \1_Q@_bold_row_style_bool

36 \clist_new:N \g_0@_cbic_clist

12

The following command will be able to reconstruct the full name of the current command or envi-
ronment (despite its name which contains env). This command must not be protected since it will
be used in error messages and we have to use \str_if_eq:eeTF and not \tl_if_eq:eeTF because
we need to be fully expandable). \str_if_eq:ee(TF) is faster than \str_if_eq:nn(TF).

365 \cs_new:Npn \@@_full_name_env:

366 {

367 \str_if_eq:eeTF { \g_00_com_or_env_str } { command }

368 { command \space \c_backslash_str \g_0@_name_env_str }
369 { environment \space \{ \g_0@_name_env_str \} }

370 }

571 \tl_new:N \g_0@_cell_after_hook_tl % 2025/03/22

For the key code of the command \SubMatrix (itself in the main \CodeAfter), we will use the
following token list.

372 \tl_new:N \1_Q@_code_t1

For the key pgf-node-code. That code will be used when the nodes of the cells (that is to say the
nodes of the form i-j) will be created.

573 \t1l_new:N \1_@@_pgf_node_code_tl

The so-called \CodeBefore is split in two parts because we want to control the order of execution of
some instructions.

372 \tl_new:N \g_0@_pre_code_before_tl

575 \tl_new:N \g_nicematrix_code_before_tl

The value of the key code-before will be added to the left of \g_@@_pre_code_before_tl. Idem
for the code between \CodeBefore and \Body.

The so-called \CodeAfter is split in two parts because we want to control the order of execution of
some instructions.

576 \tl_new:N \g_0@_pre_code_after_tl
377 \tl_new:N \g_nicematrix_code_after_tl

The \CodeAfter provided by the final user (with the key code-after or the keyword \CodeAfter)
will be stored in the second token list.

378 \bool_new:N \1_@@_in_code_after_bool

The following parameter will be raised when a block contains an ampersand (&) in its content (=label).
579 \bool_new:N \1_Q@_ampersand_bool

The counters \1_@@_old_iRow_int and \1_@@_old_jCol_int will be used to save the values of the
potential LaTeX counters iRow and jCol. These LaTeX counters will be restored at the end of the
environment.

350 \int_new:N \1_@@_old_iRow_int
351 \int_new:N \1_0@_old_jCol_int

The TeX counters \c@iRow and \c@jCol will be created in the beginning of {NiceArrayWithDelims}
(if they don’t exist previously).

The following sequence will contain the names (without backslash) of the commands created by
custom-line by the key command or ccommand (commands used by the final user in order to draw
horizontal rules).

322 \seq_new:N \1_0@_custom_line_commands_seq

The following token list corresponds to the key rules/color available in the environments.
33 \tl_new:N \1_@@_rules_color_tl

13

The sum of the weights of all the X-columns in the preamble.
s \fp_new:N \g_0@_total_X_weight_fp

If there is at least one X-column in the preamble of the array, the following flag will be raised via the
aux file. The length 1_00_x_columns_dim will be the width of X-columns of weight 1.0 (the width
of a column of weight = will be that dimension multiplied by z). That value is computed after the
construction of the array during the first compilation in order to be used in the following run.

335 \bool_new:N \1_@@_X_columns_aux_bool

36 \dim_new:N \1_@@_X_columns_dim

337 \dim_new:N \1_@@_brace_shift_dim

This boolean will be used only to detect in an expandable way whether we are at the beginning of
the (potential) column zero, in order to raise an error if \Hdotsfor is used in that column.

;55 \bool_new:N \g_0@_after_col_zero_bool

A kind of false row will be inserted at the end of the array for the construction of the col nodes
(and also to fix the width of the columns when columns-width is used). When this special row will
be created, we will raise the flag \g_0@_row_of_col_done_bool in order to avoid some actions set
in the redefinition of \everycr when the last \cr of the \halign will occur (after that row of col
nodes).

350 \bool_new:N \g_0@_row_of_col_done_bool

It’s possible to use the command \NotEmpty to specify explicitly that a cell must be considered as
non empty by nicematrix (the TikZ nodes are constructed only in the non empty cells).

30 \bool_new:N \g_Q@_not_empty_cell_bool

301 \tl_new:N \1_@@_code_before_tl
302 \bool_new:N \1_@@_code_before_bool

The following token list will contain the code inserted in each cell of the current row (this token list
will be cleared at the beginning of each row).

303 \tl_new:N \g_@@_row_style_tl

The following dimensions will be used when drawing the dotted lines.

304 \dim_new:N \1_@@_x_initial_dim
305 \dim_new:N \1_Q@_y_initial_dim
306 \dim_new:N \1_@@_x_final_dim
507 \dim_new:N \1_@@_y_final_dim

=2 =2 2=

308 \dim_new:
390 \dim_new:
200 \dim_new:
201 \dim_new:
202 \dim_new:
203 \dim_new:

\g_00@_dp_row_zero_dim
\g_0@_ht_row_zero_dim
\g_00@_ht_row_one_dim
\g_00@_dp_ante_last_row_dim
\g_0@_ht_last_row_dim
\g_00@_dp_last_row_dim

Some cells will be declared as “empty” (for example a cell with an instruction \Cdots).

204 \bool_new:N \g_0@_empty_cell_bool

The following dimensions will be used internally to compute the width of the potential “first column”
and “last column”.

205 \dim_new:N \g_@@_width_last_col_dim
206 \dim_new:N \g_00@_width_first_col_dim

14

The following sequence will contain the characteristics of the blocks of the array, specified by the
command \Block. Each block is represented by 6 components surrounded by curly braces:
{imin}{jmin}{imax}{jmax3}{options}{contents}.
The variable is global because it will be modified in the cells of the array.

207 \seq_new:N \g_0@_blocks_seq

We also manage a sequence of the positions of the blocks. In that sequence, each block is represented
by only five components: {imin}{jmin}{imax}{jmax}{ name}. A block with the key hvlines won’t
appear in that sequence (otherwise, the lines in that block would not be drawn!).

205 \seq_new:N \g_0@@_pos_of_blocks_seq

In fact, this sequence will also contain the positions of the cells with a \diagbox. The sequence
\g_00@_pos_of_blocks_seq will be used when we will draw the rules (which respect the blocks).

In the \CodeBefore, the value of \g_0@_pos_of_blocks_seq will be the value read in the aux file
from a previous run. However, in the \CodeBefore, the commands \EmptyColumn and \EmptyRow
will write virtual positions of blocks in the following sequence.

200 \seq_new:N \g_00@_future_pos_of_blocks_seq
They will be added to \g_0@_pos_of_blocks_seq after the computation of the “empty corners”.

We will also manage a sequence for the positions of the dotted lines. These dotted lines are created in
the array by \Cdots, \Vdots, \Ddots, etc. However, their positions, that is to say, their extremities,
will be determined only after the construction of the array. In this sequence, each item contains five
components: {imin}{jmin}{imax}{jmax}{ name}.

210 \seq_new:N \g_0@Q@_pos_of_xdots_seq

The sequence \g_0@_pos_of_xdots_seq will be used when we will draw the rules required by the
key hvlines (these rules won’t be drawn within the virtual blocks corresponding to the dotted lines).

The final user may decide to “stroke” a block (using, for example, the key draw=red!15 when using
the command \Block). In that case, the rules specified, for instance, by hvlines must not be drawn
around the block. That’s why we keep the information of all that stroken blocks in the following
sequence.

211 \seq_new:N \g_00@_pos_of_stroken_blocks_seq

If the user has used the key corners, all the cells which are in an (empty) corner will be stored in
the following list. We use a clist instead of a seq because we will frequently search in that list (and
searching in a clist is faster than searching in a seq).

212 \clist_new:N \1_@@_corners_cells_clist

The list of the names of the potential \SubMatrix in the \CodeAfter of an environment. Unfor-
tunately, that list has to be global (we have to use it inside the group for the options of a given
\SubMatrix).

213 \seq_new:N \g_0@_submatrix_names_seq

The following flag will be raised if the key width is used in an environment {NiceTabular} (not in a
command \NiceMatrixOptions). You use it to raise an error when this key is used while no column
X is used.

414 \bool_new:N \1_0@_width_used_bool

The sequence \g_@@_multicolumn_cells_seq will contain the list of the cells of the array where a
command \multicolumn{n}{...}{...} with n > 1 is issued. In \g_0@_multicolumn_sizes_seq,
the “sizes” (that is to say the values of n) correspondent will be stored. These lists will be used for
the creation of the “medium nodes” (if they are created).

215 \seq_new:N \g_0@_multicolumn_cells_seq

216 \seq_new:N \g_00@_multicolumn_sizes_seq

15

By default, the diagonal lines will be parallelized?. There are two types of diagonals lines: the
\Ddots diagonals and the \Iddots diagonals. We have to count both types in order to know whether
a diagonal is the first of its type in the current {NiceArray} environment.

217 \int_new:N \g_0@_ddots_int

215 \int_new:N \g_0@_iddots_int
The dimensions \g_0@_delta_x_one_dim and \g_@@_delta_y_one_dim will contain the A, and A,
of the first \Ddots diagonal. We have to store these values in order to draw the others \Ddots
diagonals parallel to the first one. Similarly \g_0@_delta_x_two_dim and \g_0@@_delta_y_two_dim
are the A, and A, of the first \Iddots diagonal.

210 \dim_new:N \g_0@_delta_x_one_dim

20 \dim_new:N \g_00@_delta_y_one_dim

21 \dim_new:N \g_0@_delta_x_two_dim
> \dim_new:N \g_0@_delta_y_two_dim

42

The following counters will be used when searching the extremities of a dotted line (we need these
counters because of the potential “open” lines in the \SubMatrix—the \SubMatrix in the code-
before).

23 \int_new:
22 \int_new:
425 \int_new:
126 \int_new:

\1_@@_row_min_int
\1_@@_row_max_int
\1_@@_col_min_int
\1_@@_col_max_int

=Z2=2==2=2

\1_@@_initial_i_int
\1_@@_initial_j_int
\1_e@_final_i_int
\1_@@_final_j_int

27 \int_new:N
28 \int_new:N
20 \int_new:N
20 \int_new:N

The following counters will be used when drawing the rules.
21 \int_new:N \1_Q@@_start_int
222 \int_set_eq:NN \1_@@_start_int \c_one_int
233 \int_new:N \1_@@_end_int
44 \int_new:N \1_Q@_local_start_int
235 \int_new:N \1_@@_local_end_int

The following sequence will be used when the command \SubMatrix is used in the \CodeBefore
(and not in the \CodeAfter). It will contain the position of all the sub-matrices specified in the
\CodeBefore. Each sub-matrix is represented by an “object” of the form {i}{j}{k}{l} where i and
j are the number of row and column of the upper-left cell and k and [the number of row and column
of the lower-right cell.

236 \seq_new:N \g_0@_submatrix_seq

We are able to determine the number of columns specified in the preamble (for the environments with
explicit preamble of course and without the potential exterior columns).

«37 \int_new:N \g_0@_static_num_of_col_int

The following parameters correspond to the keys £ill, opacity, draw, tikz, borders, and rounded-
corners of the command \Block.

28 \tl_new:N \1_@@_fill_tl

230 \tl_new:N \1_Q@_opacity_tl

20 \tl_new:N \1_Q@_draw_tl

21 \seq_new:N \1_00_tikz_seq

42 \clist_new:N \1_@@_borders_clist

43 \dim_new:N \1_0@_rounded_corners_dim

2It’s possible to use the option parallelize-diags to disable this parallelization.

16

The last parameter has no direct link with the [empty] corners of the array (which are computed and
taken into account by nicematrix when the key corners is used).

The following dimension corresponds to the key rounded-corners available in an individual envi-
ronment {NiceTabular}. When that key is used, a clipping is applied in the \CodeBefore of the
environment in order to have rounded corners for the potential colored panels.

222 \dim_new:N \1_@@_tab_rounded_corners_dim

The following token list correspond to the key color of the command \Block and also the key color
of the command \RowStyle.

25 \tl_new:N \1_@@_color_t1

In the key tikz of a command \Block or in the argument of a command \TikzEveryCell, the final
user puts a list of tikz keys. But, you have added another key, named offset (which means that an
offset will be used for the frame of the block or the cell). The following parameter corresponds to
that key.

16 \dim_new:N \1_0@_offset_dim

Here is the dimension for the width of the rule when a block (created by \Block) is stroked or when
the key hvlines is used.

47 \dim_new:N \1_@@_line_width_dim

The parameters of the horizontal position of the label of a block. If the user uses the key ¢ or C, the
value is c. If the user uses the key 1 or L, the value is 1. If the user uses the key r or R, the value is
r. If the user has used a capital letter, the boolean \1_@@_hpos_of_block_cap_bool will be raised
(in the second pass of the analyze of the keys of the command \Block).

sz \str_new:N \1_0@_hpos_block_str

20 \str_set:Nn \1_0@_hpos_block_str { c }

250 \bool_new:N \1_@@_hpos_of_block_cap_bool

251 \bool_new:N \1_@@_p_block_bool

If the final user has used the special color “nocolor”, the following flag will be raised.

152 \bool_new:N \1_@@_nocolor_used_bool

For the vertical position, the possible values are c, t, b, T and B (but \1_0@_vpos_block_str will
remain empty if the user doesn’t use a key for the vertical position).

253 \str_new:N \1_0@_vpos_block_str

Used when the key draw-first is used for \Ddots or \Iddots.
452 \bool_new:N \1_@@_draw_first_bool

The following flag corresponds to the keys vlines and hlines of the command \Block (the key
hvlines is the conjunction of both).

155 \bool_new:N \1_@@_vlines_block_bool

456 \bool_new:N \1_@@_hlines_block_bool

The blocks which use the key - will store their content in a box. These boxes are numbered with the
following counter.

257 \int_new:N \g_0@_block_box_int

255 \dim_new:N \1_0@_submatrix_extra_height_dim
250 \dim_new:N \1_@@_submatrix_left_xshift_dim
20 \dim_new:N \1_@@_submatrix_right_xshift_dim
461 \clist_new:N \1_@@_hlines_clist

462 \clist_new:N \1_@@_vlines_clist

463 \clist_new:N \1_@@_submatrix_hlines_clist
462 \clist_new:N \1_@@_submatrix_vlines_clist

The following key is set when the keys hvlines and hvlines-except-borders are used. It’s used
only to change slightly the clipping path set by the key rounded-corners (for a {tabular}).

465 \bool_new:N \1_@@_hvlines_bool

17

The following flag will be used by (for instance) \@@_vline_ii:. When \1_0@_dotted_bool is true,
a dotted line (with our system) will be drawn.

166 \bool_new:N \1_@@_dotted_bool

The following flag will be set to true during the composition of a caption specified (by the key
caption).

267 \bool_new:N \1_0@_in_caption_bool

Variables for the exterior rows and columns

The keys for the exterior rows and columns are first-row, first-col, last-row and last-col.
However, internally, these keys are not coded in a similar way.

470

471

472

473

First row

The integer \1_@@_first_row_int is the number of the first row of the array. The default
value is 1, but, if the option first-row is used, the value will be 0.

\int_new:N \1_@@_first_row_int
\int_set_eq:NN \1_0@_first_row_int \c_one_int

First column

The integer \1_@@_first_col_int is the number of the first column of the array. The default
value is 1, but, if the option first-col is used, the value will be 0.

\int_new:N \1_@@_first_col_int
\int_set_eq:NN \1_@@_first_col_int \c_one_int

Last row

The counter \1_@@_last_row_int is the number of the potential “last row”, as specified by
the key last-row. A value of —2 means that there is no “last row”. A value of —1 means that
there is a “last row” but we don’t know the number of that row (the key last-row has been
used without value and the actual value has not still been read in the aux file).

\int_new:N \1_@@_last_row_int
\int_set:Nn \1_@@_last_row_int { -2 }

If, in an environment like {pNiceArray}, the option last-row is used without value, we will

globally raise the following flag. It will be used to know if we have, after the construction of

the array, to write in the aux file the number of the “last row”.3

\bool_new:N \1_@@_last_row_without_value_bool

Idem for \1_@@_last_col_without_value_bool

\bool_new:N \1_@@_last_col_without_value_bool

3We can’t use \1_@@_last_row_int for this usage because, if nicematrix has read its value from the aux file, the value
of the counter won’t be —1 any longer.

18

e« Last column

For the potential “last column”, we use an integer. A value of —2 means that there is no
last column. A value of —1 means that we are in an environment without preamble (e.g.
{bNiceMatrix}) and there is a last column but we don’t know its value because the user has
used the option last-col without value. A value of 0 means that the option last-col has been
used in an environment with preamble (like {pNiceArray}): in this case, the key was necessary
without argument. The command \NiceMatrixOptions also sets \1_Q@_last_col_int to 0.

476 \int_new:N \1_@@_last_col_int
477 \int_set:Nn \1_@@_last_col_int { -2 }

However, we have also a boolean. Consider the following code:
\begin{pNiceArray}{cc}[last-col]
1&2\\

3& 4
\end{pNiceArray}

In such a code, the “last column” specified by the key last-col is not used. We want to be
able to detect such a situation and we create a boolean for that job.

478 \bool_new:N \g_@@_last_col_found_bool
This boolean is set to false at the end of \@@_pre_array_after_CodeBefore:.
In the last column, we will raise the following flag (it will be used by \OnlyMainNiceMatrix).

479 \bool_new:N \1_0@_in_last_col_bool

Some utilities

s50 \cs_new_protected:Npn \Q@@_cut_on_hyphen:w #1-#2 \qg_stop

481 {
Here, we use \def instead of \t1_set:Nn for efficiency only.
482 \def \1_tmpa_tl { #1 }
483 \def \l_tmpb_tl { #2 }
484 }

The following takes as argument the name of a clist and which should be a list of intervals of
integers. It expands that list, that is to say, it replaces (by a sort of mapcan or flat_map) the interval
by the explicit list of the integers. The second argument is \c@iRow or \c@jCol.

255 \cs_new_protected:Npn \Q@@_expand_clist_hvlines:NN #1 #2

486 {

457 \clist_if_in:NoF #1 { all }

488 {

489 \clist_clear:N \1_tmpa_clist

490 \clist_map_inline:Nn #1

491 {

492 \tl_if_head_eq_meaning:nNTF { ##1 } -
493 {

If we have yet the number of columns or the number of columns (because they have been computed
during a previous run and written on the aux file), we can compute the actual position of the rule
with a negative position.

494 \int_if_zero:nF { #2 }

495 {

496 \clist_put_right:Ne \1_tmpa_clist

497 { \int_eval:n { #2 + (##1) + 1 } }
498 }

499 }

500 {

19

We recall than \t1l_if_in:nnTF is slightly faster than \str_if_in:nnTF.

501 \tl_if in:nnTF { ##1 } { - }
502 { \@@_cut_on_hyphen:w ##1 \g_stop }
503 {
Here, we use \def instead of \t1_set:Nn for efficiency only.
504 \def \1_tmpa_tl { ##1 }
505 \def \l_tmpb_tl { ##1 }
506 }
507 \int_step_inline:nnn { \1_tmpa_t1l } { \1_tmpb_t1l }
508 { \clist_put_right:Nn \1_tmpa_clist { ####1 } }
509 }
510 ¥
511 \tl_set_eq:NN #1 \1_tmpa_clist
512 }
513 3

The following internal parameters are for:

o \Ldots with both extremities open (and hence also \Hdotsfor in an exterior row;

13}

o when the special character “:” is used in order to put the label of a so-called “dotted line” on
the line, a margin of \c_Q@_innersep_middle_dim will be added around the label.

s \hook_gput_code:nnn { begindocument } { . }

515 {

516 \dim_const:Nn \c_@@_shift_Ldots_last_row_dim { 0.5 em }
517 \dim_const:Nn \c_Q@_innersep_middle_dim { 0.17 em }

518 }

5 The command \tabularnote

Of course, it’s possible to use \tabularnote in the main tabular. But there is also the possibility to
use that command in the caption of the tabular. And the caption may be specified by two means:

e The caption may of course be provided by the command \caption in a floating environment.
Of course, a command \tabularnote in that \caption makes sens only if the \caption is
before the {tabular}.

e It’s also possible to use \tabularnote in the value of the key caption of the {NiceTabular}
when the key caption-above is in force. However, in that case, one must remind that the
caption is composed after the composition of the box which contains the main tabular (that’s
mandatory since that caption must be wrapped with a line width equal to the width of the
tabular). However, we want the labels of the successive tabular notes in the logical order.
That’s why:

— The number of tabular notes present in the caption will be written on the aux file and
available in \g_@@_notes_caption_int.*

— During the composition of the main tabular, the tabular notes will be numbered from
\g_0@_notes_caption_int+1 and the notes will be stored in \g_0@@_notes_seq. Each
component of \g_0@_notes_seq will be a kind of couple of the form : {label}{text
of the tabularnote}. The first component is the optional argument (between square
brackets) of the command \tabularnote (if the optional argument is not used, the value
will be the special marker expressed by \NoValue).

4More precisely, it’s the number of tabular notes which do not use the optional argument of \tabularnote.

20

— During the composition of the caption (value of \1_0@_caption_t1), the tabular notes will
be numbered from 1 to \g_@@_notes_caption_int and the notes themselves will be stored
in \g_@@_notes_in_caption_seq. The structure of the components of that sequence will
be the same as for \g_0@_notes_seq.

— After the composition of the main tabular and after the composition of the caption, the
sequences \g_@@_notes_in_caption_seq and \g_0@_notes_seq will be merged (in that
order) and the notes will be composed.

The LaTeX counter tabularnote will be used to count the tabular notes during the construction of
the array (this counter won’t be used during the composition of the notes at the end of the array).
You use a LaTeX counter because we will use \refstepcounter in order to have the tabular notes
referenceable.

519 \newcounter { tabularnote }

We want to avoid error messages for duplicate labels when the package hyperref is used. That’s why
we will count all the tabular notes of the whole document with \g_0@_tabularnote_int.
520 \int_new:N \g_0@_tabularnote_int
521 \cs_set:Npn \theHtabularnote { \int_use:N \g_0@_tabularnote_int }
> \seq_new:N \g_0@_notes_seq
s \seq_new:N \g_0@_notes_in_caption_seq

o

RN

Before the actual tabular notes, it’s possible to put a text specified by the key tabularnote of the
environment. The token list \g_@@_tabularnote_t1l corresponds to the value of that key.

524 \tl_new:N \g_0@_tabularnote_tl

We prepare the tools for the formatting of the references of the footnotes (in the tabular itself). There
may have several references of footnote at the same point and we have to take into account that point.
55 \seq_new:N \1_@@_notes_labels_seq
52 \newcounter { nicematrix_draft }
527 \cs_new_protected:Npn \@@_notes_format:n #1

528 {

520 \setcounter { nicematrix_draft } { #1 }
530 \@@_notes_style:n { nicematrix_draft }
531 ¥

The following function can be redefined by using the key notes/style.
522 \cs_new:Npn \@@_notes_style:n #1 { \textit { \alph { #1 } } }

The following function can be redefined by using the key notes/label-in-tabular.
533 \cs_new:Npn \Q@@_notes_label_in_tabular:n #1 { \textsuperscript { #1 } }

The following function can be redefined by using the key notes/label-in-1list.
53 \cs_new:Npn \@@_notes_label_in_list:n #1 { \textsuperscript { #1 } }

We define \thetabularnote because it will be used by LaTeX if the user want to reference a tabular
which has been marked by a \label. The TeX group is for the case where the user has put an
instruction such as \color{red} in \@@_notes_style:n.

535 \cs_set:Npn \thetabularnote { { \@@_notes_style:n { tabularnote } } }

The tabular notes will be available for the final user only when enumitem is loaded. Indeed, the
tabular notes will be composed at the end of the array with a list customized by enumitem (a list
tabularnotes in the general case and a list tabularnotesx* if the key para is in force). However,
we can test whether enumitem has been loaded only at the beginning of the document (we want to
allow the user to load enumitem after nicematrix).

535 \hook_gput_code:nnn { begindocument } { . }

537 {

538 \IfPackagelLoadedTF { enumitem }

539 {

21

The type of list tabularnotes will be used to format the tabular notes at the end of the array in the
general case and tabularnotes* will be used if the key para is in force.

540 \newlist { tabularnotes } { enumerate } { 1 }
541 \setlist [tabularnotes]

542 {

543 topsep = \c_zero_dim ,

544 noitemsep ,

545 leftmargin = * ,

546 align = left ,

547 labelsep = \c_zero_dim ,

548 label =

549 \@@_notes_label_in_list:n { \@@_notes_style:n { tabularnotesi } } ,
550 }

551 \newlist { tabularnotes* } { enumeratex } { 1 }
552 \setlist [tabularnotes*]

553 {

554 afterlabel = \nobreak ,

555 itemjoin = \quad ,

556 label =

557 \@@_notes_label_in_list:n { \@@_notes_style:n { tabularnotes*i } }
558 ¥

One must remind that we have allowed a \tabular in the caption and that caption may also be found
in the list of tables (\listoftables). We want the command \tabularnote be no-op during the
composition of that list. That’s why we program \tabularnote to be no-op excepted in a floating
environment or in an environment of nicematrix.

559 \NewDocumentCommand \tabularnote { o m }

560 {

561 \bool_lazy_or:nnT { \cs_if_exist_p:N \@captype } { \1_@@_in_env_bool }
562 {

563 \bool_lazy_and:nnTF { ! \1_@@_tabular_bool } { \1_@@_in_env_bool }
564 { \@@_error:n { tabularnote~forbidden } }
565 {

566 \bool_if:NTF \1_@@_in_caption_bool

567 \@@_tabularnote_caption:nn

568 \@@_tabularnote:nn

560 {#1 {#2 1}

570 }

571 }

572 }

573 }

574 {

575 \NewDocumentCommand \tabularnote { o m }

576 { \@@_err_enumitem_not_loaded: }

577 }

578 }

s79 \cs_new_protected:Npn \@@_err_enumitem_not_loaded:

580 {

581 \@@_error_or_warning:n { enumitem~not~loaded }

582 \cs_gset:Npn \@@_err_enumitem_not_loaded: { }

583 }

s \cs_new_protected:Npn \Q@@_test_first_novalue:nnn #1 #2 #3
sss { \tl_if_novalue:nT { #1 } { #3 } }

For the version in normal conditions, that is to say not in the caption. #1 is the optional argument of
\tabularnote (maybe equal to the special marker expressed by \NoValue) and #2 is the mandatory
argument of \tabularnote.

ss6 \cS_new_protected:Npn \@@_tabularnote:nn #1 #2
587 {

22

You have to see whether the argument of \tabularnote has yet been used as argument of another
\tabularnote in the same tabular. In that case, there will be only one note (for both commands
\tabularnote) at the end of the tabular. We search the argument of our command \tabularnote
in \g_0@_notes_seq. The position in the sequence will be stored in \1_tmpa_int (0 if the text is
not in the sequence yet).

588 \int_zero:N \1_tmpa_int
580 \bool_if:NT \1_@@_notes_detect_duplicates_bool
590 {

We recall that each component of \g_@@_notes_seq is a kind of couple of the form
{label}{text of the tabularnotel.

If the user have used \tabularnote without the optional argument, the label will be the special
marker expressed by \NoValue.

When we will go through the sequence \g_0@_notes_seq, we will count in \1_tmpb_int the notes
without explicit label in order to have the “current” value of the counter \c@tabularnote.

501 \int_zero:N \1_tmpb_int

592 \seq_map_indexed_inline:Nn \g_0@_notes_seq

593 {

504 \@@_test_first_novalue:nnn ##2 { \int_incr:N \1_tmpb_int }
505 \tl_if_eq:nnT { { #1 } { #2 } } { ##2 }

596 {

507 \tl_if_novalue:nTF { #1 }

598 { \int_set_eq:NN \1_tmpa_int \1_tmpb_int }
599 { \int_set:Nn \1_tmpa_int { ##1 } 1}

600 \seq_map_break:

601 }

602 }

603 \int_if_zero:nF { \1_tmpa_int }

604 { \int_add:Nn \1_tmpa_int { \g_0@@_notes_caption_int } }
605 }

606 \int_if_zero:nT { \1_tmpa_int }

607 {

608 \seq_gput_right:Nn \g_Q@@_notes_seq { { #1 } { #2 } }
600 \tl_if_novalue:nT { #1 } { \int_gincr:N \c@tabularnote }
610 }

611 \seq_put_right:Ne \1_0@_notes_labels_seq

612

613 \tl_if_novalue:nTF { #1 }

614 {

615 \@@_notes_format:n

616 {

617 \int_eval:n

618 {

619 \int_if_zero:nTF { \1_tmpa_int }

620 { \c@tabularnote }

621 { \1_tmpa_int }

622 }

623 }

624 }

625 {#1 %}

626 3

627 \peek_meaning:NF \tabularnote

628 {

If the following token is not a \tabularnote, we have finished the sequence of successive commands
\tabularnote and we have to format the labels of these tabular notes (in the array). We compose
those labels in a box \1_tmpa_box because we will do a special construction in order to have this box
in an overlapping position if we are at the end of a cell when \1_@@_hpos_cell_t1 is equal to c or r.
629 \hbox_set:Nn \1_tmpa_box
630 {

23

We remind that it is the command \@@_notes_label_in_tabular:n that will put the labels in a
\textsuperscript.

631 \@@_notes_label_in_tabular:n
632 { \seq_use:Nn \1_0@_notes_labels_seq { , } }
633 }
We want the (last) tabular note referenceable (with the standard command \label).
634 \int_gdecr:N \c@tabularnote
635 \int_set_eq:NN \1_tmpa_int \c@tabularnote

The following line is only to avoid error messages for multipy defined labels when the package hyperref
is used.

636 \int_gincr:N \g_0@_tabularnote_int

637 \refstepcounter { tabularnote }

638 \int_compare:nNnT { \1_tmpa_int } = { \c@tabularnote }
639 { \int_gincr:N \c@tabularnote }

640 \seq_clear:N \1_@@_notes_labels_seq

641 \bool_lazy_or:nnTF

642 { \str_if_eq_p:ee \1_@@_hpos_cell_tl { c } }

643 { \str_if_eq_p:ee \1_0@@_hpos_cell_tl { r } }

644 {

645 \hbox_overlap_right:n { \box_use:N \1_tmpa_box }

If the command \tabularnote is used exactly at the end of the cell, the \unskip (inserted by array?)
will delete the skip we insert now and the label of the footnote will be composed in an overlapping
position (by design).

646 \skip_horizontal:n { \box_wd:N \1_tmpa_box }
647 3

648 { \box_use:N \1_tmpa_box }

649 ¥

650 3

Now the version when the command is used in the key caption. The main difficulty is that the
argument of the command \caption is composed several times. In order to know the number of
commands \tabularnote in the caption, we will consider that there should not be the same tabular
note twice in the caption (in the main tabular, it’s possible). Once we have found a tabular note
which has yet been encountered, we consider that you are in a new composition of the argument of
\caption.

651 \cs_new_protected:Npn \Q@Q_tabularnote_caption:nn #1 #2

652 {

653 \bool_if:NTF \g_0@_caption_finished_bool

654 {

655 \int_compare:nNnT { \c@tabularnote } = { \g_0@_notes_caption_int }
656 { \int_gzero:N \c@tabularnote }

Now, we try to detect duplicate notes in the caption. Be carefull We must put \t1_if_in:NnF and
not \tl_if_in:NnT!

657 \seq_if_in:NnF \g_0@_notes_in_caption_seq { { #1 } { #2 } }
658 { \@@_error:n { Identical~notes~in~caption } }

659 }

660 {

In the following code, we are in the first composition of the caption or at the first \tabularnote of
the second composition.

661 \seq_if_in:NnTF \g_0@_notes_in_caption_seq { { #1 } { #2 } }

662 {
Now, we know that are in the second composition of the caption since we are reading a tabular note
which has yet been read. Now, the value of \g_@@_notes_caption_int won’t change anymore: it’s
the number of uses without optional argument of the command \tabularnote in the caption.

663 \bool_gset_true:N \g_0@_caption_finished_bool

664 \int_gset_eq:NN \g_0@_notes_caption_int \c@tabularnote
665 \int_gzero:N \c@tabularnote

666 }

24

667 { \seq_gput_right:Nn \g_@@_notes_in_caption_seq { { #1 } { #2 } } }

668 }
Now, we will compose the label of the footnote (in the caption). Even if we are not in the first
composition, we have to compose that label!

660 \tl_if_novalue:nT { #1 } { \int_gincr:N \c@tabularnote }
670 \seq_put_right:Ne \1_0@_notes_labels_seq

671 {

672 \tl_if_novalue:nTF { #1 }

673 { \@@_notes_format:n { \int_use:N \c@tabularnote } }
674 { #1 }

675 }

676 \peek_meaning:NF \tabularnote

677 {

678 \@@_notes_label_in_tabular:n { \seq_use:Nn \1_@@_notes_labels_seq { , } }
679 \seq_clear:N \1_@@_notes_labels_seq

680 }

681 }

62 \cs_new_protected:Npn \Q@@_count_novalue_first:nn #1 #2
63 { \tl_if_novalue:nT { #1 } { \int_gincr:N \g_00@_notes_caption_int } }

6 Command for creation of rectangle nodes

The following command should be used in a {pgfpicture}. It creates a rectangle (empty but with
a name).

#1 is the name of the node which will be created; #2 and #3 are the coordinates of one of the corner
of the rectangle; #4 and #5 are the coordinates of the opposite corner.

63« \cs_new_protected:Npn \@Q_pgf_rect_node:nnnnn #1 #2 #3 #4 #5

685 {

686 \begin { pgfscope }

687 \pgfset

688 {

689 inner~sep = \c_zero_dim ,

690 minimum~size = \c_zero_dim
691 }

692 \pgftransformshift { \pgfpoint { 0.5 * (#2 + #4) } { 0.5 = (#3 + #5) } }
693 \pgfnode

604 { rectangle }

605 { center }

696 {

607 \vbox_to_ht:nn

608 { \dim_abs:n { #5 - #3 } }
699 {

700 \vfill

701 \hbox_to_wd:nn { \dim_abs:n { #4 - #2 } } { }
702 T

703 }

704 {#1}

705 {}

706 \end { pgfscope }

707 }

The command \@@_pgf_rect_node:nnn is a variant of \@@_pgf_rect_node:nnnnn: it takes two PGF
points as arguments instead of the four dimensions which are the coordinates.

705 \cs_new_protected:Npn \@@_pgf_rect_node:nnn #1 #2 #3

709 {

710 \begin { pgfscope }

711 \pgf set

712 {

713 inner~sep = \c_zero_dim ,

25

714 minimum~size = \c_zero_dim

715 }

716 \pgftransformshift { \pgfpointscale { 0.5 } { \pgfpointadd { #2 } { #3 } } }
717 \pgfpointdiff { #3 } { #2 }

718 \pgfgetlastxy \1l_tmpa_dim \1_tmpb_dim

719 \pgfnode

720 { rectangle }

71 { center }

722 {

723 \vbox_to_ht:nn

724 { \dim_abs:n \1_tmpb_dim }

725 { \vfill \hbox_to_wd:nn { \dim_abs:n \1_tmpa_dim } { } }
726 }

727 { #1 }

728 {1}

729 \end { pgfscope }

730 3

7 The options

The following parameter corresponds to the keys caption, short-caption and label of the envi-
ronment {NiceTabular}.

731 \tl_new:N \1_Q@_caption_tl

722 \tl_new:N \1_@@_short_caption_tl

733 \tl_new:N \1_0@_label_tl

The following parameter corresponds to the key caption-above of \NiceMatrixOptions. When this
paremeter is true, the captions of the environments {NiceTabular}, specified with the key caption
are put above the tabular (and below elsewhere).

732 \bool_new:N \1_0@_caption_above_bool

By default, the behaviour of \cline is changed in the environments of nicematrix: a \cline spreads
the array by an amount equal to \arrayrulewidth. It’s possible to disable this feature with the key
\1_0@_standard_line_bool.

735 \bool_new:N \1_@@_standard_cline_bool

The following dimensions correspond to the options cell-space-top-limit and co (these parameters
are inspired by the package cellspace).

736 \dim_new:N \1_@@_cell_space_top_limit_dim

737 \dim_new:N \1_0@_cell_space_bottom_limit_dim

The following parameter corresponds to the key xdots/horizontal_labels.
728 \bool_new:N \1_0@_xdots_h_labels_bool

The following dimension is the distance between two dots for the dotted lines (when line-style is
equal to standard, which is the initial value). The initial value is 0.45 em but it will be changed if
the option small is used.

730 \dim_new:N \1_0@_xdots_inter_dim

720 \hook_gput_code:nnn { begindocument } { . }

71 { \dim_set:Nn \1_@@_xdots_inter_dim { 0.45 em } }

26

The unit is em and that’s why we fix the dimension after the preamble.

The following dimension is the distance between a node (in fact an anchor of that node) and a dotted
line (for real dotted lines, the actual distance may, of course, be a bit larger, depending of the exact
position of the dots).

72 \dim_new:N \1_0@_xdots_shorten_start_dim

723 \dim_new:N \1_@@_xdots_shorten_end_dim

724 \hook_gput_code:nnn { begindocument } { . }

745 {

746 \dim_set:Nn \1_@@_xdots_shorten_start_dim { 0.3 em }
747 \dim_set:Nn \1_0@@_xdots_shorten_end_dim { 0.3 em }
748 }

The unit is em and that’s why we fix the dimension after the preamble.

The following dimension is the radius of the dots for the dotted lines (when line-style is equal to
standard, which is the initial value). The initial value is 0.53 pt but it will be changed if the option
small is used.

720 \dim_new:N \1_0@_xdots_radius_dim

750 \hook_gput_code:nnn { begindocument } { . }

751 { \dim_set:Nn \1_0@_xdots_radius_dim { 0.53 pt } }

The unit is em and that’s why we fix the dimension after the preamble.

The token list \1_@@_xdots_line_style_t1 corresponds to the option tikz of the commands \Cdots,
\Ldots, etc. and of the options line-style for the environments and \NiceMatrixOptions. The
constant \c_0@_standard_t1 will be used in some tests.

2 \tl_new:N \1_@@_xdots_line_style_tl

753 \tl_const:Nn \c_@@_standard_tl { standard }

754 \tl_set_eq:NN \1_0@_xdots_line_style_tl \c_0@_standard_tl

The boolean \1_0@_light_syntax_bool corresponds to the option light-syntax and the boolean
\1_@@_light_syntax_expanded_bool correspond to the the option light-syntax-expanded.

755 \bool_new:N \1_0@_light_syntax_bool
56 \bool_new:N \1_@@_light_syntax_expanded_bool

The string \1_0@_baseline_t1 may contain one of the three values t, c or b as in the option of the
environment {array}. However, it may also contain an integer (which represents the number of the
row to which align the array).

757 \tl_new:N \1_@@_baseline_t1l
758 \tl_set:Nn \1_@@_baseline_tl { c }

The following parameter corresponds to the key ampersand-in-blocks
759 \bool_new:N \1_Q@_amp_in_blocks_bool

The flag \1_0@_exterior_arraycolsep_bool corresponds to the option exterior-arraycolsep.
If this option is set, a space equal to \arraycolsep will be put on both sides of an environment
{NiceArray} (as it is done in {array} of array).

760 \bool_new:N \1_0@_exterior_arraycolsep_bool

The flag \1_0@_parallelize_diags_bool controls whether the diagonals are parallelized. The initial
value is true.

761 \bool_new:N \1_Q@_parallelize_diags_bool
62 \bool_set_true:N \1_@@_parallelize_diags_bool

The following parameter correspond to the key corners. The elements of that clist must be within

NW, SW, NE and SE.

763 \clist_new:N \1_@@_corners_clist

27

The flag \1_0@_nullify_dots_bool corresponds to the option nullify-dots. When the flag is
down, the instructions like \vdots are inserted within a \hphantom (and so the constructed matrix
has exactly the same size as a matrix constructed with the classical {matrix} and \ldots, \vdots,
etc.).

764 \bool_new:N \1_0@_nullify_dots_bool

When the key respect-arraystretch is used, the following command will be nullified.

765 \cs_new_protected:Npn \Q@Q_reset_arraystretch: { \def \arraystretch { 1 } }

The following flag will be used when the current options specify that all the columns of the array
must have the same width equal to the largest width of a cell of the array (except the cells of the
potential exterior columns).

766 \bool_new:N \1_@@_auto_columns_width_bool

The following boolean corresponds to the key create-cell-nodes of the keyword \CodeBefore.
When that key is used the “cell nodes” will be created before the \CodeBefore but, of course, they
are always available in the main tabular and after!

767 \bool_new:N \g_0@_create_cell_nodes_bool

The string \1_0@_name_str will contain the optional name of the environment: this name can be
used to access to the TikZ nodes created in the array from outside the environment.

768 \str_new:N \1_@@_name_str

The boolean \1_0@_medium_nodes_bool will be used to indicate whether the “medium nodes” are
created in the array. Idem for the “large nodes”.

760 \bool_new:N \1_@@_medium_nodes_bool
770 \bool_new:N \1_0@_large_nodes_bool

The boolean \1_0@_except_borders_bool will be raised when the key hvlines-except-borders
will be used (but that key has also other effects).

771 \bool_new:N \1_0@_except_borders_bool

The dimension \1_0@_left_margin_dim correspond to the option left-margin. Idem for the right
margin. These parameters are involved in the creation of the “medium nodes” but also in the
placement of the delimiters and the drawing of the horizontal dotted lines (\hdottedline).

772 \dim_new:N \1_0@_left_margin_dim
773 \dim_new:N \1_Q@_right_margin_dim

The dimensions \1_0Q@_extra_left_margin_dim and \1_@@_extra_right_margin_dim correspond
to the options extra-left-margin and extra-right-margin.

774 \dim_new:N \1_0@_extra_left_margin_dim
775 \dim_new:N \1_@@_extra_right_margin_dim

The token list \1_@@_end_of_row_t1 corresponds to the option end-of-row. It specifies the symbol
used to mark the ends of rows when the light syntax is used.

776 \tl_new:N \1_Q@_end_of_row_tl
777 \tl_set:Nn \1_@@_end_of_row_tl { ; }

The following parameter is for the color the dotted lines drawn by \Cdots, \Ldots, \Vdots, \Ddots,
\Iddots and \Hdotsfor but not the dotted lines drawn by \hdottedline and “:”.

775 \tl_new:N \1_@@_xdots_color_tl

The following token list corresponds to the key delimiters/color.
770 \tl_new:N \1_Q@_delimiters_color_tl

28

Sometimes, we want to have several arrays vertically juxtaposed in order to have an alignment of the
columns of these arrays. To acheive this goal, one may wish to use the same width for all the columns
(for example with the option columns-width or the option auto-columns-width of the environment
{NiceMatrixBlock}). However, even if we use the same type of delimiters, the width of the delimiters
may be different from an array to another because the width of the delimiter is fonction of its size.
That’s why we create an option called delimiters/max-width which will give to the delimiters the
width of a delimiter (of the same type) of big size. The following boolean corresponds to this option.

750 \bool_new:N \1_0@@_delimiters_max_width_bool

751 \keys_define:nn { nicematrix / xdots }

782 {

783 nullify .bool_set:N = \1_0@_nullify_dots_bool ,

784 nullify .default:n = true ,

785 brace-shift .dim_set:N = \1_@@_brace_shift_dim ,

786 brace-shift .value_required:n = true ,

787 brace-shift+ .code:n =

788 \dim_add:Nn \1_@@_brace_shift_dim { #1 } ,

789 brace-shift+ .value_required:n = true ,

790 brace-shift~+ .meta:n = { brace-shift+ = #1 } ,

791 Vbrace .bool_set:N = \1_@@_Vbrace_bool ,

792 shorten-start .code:n =

793 \hook_gput_code:nnn { begindocument } { . }

704 { \dim_set:Nn \1_@@_xdots_shorten_start_dim { #1 } } ,
795 shorten-start .value_required:n = true ,

796 shorten-start+ .code:n =

797 \hook_gput_code:nnn { begindocument } { . }

798 { \dim_add:Nn \1_@@_xdots_shorten_start_dim { #1 } } ,
799 shorten-start~+ .meta:n = { shorten-start+ = #1 } ,

800 shorten-start+ .value_required:n = true ,

801 shorten-end .code:n =

802 \hook_gput_code:nnn { begindocument } { . }

803 { \dim_set:Nn \1_@@_xdots_shorten_end_dim { #1 } } ,
804 shorten-end .value_required:n = true ,

805 shorten-end+ .code:n =

806 \hook_gput_code:nnn { begindocument } { . }

807 { \dim_add:Nn \1_@@_xdots_shorten_end_dim { #1 } } ,
808 shorten-end+ .value_required:n = true ,

809 shorten-end~+ .meta:n = { shorten-end+ = #1 } ,

810 shorten .code:n =

811 \hook_gput_code:nnn { begindocument } { . }

812 {

813 \dim_set:Nn \1_@@_xdots_shorten_start_dim { #1 }
814 \dim_set:Nn \1_@@_xdots_shorten_end_dim { #1 }

815 } N

816 shorten .value_required:n = true ,

817 shorten+ .code:n =

818 \hook_gput_code:nnn { begindocument } { . }

819 {

820 \dim_add:Nn \1_@@_xdots_shorten_start_dim { #1 }
821 \dim_add:Nn \1_@@_xdots_shorten_end_dim { #1 }

822 },

823 shorten~+ .meta:n = { shorten+ = #1 } ,

824 horizontal-labels .bool_set:N = \1_0@_xdots_h_labels_bool ,
825 horizontal-labels .default:n = true ,

826 horizontal-label .bool_set:N = \1_0@_xdots_h_labels_bool ,
827 horizontal-label .default:n = true ,

828 line-style .code:n =

829 {

830 \bool_lazy_or:nnTF

831 { \cs_if_exist_p:N \tikzpicture }

832 { \str_if_eq_p:nn { #1 } { standard } }

833 { \tl_set:Nn \1_@@_xdots_line_style_tl { #1 } }

29

834 { \@@_error:n { bad~option~for~line-style } }
835 ¥)

836 line-style .value_required:n = true ,

837 color .tl_set:N = \1_@@_xdots_color_tl ,

838 color .value_required:n = true ,

839 radius .code:n =

840 \hook_gput_code:nnn { begindocument } { . }

841 { \dim_set:Nn \1_0@_xdots_radius_dim { #1 } } ,
842 radius .value_required:n = true ,

843 inter .code:n =

844 \hook_gput_code:nnn { begindocument } { . }

845 { \dim_set:Nn \1_@@_xdots_inter_dim { #1 } } ,
846 radius .value_required:n = true ,

The options down, up and middle are not documented for the final user because he should use the
syntax with =, _and :. We use \t1_put_right:Nn and not \t1_set:Nn (or .t1l_set:N) because we

don’t want a direct use of up=. .. erased by an absent ~{...}.
847 down .code:n = \tl_put_right:Nn \1_0@_xdots_down_tl { #1 } ,
848 up .code:n = \tl_put_right:Nn \1_@@_xdots_up_tl { #1 } ,

849 middle .code:n = \tl_put_right:Nn \1_0@_xdots_middle_tl1 { #1 } ,

The key draw-first, which is meant to be used only with \Ddots and \Iddots, will be caught when
\Ddots or \Iddots is used (during the construction of the array and not when we draw the dotted
lines).

850 draw-first .code:n = \prg_do_nothing: ,

851 unknown .code:n =

852 \@@_unknown_key:nn { nicematrix / xdots } { Unknown~key~for~xdots }
55}

ss¢ \keys_define:nn { nicematrix / rules }

855 {

856 color .tl_set:N = \1_@@_rules_color_tl ,

857 color .value_required:n = true ,

858 width .dim_set:N = \arrayrulewidth ,

850 width .value_required:n = true ,

860 unknown .code:n = \@@_error:n { Unknown~key~for~rules }
861 ¥

First, we define a set of keys “nicematrix / Global” which will be used (with the mechanism of
.inherit:n) by other sets of keys.

s> \keys_define:nn { nicematrix / Global }

863 {

864 caption-above .code:n = \Q@@_error_or_warning:n { caption-above~in~env } ,
865 show-cell-names .code = \@@_error_or_warning:n { show-cell-names } ,
866 color-inside .code:n = \@@_fatal:n { key~color-inside } ,

867 colortbl-like .code:n = \Q@@_fatal:n { key~color-inside } ,

868 ampersand-in-blocks .bool_set:N = \1_@@_amp_in_blocks_bool ,

869 ampersand-in-blocks .default:n = true ,

870 &-in-blocks .meta:n = ampersand-in-blocks ,

871 no-cell-nodes .code:n =

872 \bool_set_true:N \1_@@_no_cell_nodes_bool

873 \cs_set_protected:Npn \Q@@_node_cell:

874 { \set@color \box_use_drop:N \1_0@_cell_box } ,

875 no-cell-nodes .value_forbidden:n = true ,

876 rounded-corners .dim_set:N = \1_Q@@_tab_rounded_corners_dim ,

877 rounded-corners .default:n = 4 pt ,

878 custom-line .code:n = \@@_custom_line:n { #1 } ,

879 rules .code:n = \keys_set:nn { nicematrix / rules } { #1 } ,

880 rules .value_required:n = true ,

881 standard-cline .bool_set:N = \1_@@_standard_cline_bool ,

882 standard-cline .default:n = true ,

883 cell-space-top-limit .dim_set:N = \1_Q@@_cell_space_top_limit_dim ,

30

884

886

887

889

890

892

893

894

895

896

898

899

900

901

902

904

905

906

907

908

909

910

911

912

913

914

915

916

918

919

920

921

936

937

938

939

940

cell-space-top-limit .value_required:n = true ,
cell-space-top-limit+ .code:n =
\dim_add:Nn \1_@@_cell_space_top_limit_dim { #1 } ,
cell-space-top-limit+ .value_required:n = true ,
cell-space-top-limit~+ .meta:n = { cell-space-top-limit+ = #1 } ,
cell-space-bottom-1limit .dim_set:N = \1_0@_cell_space_bottom_limit_dim ,
cell-space-bottom-limit .value_required:n = true ,
cell-space-bottom-limit+ .code:n =
\dim_add:Nn \1_@@_cell_space_bottom_limit_dim { #1 } ,
cell-space-bottom-limit+ .value_required:n = true ,
cell-space-bottom-limit~+ .meta:n = { cell-space-bottom-limit+ = #1 } ,
cell-space-limits .meta:n =
{
cell-space-top-limit = #1 ,
cell-space-bottom-limit = #1 ,
},
cell-space-limits .value_required:n = true ,
cell-space-limits+ .meta:n =
{
cell-space-top-limit += #1 ,
cell-space-bottom-limit += #1 ,
Y,
cell-space-limits+ .value_required:n = true ,
cell-space-limits~+ .meta:n = { cell-space-limits+ = #1 } ,
xdots .code:n = \keys_set:nn { nicematrix / xdots } { #1 } ,
light-syntax .code:n =
\bool_set_true:N \1_@@_light_syntax_bool
\bool_set_false:N \1_0@_light_syntax_expanded_bool ,
light-syntax .value_forbidden:n = true ,
light-syntax-expanded .code:n =
\bool_set_true:N \1_Q@@_light_syntax_bool
\bool_set_true:N \1_@@_light_syntax_expanded_bool ,
light-syntax-expanded .value_forbidden:n = true ,
end-of-row .tl_set:N = \1_@@_end_of_row_tl ,
end-of-row .value_required:n = true ,

first-col .code:n = \int_zero:N \1_@@_first_col_int ,
first-row .code:n = \int_zero:N \1_@@_first_row_int ,
last-row .int_set:N = \1_@@_last_row_int ,

last-row .default:n = -1 ,

code-for-first-col .tl_set:N = \1_@@_code_for_first_col_tl ,
code-for-first-col .value_required:n = true ,
code-for-first-col+ .code:n =

{ \tl_put_right:Nn \1_@@_code_for_first_col_tl { #1 } } ,
code-for-first-col+ .value_required:n = true ,
code-for-first-col~+ .meta:n = { code-for-first-col+ = #1 } ,

code-for-last-col .tl_set:N = \1_@@_code_for_last_col_tl ,
code-for-last-col .value_required:n = true ,
code-for-last-col+ .code:n =

{ \tl_put_right:Nn \1_@@_code_for_last_col_tl { #1 } } ,
code-for-last-col+ .value_required:n = true ,
code-for-last-col~+ .meta:n = { code-for-last-col+ = #1 } ,

code-for-first-row .tl_set:N = \1_@@_code_for_first_row_tl ,
code-for-first-row .value_required:n = true ,
code-for-first-row+ .code:n =

{ \tl_put_right:Nn \1_@@_code_for_first_row_tl { #1 } } ,
code-for-first-row+ .value_required:n = true ,
code-for-first-row~+ .meta:n = { code-for-first-row+ = #1 } ,

code-for-last-row .tl_set:N = \1_@@_code_for_last_row_tl ,

31

047 code-for-last-row .value_required:n = true ,

948 code-for-last-row+ .code:n =

949 { \tl_put_right:Nn \1_@@_code_for_first_col_tl { #1 } } ,
950 code-for-last-row+ .value_required:n = true ,

051 code-for-last-row~+ .meta:n = { code-for-last-row+ = #1 } ,
952

953 hlines .clist_set:N = \1_@@_hlines_clist ,

954 vlines .clist_set:N = \1_@@_vlines_clist ,

955 hlines .default:n = all ,

956 vlines .default:n = all ,

957 vlines-in-sub-matrix .code:n =

958 {

959 \tl_if_single_token:nTF { #1 }

960 {

961 \tl_if_in:NnTF \c_@@_forbidden_letters_tl { #1 }

962 { \@@_error:nn { Forbidden~letter } { #1 } }

We write directly a command for the automata which reads the preamble provided by the final user.
963 { \cs_set_eq:cN { @@ _ #1 : } \@@_make_preamble_vlism:n }

964 }

965 { \@@_error:n { One~letter~allowed } }

966 ¥ B

967 vlines-in-sub-matrix .value_required:n = true ,
968 hvlines .code:n =

969 {

970 \bool_set_true:N \1_0@_hvlines_bool

071 \tl_set_eq:NN \1_@@_vlines_clist \c_@@_all_tl
o72 \tl_set_eq:NN \1_0@_hlines_clist \c_0@_all_tl
973 } N

974 hvlines .value_forbidden:n = true ,

975 hvlines-except-borders .code:n =

976 {

977 \tl_set_eq:NN \1_@@_vlines_clist \c_@@_all_tl

o78 \tl_set_eq:NN \1_0@_hlines_clist \c_0@_all_tl
979 \bool_set_true:N \1_0@_hvlines_bool

980 \bool_set_true:N \1_0@_except_borders_bool

981 } N

982 hvlines-except-borders .value_forbidden:n = true ,

983 parallelize-diags .bool_set:N = \1_0@_parallelize_diags_bool ,

With the option renew-dots, the command \cdots, \1dots, \vdots, \ddots, etc. are redefined and
behave like the commands \Cdots, \Ldots, \Vdots, \Ddots, etc.

984 renew-dots .bool_set:N = \1_@@_renew_dots_bool ,

985 renew—-dots .value_forbidden:n = true ,

986 nullify-dots .bool_set:N = \1_0@_nullify_dots_bool ,

987 create-medium-nodes .bool_set:N = \1_@@_medium_nodes_bool ,
988 create-large-nodes .bool_set:N = \1_0@_large_nodes_bool ,
989 create-extra-nodes .meta:n =

990 { create-medium-nodes , create-large-nodes } ,

991 left-margin .dim_set:N = \1_@@_left_margin_dim ,

992 left-margin .default:n = \arraycolsep ,

993 right-margin .dim_set:N = \1_Q@_right_margin_dim ,

994 right-margin .default:n = \arraycolsep ,

995 margin .meta:n = { left-margin = #1 , right-margin = #1 } ,

996 margin .default:n = \arraycolsep ,
997 extra-left-margin .dim_set:N = \1_Q@_extra_left_margin_dim ,

998 extra-right-margin .dim_set:N = \1_QQ@_extra_right_margin_dim ,
999 extra-margin .meta:n =

1000 { extra-left-margin = #1 , extra-right-margin = #1 } ,

1001 extra-margin .value_required:n = true ,

1002 respect-arraystretch .code:n =

1003 \cs_set_eq:NN \@@_reset_arraystretch: \prg_do_nothing: ,

1004 respect-arraystretch .value_forbidden:n = true ,

32

1005 pgf-node-code .tl_set:N = \1_Q@_pgf_node_code_tl ,
1006 pgf-node-code .value_required:n = true

1007 }

We define a set of keys used by the environments of nicematrix (but not by the command
\NiceMatrixOptions).

wos \keys_define:nn { nicematrix / environments }

1009 {

1010 create-blocks-in-col .code:n = \@@_create_blocks_in_col:n { #1 } ,
1011 create-blocks-in-col .value_required:n = true ,

1012 corners .clist_set:N = \1_@@_corners_clist ,

1013 corners .default:n ={ NWw , SW , NE , SE } ,

1014 code-before .code:n =

1015 {

1016 \tl_if_empty:nF { #1 }

1017 {

1018 \tl_gput_left:Nn \g_0@_pre_code_before_tl { #1 }
1019 \bool_set_true:N \1_@@_code_before_bool

1020 }

1021 T,

1022 code-before .value_required:n = true ,

The options c, t and b of the environment {NiceArray} have the same meaning as the option of the
classical environment {array}.

1023 c .code:n = \tl_set:Nn \1_@@_baseline_tl c ,
1024 t .code:n = \tl_set:Nn \1_@@_baseline_tl t ,
1025 b .code:n = \tl_set:Nn \1_@@_baseline_tl b ,
1026 baseline .tl_set:N = \1_@@_baseline_t1 ,

1027 baseline .value_required:n = true ,

1028 columns-width .code:n =

We use \str_if_eq:nnTF which is slightly faster than \tl_if_eq:nnTF (and is expandable).
\str_if_eq:ee(TF) is faster than \str_if_eq:nn(TF).

1029 \str_if_eq:eeTF { #1 } { auto }

1030 { \bool_set_true:N \1_0@_auto_columns_width_bool }
1031 { \dim_set:Nn \1_@@_columns_width_dim { #1 } } ,
1032 columns-width .value_required:n = true ,

1033 name .code:n =

We test whether we are in the measuring phase of an environment of amsmath (always loaded by
nicematrix) because we want to avoid a fallacious message of duplicate name in this case.

1034 \legacy_if:nF { measuring@ }

1035 {

1036 \str_set:Ne \1_@@_name_str { #1 }

1037 \clist_if_in:NoTF \g_0@_names_clist \1_@@_name_str
1038 { \@@_err_duplicate_names:n { #1 } }

1039 { \clist_gpush:No \g_@@_names_clist \1_@@_name_str }
1040 },

1041 name .value_required:n = true ,

1042 code-after .tl_gset:N = \g_nicematrix_code_after_tl ,
1043 code-after .value_required:n = true ,

1044 ¥

105 \cs_set:Npn \@@_err_duplicate_names:n #1
w6 { \@@_error:nn { Duplicate~name } { #1 } }

1047 \keys_define:nn { nicematrix / notes }

1048 {

1049 para .bool_set:N = \1_0@_notes_para_bool ,

1050 para .default:n = true ,

1051 code-before .tl_set:N = \1_@@_notes_code_before_tl ,
1052 code-before .value_required:n = true ,

1053 code-before+ .code:n =

1054 \tl_put_right:Nn \1_Q@@_note_code_before_tl { #1 } ,

33

1055 code-before+ .value_required:n = true ,

1056 code-before~+ .code:n =

1057 \tl_put_right:Nn \1_@@_note_code_before_tl { #1 } ,

1058 code-before~+ .value_required:n = true ,

1059 code-after .tl_set:N = \1_@@_notes_code_after_tl ,

1060 code-after .value_required:n = true ,

1061 bottomrule .bool_set:N = \1_@@_notes_bottomrule_bool ,
1062 bottomrule .default:n = true ,

1063 style .cs_set:Np = \Q@@_notes_style:n #1 ,

1064 style .value_required:n = true ,

1065 label-in-tabular .cs_set:Np = \Q@_notes_label_in_tabular:n #1 ,
1066 label-in-tabular .value_required:n = true ,

1067 label-in-list .cs_set:Np = \Q@@_notes_label_in_list:n #1 ,
1068 label-in-list .value_required:n = true ,

1069 enumitem-keys .code:n =

1070 {

1071 \hook_gput_code:nnn { begindocument } { . }

1072 {

1073 \IfPackageLoadedT { enumitem }

1074 { \setlist* [tabularnotes] { #1 } }

1075 }

1076 },

1077 enumitem-keys .value_required:n = true ,

1078 enumitem-keys-para .code:n =

1079 {

1080 \hook_gput_code:nnn { begindocument } { . }

1081 {

1082 \IfPackageLoadedT { enumitem }

1083 { \setlist* [tabularnotes*] { #1 } }

1084 }

1085 },

1086 enumitem-keys-para .value_required:n = true ,

1087 detect-duplicates .bool_set:N = \1_0@_notes_detect_duplicates_bool ,
1088 detect-duplicates .default:n = true ,

1089 unknown .code:n =

1090 \@@_unknown_key:nn { nicematrix / notes } { Unknown~key~for-~notes }
1091 }

1002 \keys_define:nn { nicematrix / delimiters }

1093 {

1094 max-width .bool_set:N = \1_00@_delimiters_max_width_bool ,
1005 max-width .default:n = true ,

1006 color .tl_set:N = \1_@@_delimiters_color_tl ,

1007 color .value_required:n = true ,

1098 }

We begin the construction of the major sets of keys (used by the different user commands and
environments).

1000 \keys_define:nn { nicematrix }

1100 {

1101 NiceMatrixOptions .inherit:n =

1102 { nicematrix / Global } ,

1103 NiceMatrixOptions / xdots .inherit:n = nicematrix / xdots ,
1104 NiceMatrixOptions / rules .inherit:n = nicematrix / rules ,
1105 NiceMatrixOptions / notes .inherit:n = nicematrix / notes ,
1106 NiceMatrixOptions / sub-matrix .inherit:n = nicematrix / sub-matrix ,
1107 SubMatrix / rules .inherit:n = nicematrix / rules ,

1108 CodeAfter / xdots .inherit:n = nicematrix / xdots ,

1109 CodeBefore / sub-matrix .inherit:n = nicematrix / sub-matrix ,
1110 CodeAfter / sub-matrix .inherit:n = nicematrix / sub-matrix ,
1111 NiceMatrix .inherit:n =

1112 {

1113 nicematrix / Global ,

34

1114 nicematrix / environments ,

1115 },

1116 NiceMatrix / xdots .inherit:n = nicematrix / xdots ,
1117 NiceMatrix / rules .inherit:n = nicematrix / rules ,
1118 NiceTabular .inherit:n =

1119 {

1120 nicematrix / Global ,

1121 nicematrix / environments

1122 T,

1123 NiceTabular / xdots .inherit:n = nicematrix / xdots ,
1124 NiceTabular / rules .inherit:n = nicematrix / rules ,
1125 NiceTabular / notes .inherit:n = nicematrix / notes ,
1126 NiceArray .inherit:n =

1127 {

1128 nicematrix / Global ,

1129 nicematrix / environments ,

1130 },

1131 NiceArray / xdots .inherit:n = nicematrix / xdots ,
1132 NiceArray / rules .inherit:n = nicematrix / rules ,
1133 pNiceArray .inherit:n =

1134 {

1135 nicematrix / Global ,

1136 nicematrix / environments ,

1137 T,

1138 pNiceArray / xdots .inherit:n = nicematrix / xdots ,
1139 pNiceArray / rules .inherit:n = nicematrix / rules ,
1140 }

We finalise the definition of the set of keys “nicematrix / NiceMatrixOptions” with the options
specific to \NiceMatrixOptions.

1121 \keys_define:nn { nicematrix / NiceMatrixOptions }

1142 {

1143 delimiters / color .tl_set:N = \1_@@_delimiters_color_tl ,

1144 delimiters / color .value_required:n = true ,

1145 delimiters / max-width .bool_set:N = \1_0@_delimiters_max_width_bool ,
1146 delimiters / max-width .default:n = true ,

1147 delimiters .code:n = \keys_set:nn { nicematrix / delimiters } { #1 } ,
1148 delimiters .value_required:n = true ,

1149 width .dim_set:N = \1_@@_width_dim ,

1150 width .value_required:n = true ,

1151 last-col .code:n =

1152 \tl_if_empty:nF { #1 }

1153 { \@@_error:n { last-col~non~empty~for~NiceMatrixOptions } }

1154 \int_zero:N \1_@@_last_col_int ,

1155 small .bool_set:N = \1_@@_small_bool ,

1156 small .value_forbidden:n = true ,

With the option renew-matrix, the environment {matrix} of amsmath and its variants are redefined
to behave like the environment {NiceMatrix} and its variants.

1157 renew-matrix .code:n = \Q@@_renew_matrix: ,
1158 renew-matrix .value_forbidden:n = true ,

The option exterior-arraycolsep will have effect only in {NiceArray} for those who want to have
for {NiceArray} the same behaviour as {array}.

1159 exterior-arraycolsep .bool_set:N = \1_Q@_exterior_arraycolsep_bool ,
If the option columns-width is used, all the columns will have the same width.

In \NiceMatrixOptions, the special value auto is not available.

1160 columns-width .code:n =

35

We use \str_if_eq:nnTF which is slightly faster than \t1_if_eq:nnTF. \str_if_eq:ee(TF) is faster
than \str_if_eq:nn(TF).

1161 \str_if_eq:eeTF { #1 } { auto }

1162 { \@@_error:n { Option~auto~for~columns-width } }

1163 { \dim_set:Nn \1_@@_columns_width_dim { #1 } } ,

Usually, an error is raised when the user tries to give the same name to two distincts environments
of nicematrix (these names are global and not local to the current TeX scope). However, the option
allow-duplicate-names disables this feature.

1164 allow-duplicate-names .code:n =

1165 \cs_set:Nn \@@_err_duplicate_names:n { } ,

1166 allow-duplicate-names .value_forbidden:n = true ,

1167 notes .code:n = \keys_set:nn { nicematrix / notes } { #1 } ,
1168 notes .value_required:n = true ,

1160 sub-matrix .code:n = \keys_set:nn { nicematrix / sub-matrix } { #1 } ,
1170 sub-matrix .value_required:n = true ,

171 matrix / columns-type .tl_set:N = \1_Q@_columns_type_tl ,

1172 matrix / columns-type .value_required:n = true ,

1173 caption-above .bool_set:N = \1_0@@_caption_above_bool ,

1174 caption-above .default:n = true ,

1175 unknown .code:n =

1176 \@@_unknown_key:nn

177 { nicematrix / Global , nicematrix / NiceMatrixOptions }

1178 { Unknown~key~for~NiceMatrixOptions }

\NiceMatrixOptions is the command of the nicematrix package to fix options at the document level.
The scope of these specifications is the current TeX group.

1150 \NewDocumentCommand \NiceMatrixOptions { m }
st { \keys_set:nn { nicematrix / NiceMatrixOptions } { #1 } }

We finalise the definition of the set of keys “nicematrix / NiceMatrix”. That set of keys will be
used by {NiceMatrix}, {pNiceMatrix}, {bNiceMatrix}, etc.

12 \keys_define:nn { nicematrix / NiceMatrix }

1183 {

1184 last-col .code:n = \tl_if_empty:nTF { #1 }

1185 {

1186 \bool_set_true:N \1_@@_last_col_without_value_bool
1187 \int_set:Nn \1_@@_last_col_int { -1 }

1188 }

1180 { \int_set:Nn \1_@@_last_col_int { #1 } } ,

1190 columns-type .tl_set:N = \1_0@_columns_type_tl ,

1101 columns-type .value_required:n = true ,

1102 1 .meta:n = { columns-type =1 } ,

1193 r .meta:n = { columns-type = r } ,

1104 delimiters / color .tl_set:N = \1_@@_delimiters_color_tl ,

1195 delimiters / color .value_required:n = true ,

1196 delimiters / max-width .bool_set:N = \1_0@_delimiters_max_width_bool ,
1107 delimiters / max-width .default:n = true ,

1108 delimiters .code:n = \keys_set:nn { nicematrix / delimiters } { #1 } ,
1199 delimiters .value_required:n = true ,

1200 small .bool_set:N = \1_@@_small_bool ,

1201 small .value_forbidden:n = true ,

1202 unknown .code:n = \@0_error:n { Unknown~key~for~NiceMatrix }

1203 }

We finalise the definition of the set of keys “nicematrix / NiceArray” with the options specific to
{NiceArray}.

20s \keys_define:nn { nicematrix / NiceArray }

1205 {

36

In the environments {NiceArray} and its variants, the option last-col must be used without value
because the number of columns of the array is read from the preamble of the array.

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

small .bool_set:N = \1_@@_small_bool ,
small .value_forbidden:n = true ,
last-col .code:n = \tl_if_empty:nF { #1 }
{ \@@_error:n { last-col~non~empty~for~NiceArray } }
\int_zero:N \1_@@_last_col_int ,
r .code:n = \@Q_error:n { r~or~l~with~preamble } ,
1 .code:n = \@@_error:n { r~or~l~with~preamble } ,
unknown .code:n =
\@@_unknown_key:nn
{ nicematrix / NiceArray , nicematrix / Global , nicematrix / environments}
{ Unknown~key~for~NiceArray }

s \keys_define:nn { nicematrix / pNiceArray }

first-col .code:n = \int_zero:N \1_@@_first_col_int ,
last-col .code:n = \tl_if_empty:nF { #1 }
{ \@@_error:n { last-col~non~empty~for~NiceArray } }
\int_zero:N \1_@@_last_col_int ,
first-row .code:n = \int_zero:N \1_@@_first_row_int ,
delimiters / color .tl_set:N = \1_@@_delimiters_color_tl ,
delimiters / color .value_required:n = true ,
delimiters / max-width .bool_set:N = \1_Q@_delimiters_max_width_bool ,
delimiters / max-width .default:n = true ,
delimiters .code:n = \keys_set:nn { nicematrix / delimiters } { #1 } ,
delimiters .value_required:n = true ,
small .bool_set:N = \1_@@_small_bool ,
small .value_forbidden:n = true ,
r .code:n = \@@_error:n { r~or~l~with~preamble } ,
1 .code:n = \@@_error:n { r~or~l~with~preamble } ,
unknown .code:n =
\@@_unknown_key:nn
{ nicematrix / pNiceArray , nicematrix / Global , nicematrix / environments }
{ Unknown~key~for~NiceMatrix }

We finalise the definition of the set of keys “nicematrix / NiceTabular” with the options specific
to {NiceTabular}.

1220 \keys_define:nn { nicematrix / NiceTabular }

1241

The dimension width will be used if at least a column of type X is used. If there is no column of type
X, an error will be raised.

1252

1253

1254

1255

1256

1257

1258

1259

width .code:n = \dim_set:Nn \1_@@_width_dim { #1 }
\bool_set_true:N \1_@@_width_used_bool ,
width .value_required:n = true ,
notes .code:n = \keys_set:nn { nicematrix / notes } { #1 } ,
tabularnote .tl_gset:N = \g_Q@_tabularnote_tl ,
tabularnote .value_required:n = true ,
caption .tl_set:N = \1_Q@_caption_tl ,
caption .value_required:n = true ,
short-caption .tl_set:N = \1_@@_short_caption_tl ,
short-caption .value_required:n = true ,
label .tl_set:N = \1_@@_label_t1 ,
label .value_required:n = true ,
last-col .code:n = \tl_if_empty:nF { #1 }
{ \@@_error:n { last-col~non~empty~for~NiceArray } }
\int_zero:N \1_@@_last_col_int ,
r .code:n = \@Q_error:n { r~or~l~with~preamble } ,
1 .code:n = \@@_error:n { r~or~l~with~preamble } ,
unknown .code:n =

37

1260 \@@_unknown_key:nn
1261 { nicematrix / NiceTabular , nicematrix / Global , nicematrix / environments }
1262 { Unknown~key~for~NiceTabular }

The \CodeAfter (inserted with the key code-after or after the keyword \CodeAfter) may always
begin with a list of pairs key=value between square brackets. Here is the corresponding set of keys.
We must put the following instructions after the :

CodeAfter / sub-matrix .inherit:n = nicematrix / sub-matrix

1264 \keys_define:nn { nicematrix / CodeAfter }

1265 {

1266 delimiters / color .tl_set:N = \1_@@_delimiters_color_tl ,

1267 delimiters / color .value_required:n = true ,

1268 rules .code:n = \keys_set:nn { nicematrix / rules } { #1 } ,

1269 rules .value_required:n = true ,

1270 xdots .code:n = \keys_set:nn { nicematrix / xdots } { #1 } ,

1271 sub-matrix .code:n = \keys_set:nn { nicematrix / sub-matrix } { #1 } ,
1272 sub-matrix .value_required:n = true ,

1273 unknown .code:n = \@0_error:n { Unknown~key~for~CodeAfter }

1274 }

8 Important code used by {NiceArrayWithDelims}

The pseudo-environment \@@_cell_begin:—\@@_cell_end: will be used to format the cells of the
array. In the code, the affectations are global because this pseudo-environment will be used in the
cells of a \halign (via an environment {array}).

1275 \cs_new_protected:Npn \@@_cell_begin:

1276 {
\g_00_cell_after_hook_tl will be set during the composition of the box \1_0@_cell_box and will
be used after the composition in order to modify that box.

1277 \tl_gclear:N \g_0@_cell_after_hook_tl
At the beginning of the cell, we link \CodeAfter to a command which do begin with \\ (whereas the
standard version of \CodeAfter does not).

1278 \cs_set_eq:NN \CodeAfter \0Q@_CodeAfter_i:
The following link only to have a better error message when \Hline is used in another place than
the beginning of a line.

1279 \cs_set_eq:NN \Hline \@@_Hline_in_cell:
We increment the LaTeX counter jCol, which is the counter of the columns.

1280 \int_gincr:N \c@jCol
Now, we increment the counter of the rows. We don’t do this incrementation in the \everycr
because some packages, like arydshin, create special rows in the \halign that we don’t want to take

into account.
Here is a version with the standard syntax of L3.

\int_compare:nNnT { \c@jCol } = { 1 }
{ \int_compare:nNnT \1_0@_first_col_int = { 1 } { \@@_begin_of_row: } }

We will use a version a little more efficient.

1281 \if_int_compare:w \c@jCol = \c_one_int

1282 \if _int_compare:w \1_0@_first_col_int = \c_one_int
1283 \@@_begin_of_row:

1284 \fi:

1285 \fi

38

The content of the cell is composed in the box \1_@@_cell_box. The \hbox_set_end:

to this \hbox_set:Nw is in the \@@_cell_end:.

1286 \hbox_set:Nw \1_@@_cell_box
The following command is nullified in the tabulars.
1287 \@@_tuning_not_tabular_begin:
1288 \Q@@_tuning_first_row:
1289 \@@_tuning_last_row:
1290 \g_00_row_style_tl
1291 ¥

The following command will be nullified unless there is a first row.
Here is a version with the standard syntax of L3.

\cs_new_protected:Npn \@@_tuning_ first_row:

{
\int_if_zero:nTF { \c@iRow }
{
\int_if_zero:nF { \c@jCol }
{
\1_@@_code_for_first_row_t1l
\xglobal \colorlet { nicematrix-first-row } { . }
}
}
{ \cs_set_eq:NN \@@_tuning_first_row: \prg_do_nothing: }
}

We will use a version a little more efficient.

1202 \cs_new_protected:Npn \@@_tuning first_row:

1293 {

1204 \if_int_compare:w \c@iRow = \c_zero_int

1205 \if_int_compare:w \c@jCol > \c_zero_int

1206 \1_@@_code_for_first_row_tl

1207 \xglobal \colorlet { nicematrix-first-row } { . }
1298 \fi:

1200 \else:

1300 \cs_set_eq:NN \Q@Q_tuning_first_row: \prg_do_nothing:
1301 \fi:
1302 }

corresponding

The following command will be nullified unless there is a last row and we know its value (ie:

\1_0@_lat_row_int > 0).

\cs_new_protected:Npn \Q@@_tuning_last_row:

{
\int_compare:nNnT { \c@iRow } = { \1_0@_last_row_int }
{
\1_@@_code_for_last_row_tl
\xglobal \colorlet { nicematrix-last-row } { . }
¥
}

We will use a version a little more efficient.

1303 \cs_new_protected:Npn \QQ_tuning_last_row:

1304 {

1305 \if _int_compare:w \c@iRow = \1_0@_last_row_int

1306 \1_@@_code_for_last_row_tl

1307 \xglobal \colorlet { nicematrix-last-row } { . }
1308 \fi:

1309 3

A different value will be provided to the following commands when the key small is in force.

1310 \cs_set_eq:NN \@@_tuning_key_small: \prg_do_nothing:

39

The following commands are nullified in the tabulars.

1311 \cs_set_nopar:Npn \@@_tuning not_tabular_begin:

2 o
1313 \m@th
1314 $ %8
A special value is provided by the following control sequence when the key small is in force.
1315 \@@_tuning_key_small:
1316 }

1317 \cs_set:Nn \@@_tuning_not_tabular_end: { $ } % $

The following macro \@@_begin_of _row is usually used in the cell number 1 of the row. However,
when the key first-col is used, \@@_begin_of_row is executed in the cell number 0 of the row.

1318 \cs_new_protected:Npn \@Q@_begin_of_row:

1319 {

1320 \int_gincr:N \c@iRow

1321 \dim_gset_eq:NN \g_0@_dp_ante_last_row_dim \g_0@_dp_last_row_dim
1322 \dim_gset:Nn \g_0@_dp_last_row_dim { \box_dp:N \@arstrutbox }
1323 \dim_gset:Nn \g_0@_ht_last_row_dim { \box_ht:N \@arstrutbox }
1324 \pgfpicture

1325 \pgfrememberpicturepositiononpagetrue

1326 \pgfcoordinate

1327 { \@@_env: - row - \int_use:N \c@iRow - base }

1328 { \pgfpoint \c_zero_dim { 0.5 \arrayrulewidth } }

1329 \str_if_empty:NF \1_Q0@_name_str

1330 {

1331 \pgfnodealias

1332 { \1_@@_name_str - row - \int_use:N \c@iRow - base }
1333 { \@@_env: - row - \int_use:N \c@iRow - base }

1334 }

1335 \endpgfpicture

1336 }

Remark: If the key create-cell-nodes of the \CodeBefore is used, then we will add some lines to
that command.

The following code is used in each cell of the array. It actualises quantities that, at the end of the
array, will give information about the vertical dimension of the two first rows and the two last rows.
If the user uses the last-row, some lines of code will be dynamically added to this command.

Here is a version with the standard syntax of L3.

\cs_new_protected:Npn \@@_update_for_first_and_last_row:

{
\int_if_zero:nTF { \c@iRow }
{
\dim_compare:nNnT
{ \box_dp:N \1_@0@_cell_box } > { \g_00@_dp_row_zero_dim }
{ \dim_gset:Nn \g_0@_dp_row_zero_dim { \box_dp:N \1_0@_cell_box } }
\dim_compare:nNnT
{ \box_ht:N \1_@0@_cell_box } > { \g_0@_ht_row_zero_dim }
{ \dim_gset:Nn \g_0@_ht_row_zero_dim { \box_ht:N \1_0@_cell_box } }
¥
{
\int_compare:nNnT { \c@iRow } = { 1 }
{
\dim_compare:nNnT
{ \box_ht:N \1_@@_cell_box } > { \g_Q@@_ht_row_one_dim }
{ \dim_gset:Nn \g_0@_ht_row_one_dim { \box_ht:N \1_0@_cell_box } }
}
}
}

40

We will use a version a little more efficient.

1337 \cs_new_protected:Npn \Q@_update_for_first_and_last_row:

1338 {

1339 \if_int_compare:w \c@iRow = \c_zero_int

1340 \if _dim:w \box_dp:N \1_@@_cell_box > \g_0@_dp_row_zero_dim
1341 \global \g_0@@_dp_row_zero_dim = \box_dp:N \1_00@_cell_box
1342 \fi:

1343 \if _dim:w \box_ht:N \1_Q@_cell_box > \g_0@_ht_row_zero_dim
1344 \global \g_0@@_ht_row_zero_dim = \box_ht:N \1_00@_cell_box
1345 \fi:

1346 \else:

1347 \if _int_compare:w \cQ@iRow = \c_one_int

1348 \if_dim:w \box_ht:N \1_@@_cell_box > \g_0@_ht_row_one_dim
1349 \global \g_@@_ht_row_one_dim = \box_ht:N \1_@@_cell_box
1350 \fi:

1351 \fi:

1352 \fi:

1353 ¥

1354 \cs_new_protected:Npn \@@_rotate_cell_box:

1355 {

1356 \box_rotate:Nn \1_@@_cell_box { 90 }
1357 \bool_if:NTF \g_@@_rotate_c_bool

1358 {

1359 \hbox_set:Nn \1_@@_cell_box

1360 {

1361 \m@th

1362 $%$

1363 \vcenter { \box_use:N \1_@@_cell_box }
1364 $ % $

1365 3

1366 }

1367 {

1368 \int_compare:nNnT { \c@iRow } = { \1_@@_last_row_int }

1369 {

1370 \vbox_set_top:Nn \1_0@_cell_box
1371 {

1372 \vbox_to_zero:n { }

1373 \skip_vertical:n { - \box_ht:N \@arstrutbox + 0.8 ex }
1374 \box_use:N \1_0@@_cell_box
1375 }

1376 }

1377 ¥

1378 \bool_gset_false:N \g_0@_rotate_bool
1379 \bool_gset_false:N \g_0@_rotate_c_bool
1380 3

Here is a version of the command \@@_adjust_size_box: with the syntax of standard L3.

\cs_new_protected:Npn \Q@@_adjust_size_box:
{
\dim_compare:nNnT { \g_0@_blocks_wd_dim } > { \c_zero_dim }
{
\dim_compare:nNnT \g_@@_blocks_wd_dim > { \box_wd:N \1_0@_cell_box }
{ \box_set_wd:Nn \1_0@_cell_box \g_0@_blocks_wd_dim }
\dim_gzero:N \g_0@_blocks_wd_dim
}
\dim_compare:nNnT { \g_0@_blocks_dp_dim } > { \c_zero_dim }
{
\dim_compare:nNnT \g_0@_blocks_dp_dim > { \box_dp:N \1_0@_cell_box }
{ \box_set_dp:Nn \1_@@_cell_box \g_@@_blocks_dp_dim }
\dim_gzero:N \g_0@_blocks_dp_dim

41

}
\dim_compare:nNnT { \g_0@_blocks_ht_dim } > { \c_zero_dim }
{
\dim_compare:nNnT \g_0@_blocks_ht_dim > { \box_ht:N \1_@@_cell_box }
{ \box_set_ht:Nn \1_0@_cell_box \g_0@_blocks_ht_dim }
\dim_gzero:N \g_0@_blocks_ht_dim
}
}

Here is a version slightly more efficient.

1351 \cs_set_protected:Npn \@Q@_adjust_size_box:

1382 {
1383 \if_dim:w \g_@@_blocks_wd_dim > \c_zero_dim
1384 \if_dim:w \g_00@_blocks_wd_dim > \box_wd:N \1_0@_cell_box
1385 \box_wd:N \1_00@_cell_box = \g_00@_blocks_wd_dim
1386 \fi:
1387 \global \g_0@_blocks_wd_dim = \c_zero_dim
1388 \fi:
1389 \if_dim:w \g_@@_blocks_dp_dim > \c_zero_dim
1300 \if_dim:w \g_0@_blocks_dp_dim > \box_dp:N \1_0@_cell_box
1301 \box_dp:N \1_00@_cell_box = \g_00@_blocks_dp_dim
1392 \fi
1303 \global \g_0@_blocks_dp_dim = \c_zero_dim
1304 \fi:
1395 \if_dim:w \g_@@_blocks_ht_dim > \c_zero_dim
1306 \if_dim:w \g_0@_blocks_ht_dim > \box_ht:N \1_0@_cell_box
1307 \box_ht:N \1_00@_cell_box = \g_00@_blocks_ht_dim
1398 \fi:
1300 \global \g_0@_blocks_ht_dim = \c_zero_dim
1400 \fi:
1401 ¥
102 \cs_new_protected:Npn \@@_cell_end:
1403 {
The following command is nullified in the tabulars.
1404 \@@_tuning_not_tabular_end:
1405 \hbox_set_end:
1406 \@@_cell_end_i:
1407 ¥

\cs_new_protected:Npn \@@_cell_end_i:
{
\g_00_cell_after_hook_tl
\bool_if:NT \g_Q@_rotate_bool { \@@_rotate_cell_box: }
\@@_adjust_size_box:
\box_set_ht:Nn \1_@@_cell_box
{ \box_ht:N \1_0@_cell_box + \1_0@_cell_space_top_limit_dim }
\box_set_dp:Nn \1_@@_cell_box
{ \box_dp:N \1_@@_cell_box + \1_0@@_cell_space_bottom_limit_dim }
\@@_update_max_cell_width:
\@@_update_for_first_and_last_row:
\bool_if:NTF \g_0@_empty_cell_bool
{ \box_use_drop:N \1_@@_cell_box }
{
\bool_if:NTF \g_0@@_not_empty_cell_bool
{ \@@_print_node_cell: }
{
\dim_compare:nNnTF { \box_wd:N \1_@@_cell_box } > { \c_zero_dim }
{ \@@_print_node_cell: }
{ \box_use_drop:N \1_0@_cell_box }

}

\int_compare:nNnT { \c@jCol } > { \g_@@_col_total_int }
{ \int_gset_eq:NN \g_00@_col_total_int \c@jCol }

42

\bool_gset_false:N \g_0@_empty_cell_bool
\bool_gset_false:N \g_0@_not_empty_cell_bool
}

Here is a version slightly more efficient.
1oz \cs_new_protected:Npn \Q@_cell_end_i:
1409 {

The token list \g_0@_cell_after_hook_tl is (potentially) set during the composition of the box
\1_0@_cell_box and is used now after the composition in order to modify that box.

1410 \g_00_cell_after_hook_tl

1411 \bool_if:NT \g_0@_rotate_bool { \@@_rotate_cell_box: }

1412 \@@_adjust_size_box:

1413 \box_set_ht:Nn \1_@@_cell_box

1414 { \box_ht:N \1_@@_cell_box + \1_0@_cell_space_top_limit_dim }
1415 \box_set_dp:Nn \1_0@_cell_box

1416 { \box_dp:N \1_@@_cell_box + \1_Q@@_cell_space_bottom_limit_dim }

We want to compute in \g_00@_max_cell_width_dim the width of the widest cell of the array (except
the cells of the “first column” and the “last column”).

1417 \@@_update_max_cell_width:
The following computations are for the “first row” and the “last row”.

1418 \@@_update_for_first_and_last_row:

If the cell is empty, or may be considered as if, we must not create the PGF node, for two reasons:
e it’s a waste of time since such a node would be rather pointless;

e we test the existence of these nodes in order to determine whether a cell is empty when we
search the extremities of a dotted line.

However, it’s difficult to determine whether a cell is empty. Up to now we use the following technique:

o for the columuns of type p, m, b, V (of varwidth) or X, we test whether the cell is syntactically
empty with \@@_test_if_empty: and \Q@@_test_if_empty_for_S:

o if the width of the box \1_0@_cell_box (created with the content of the cell) is equal to zero,
we consider the cell as empty (however, this is not perfect since the user may have used a \rlap,
\1lap, \clap or a \mathclap of mathtools).

e the cells with a command \Ldots or \Cdots, \Vdots, etc., should also be considered as empty;
if nullify-dots is in force, there would be nothing to do (in this case the previous commands
only write an instruction in a kind of \CodeAfter); however, if nullify-dots is not in force, a
phantom of \1dots, \cdots, \vdots is inserted and its width is not equal to zero; that’s why
these commands raise a boolean \g_0@_empty_cell_bool and we begin by testing this boolean.

1419 \bool_if:NTF \g_0@_empty_cell_bool

1420 { \box_use_drop:N \1_0@_cell_box }

1421 {

1422 \bool_if:NTF \g_@@_not_empty_cell_bool

1423 { \@@_print_node_cell: }

1424 {

1425 \if _dim:w \box_wd:N \1_@@_cell_box > \c_zero_dim
1426 \@@_print_node_cell:

1427 \else:

1428 \box_use_drop:N \1_0@@_cell_box

1429 \f i:

1430 }

1431 }

1432 \if_int_compare:w \c@jCol > \g_@@_col_total_int

1433 \global \g_0@_col_total_int = \c@jCol

1434 \fi:

1435 \global \let \g_0@_empty_cell_bool \c_false_bool

1436 \global \let \g_0@_not_empty_cell_bool \c_false_bool
1437 3

43

The following command will be nullified in our redefinition of \multicolumn.

\cs_new_protected:Npn \Q@@_update_max_cell_width:
{
\dim_gset:Nn \g_0@_max_cell_width_dim
{ \dim_max:nn { \g_0@_max_cell_width_dim } { \box_wd:N \1_@@_cell_box } }
}

We will use the following version, slightly more efficient:

13 \cs_new_protected:Npn \@@_update_max_cell_width:

1439 {

1440 \if_dim:w \box_wd:N \1_0@_cell_box > \g_Q0_max_cell_width_dim
1441 \global \g_0@_max_cell_width_dim = \box_wd:N \1_0@_cell_box
1442 \fi:

1443 3

The following variant of \@@_cell_end: is only for the columns of type w{s}{...} or W{s}{...}
(which use the horizontal alignment key s of \makebox).

s \cs_new_protected:Npn \@Q_cell_end_for_w_s:

1445 {

1446 \@@_math_toggle:

1447 \hbox_set_end:

1448 \bool_if:NF \g_Q@_rotate_bool

1449 {

1450 \hbox_set:Nn \1_@@_cell_box

1451 {

1452 \makebox [\1_@@_col_width_dim] [s]
1453 { \hbox_unpack_drop:N \1_@@_cell_box }
1454 }

1455 }

1456 \@@_cell_end_i:

1457 }

1458 \pgf set

1459 {

1460 nicematrix / cell-node /.style =
1461 {

1462 inner~sep = \c_zero_dim ,

1463 minimum~width = \c_zero_dim
1464 }

1465 ¥

In the cells of a column of type S (of siunitx), we have to wrap the command \@@_node_cell: inside
a command of siunitx to inforce the correct horizontal alignment. In the cells of the columns with
other columns type, we don’t have to do that job. That’s why we create a socket with its default
plug (identity) and a plug when we have to do the wrapping.

16 \socket_new:nn { nicematrix / siunitx-wrap } { 1 }
uer \socket_new_plug:nnn { nicematrix / siunitx-wrap } { active }

1468 {

1469 \use:c

1470 {

1471 __siunitx_table_align_

1472 \bool_if:NTF \1__siunitx_table_text_bool
1473 { \1__siunitx_table_align_text_tl }
1474 { \1__siunitx_table_align_number_tl }
1475 n

1476 }

1477 { #1 }

147 3

44

Now, a socket which deal with create-cell-nodes of the keyword \CodeBefore. When that key is
used the “cell nodes” will be created before the \CodeBefore but, of course, they are always available
in the main tabular and after!

1479 \socket_new:nn { nicematrix / create-cell-nodes } { 1 }

uso \socket_new_plug:nnn { nicematrix / create-cell-nodes } { active }

1481 {

1482 \box_move_up:nn { \box_ht:N \1_0@_cell_box }

1483 \hbox:n

1484 {

1485 \pgfsys@markposition

1486 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol - NW }
1487 }

1488 #1

1489 \box_move_down:nn { \box_dp:N \1_0@_cell_box }

1490 \thX n

1491 {

1492 \pgfsys@markposition

1493 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol - SE }
1494 }

495 3

195 \cs_new_protected:Npn \Q@@_print_node_cell:

1497 {

1498 \socket_use:nn { nicematrix / siunitx-wrap }

1499 { \socket_use:nn { nicematrix / create-cell-nodes } { \@@_node_cell: } }
1500 3

The following command creates the PGF name of the node with, of course, \1_@@_cell_box as the
content.

1501 \cs_new_protected:Npn \Q@@_node_cell:

1502 {

1503 \pgfpicture

1504 \pgfsetbaseline \c_zero_dim

1505 \pgfrememberpicturepositiononpagetrue
1506 \pgfset { nicematrix / cell-node }
1507 \pgfnode

1508 { rectangle }

1500 { base }

1510 {

The following instruction \set@color has been added on 2022/10/06. It’s necessary only with Xe-
LaTeX and not with the other engines (we don’t know why).

1511 \sys_if_engine_xetex:T { \set@color }

1512 \box_use:N \1_0@@_cell_box

1513 }

1514 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol }

1515 { \1_@0@_pgf_node_code_tl }

1516 \str_if_empty:NF \1_@@_name_str

1517 {

1518 \pgfnodealias

1519 { \1_@@_name_str - \int_use:N \c@iRow - \int_use:N \c@jCol }
1520 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol }
1521 }

1522 \endpgfpicture

1523 }

The second argument of the following command \@@_instruction_of_type:nnn defined below is
the type of the instruction (Cdots, Vdots, Ddots, etc.). The third argument is the list of options.
This command writes in the corresponding \g_0@_type_lines_t1 the instruction which will actually
draw the line after the construction of the matrix.

45

For example, for the following matrix,

\begin{pNiceMatrix}

1&2&3¢&4\\ 1 2 3 4
5 & \Cdots & & 6 \\ 5 6
7 & \Cdots[color=red] T
\end{pNiceMatrix}

the content of \g_0@_Cdots_lines_t1 will be:

\@@ _draw_Cdots:nnn {2}{2}{}
\@@_draw_Cdots:nnn {3}{2}{color=red}

The first argument is a boolean which indicates whether you must put the instruction on the left
or on the right on the list of instructions (with consequences for the parallelisation of the diagonal
lines).

1524 \cs_new_protected:Npn \@Q_instruction_of_type:nnn #1 #2 #3

1525 {

1526 \bool_if:nTF { #1 } { \tl_gput_left:ce } { \tl_gput_right:ce }
1527 { g_0@_ #2 _ lines _ tl }

1528 {

1520 \use:c { @@ _ draw _ #2 : nnn }

1530 { \int_use:N \c@iRow }

1531 { \int_use:N \c@jCol }

1532 { \exp_not:n { #3 } }

1533 }

1534 3

1535 \cs_new_protected:Npn \@@_array:n

1536 {

1537 \dim_set:Nn \col@sep

1538 { \bool_if:NTF \1_@@_tabular_bool { \tabcolsep } { \arraycolsep } }

1539 \dim_compare:nNnTF { \1_@@_tabular_width_dim } = { \c_zero_dim }

1540 { \def \@halignto {3}

1541 { \cs_set_nopar:Npe \@halignto { to \dim_use:N \1_0@_tabular_width_dim } }

It colortbl is loaded, \@tabarray has been redefined to incorporate \CT@start.

1542 \@tabarray
\1_@@_baseline_tl may have the value t, ¢ or b. However, if the value is b, we compose
the \array (of array) with the option t and the right translation will be done further. Re-
mark that \str_if_eq:eeTF is fully expandable and we need something fully expandable here.
\str_if_eq:ee(TF) is faster than \str_if_eq:nn(TF).

1543 [\str_if_eq:eeTF { \1_@0_baseline_ t1 } { c} {c} {t }]

1544 }

1525 \cs_generate_variant:Nn \@Q_array:n { o }

We keep in memory the standard version of \ar@ialign because we will redefine \ar@ialign in the
environment {NiceArrayWithDelims} but restore the standard version for use in the cells of the
array. However, it seems that RevTeX goes on with a redefinition of array which uses \ialign.

156 \bool_if:NTF \c_@@_revtex_bool
1527 { \cs_new_eq:NN \@@_old_ialign: \ialign }

We use here a \cs_set_eq:cN instead of a \cs_set_eq:NN in order to avoid a message when
explcheck is used on nicematrix.sty.

1 { \cs_new_eq:cN { @@_old_ar@ialign: } \ar@ialign }
The following command creates a row node (and not a row of nodes!).

1520 \cs_new_protected:Npn \Q@@_create_row_node:

1550 {

1551 \int_compare:nNnT { \c@iRow } > { \g_0@@_last_row_node_int }
1552 {

1553 \int_gset_eq:NN \g_0@_last_row_node_int \c@iRow

1554 \@@_create_row_node_i:

1555 }

1556 ¥

46

1557 \cs_new_protected:Npn \@Q_create_row_node_i:

1558 {
The \hbox:n (or \hbox) is mandatory.
1559 \hbox
1560 {
1561 \bool_if:NT \1_@@_code_before_bool
1562 {
1563 \vtop
1564 {
1565 \skip_vertical:N 0.5\arrayrulewidth
1566 \pgfsys@markposition
1567 { \@@_env: - row - \int_eval:n { \c@iRow + 1 } }
1568 \skip_vertical:N -0.5\arrayrulewidth
1569 }
1570 ¥
1571 \pgfpicture
1572 \pgfrememberpicturepositiononpagetrue
1573 \pgfcoordinate { \@@_env: - row - \int_eval:n { \c@iRow + 1 } }
1574 { \pgfpoint \c_zero_dim { - 0.5 \arrayrulewidth } }
1575 \str_if_empty:NF \1_Q@_name_str
1576 {
1577 \pgfnodealias
1578 { \1_@@_name_str - row - \int_eval:n { \c@iRow + 1 } }
1579 { \@@_env: - row - \int_eval:n { \c@iRow + 1 } }
1580 }
1581 \endpgfpicture
1582 }
1583 }

1585 {

1586 \tbl_if_row_was_started:T { \UseTaggingSocket { tbl / row / end } }
1587 \tbl_update_cell_data_for_next_row:

1588 \int_gzero:N \c@jCol

1589 \bool_gset_false:N \g_0@_after_col_zero_bool

1500 \bool_if:NF \g_@@_row_of_col_done_bool

1591 {

1502 \@@_create_row_node:

We don’t draw now the rules of the key hlines (or hvlines) but we reserve the vertical space for
these rules (the rules will be drawn by PGF).

1503 \clist_if_empty:NF \1_Q@@_hlines_clist

1594 {

1505 \str_if_eq:eeF { \1_@@_hlines_clist } { all }
1596 {

1507 \clist_if_in:NeT

1508 \1_@@_hlines_clist

1509 { \int_eval:n { \c@iRow + 1 } }

1600 }

1601 {

The counter \c@iRow has the value —1 only if there is a “first row” and that we are before that “first
row”, i.e. just before the beginning of the array.

1602 \int_compare:nNnT { \c@iRow } > { -1 }

1603 {

1604 \int_compare:nNnF { \c@iRow } = { \1_@@_last_row_int }
1605 { \hrule height \arrayrulewidth width \c_zero_dim }
1606 3

1607 }

1608 }

1609 }

1610 }

47

When the key renew-dots is used, the following code will be executed.

1611 \cs_set_protected:Npn \Q@@_renew_dots:

1612 {

1613 \cs_set_eq:NN \ldots \@@_Ldots:

1614 \cs_set_eq:NN \cdots \@@_Cdots:

1615 \cs_set_eq:NN \vdots \@@_Vdots:

1616 \cs_set_eq:NN \ddots \@@_Ddots:

1617 \cs_set_eq:NN \iddots \@@_Iddots:

1618 \cs_set_eq:NN \dots \@@_Ldots:

1619 \cs_set_eq:NN \hdotsfor \@@_Hdotsfor:
1620 }

If booktabs is loaded, we have to patch the macro \@BTnormal which is a macro of booktabs. The
macro \@BTnormal draws an horizontal rule but it occurs after a vertical skip done by a low level TeX
command. When this macro \@BTnormal occurs, the row node has yet been inserted by nicematrix
before the vertical skip (and thus, at a wrong place). That why we decide to create a new row node
(for the same row). We patch the macro \@BTnormal to create this row node. This new row node will
overwrite the previous definition of that row node and we have managed to avoid the error messages
of that redefinition °.

1621 \hook_gput_code:nnn { begindocument } { . }

1622 {

1623 \IfPackageLoadedTF { booktabs }

1624 {

1625 \cs_new_protected:Npn \@@_patch_booktabs:

1626 { \tl_put_left:Nn \@BTnormal \@@_create_row_node_i: }
1627 }

1628 { \cs_new_protected:Npn \@@_patch_booktabs: { } }

1629 }

The box \@arstrutbox is a box constructed in the beginning of the environment {array}. The con-
struction of that box takes into account the current value of \arraystretch® and \extrarowheight
(of array). That box is inserted (via \@arstrut) in the beginning of each row of the array. That’s
why we use the dimensions of that box to initialize the variables which will be the dimensions of the
potential first and last row of the environment. This initialization must be done after the creation of
\@arstrutbox and that’s why we do it in the \ialign.

1630 \cs_new_protected:Npn \Q@_some_initialization:

1631 {

1632 \@@_everycr:

1633 \dim_gset:Nn \g_0@_dp_row_zero_dim { \box_dp:N \@arstrutbox }
1634 \dim_gset:Nn \g_0@_ht_row_zero_dim { \box_ht:N \@arstrutbox }
1635 \dim_gset_eq:NN \g_0@_ht_row_one_dim \g_00@_ht_row_zero_dim
1636 \dim_gzero:N \g_0@_dp_ante_last_row_dim

1637 \dim_gset:Nn \g_0@_ht_last_row_dim { \box_ht:N \@arstrutbox }
1638 \dim_gset:Nn \g_0@_dp_last_row_dim { \box_dp:N \@arstrutbox }
1639 }

\@@_pre_array_after_CodeBefore: will be executed in \@@_pre_array: after the execution
of the \CodeBefore. It contains all the code before the beginning of the construction of
\1_@Q@_the_array_box.

1620 \cs_new_protected:Npn \@Q_pre_array_after_CodeBefore:

1641 {

The value of \g_@@_pos_of_blocks_seq has been written on the aux file and loaded before the
(potential) execution of the \CodeBefore.

5cf. \nicematrix@redefine@check@rerun
6The option small of nicematrix changes (among others) the value of \arraystretch. This is done, of course, before
the call of {array}.

48

Now, we reinitialize that variable with the content of \g_@@_future_pos_of_blocks_seq because
the mains blocks will be added in \g_@@_pos_of_blocks_seq during the construction of the array.

1642 \seq_gclear:N \g_0@_pos_of_blocks_seq

Idem for other sequences written on the aux file.
1643 \seq_gclear_new:N \g_00@_multicolumn_cells_seq
1644 \seq_gclear_new:N \g_00@_multicolumn_sizes_seq

The command \create_row_node: will create a row-node (and not a row of nodes!). However, at the
end of the array we construct a “false row” (for the col-nodes) and it interferes with the construction
of the last row-node of the array. We don’t want to create such row-node twice (to avaid warnings
or, maybe, errors). That’s why the command \@@_create_row_node: will use the following counter
to avoid such construction.

1645 \int_gset:Nn \g_0@_last_row_node_int { -2 }

The value —2 is important.

The total weight of the letters X in the preamble of the array.

1646 \fp_gzero:N \g_00@_total_X_weight_£p

1647 \bool_gset_false:N \g_0@_V_of_X_bool

1648 \@@_expand_clist_hvlines:NN \1_0@_hlines_clist \c@iRow
1649 \@@_expand_clist_hvlines:NN \1_0@_vlines_clist \c@jCol
1650 \@@_patch_booktabs:

1651 \box_clear_new:N \1_@@_cell_box

1652 \normalbaselines

If the option small is used, we have to do some tuning. In particular, we change the value of
\arraystretch (this parameter is used in the construction of \@arstrutbox in the beginning of

{array}).
1653 \bool_if:NT \1_@@_small_bool
1654 {
1655 \def \arraystretch { 0.47 }
1656 \dim_set:Nn \arraycolsep { 1.45 pt }
By default, \@@_tuning_key_small: is no-op.
1657 \cs_set_eq:NN \@@_tuning_key_small: \scriptstyle
1658 }

The boolean \g_0@_create_cell_nodes_bool corresponds to the key create-cell-nodes of the
keyword \CodeBefore. When that key is used the “cell nodes” will be created before the \CodeBefore
but, of course, they are always available in the main tabular and after!

1659 \bool_if:NT \g_Q@_create_cell_nodes_bool

1660 {

1661 \tl_put_right:Nn \@@_begin_of_row:

1662 {

1663 \pgfsys@markposition

1664 { \@@_env: - row - \int_use:N \c@iRow - base }

1665 }

1666 \socket_assign_plug:nn { nicematrix / create-cell-nodes } { active }
1667 }

The environment {array} uses internally the command \ar@ialign. We change that command for
several reasons. In particular, \ar@ialign sets \everycr to { } and we need to change the value of
\everycr.

1668 \bool_if:NF \c_@@_revtex_bool

1669 {

1670 \def \ar@ialign

1671 {

1672 \tbl_init_cell_data_for_table:
1673 \@@_some_initialization:

1674 \dim_zero:N \tabskip

49

After its first use, the definition of \ar@ialign will revert automatically to its default definition.
With that programmation, we will have, in the cells of the array, a clean version of \ar@ialign. We
use \cs_set_eq:Nc instead of \cs_set_eq:NN in order to avoid a message when explcheck is used
on nicematrix.sty.

1675 \cs_set_eq:Nc \ar@ialign { @@_old_ar@ialign: }
1676 \hali gn

1677 }

1678 }

It seems that there is a problem when nicematrix is used with in revtex4-2 with the package colortbl
loaded. The following code prevent that problem but it does not treat the actual problem! It’s only
a patch ad hoc.

That patch has been added in version 7.0x, 2024-11-27 (question by mail of Tamra Nebabu).

1679 \bool_if:NT \c_@@_revtex_bool

1680 {

1681 \IfPackageLoadedT { colortbl }

1682 { \cs_set_protected:Npn \CT@setup { } }
1683 }

We keep in memory the old versions or \ldots, \cdots, etc. only because we use them inside
\phantom commands in order that the new commands \Ldots, \Cdots, etc. give the same spacing
(except when the option nullify-dots is used).

1684 \cs_set_eq:NN \Q@0@_old_ldots: \ldots

1685 \cs_set_eq:NN \@@_old_cdots: \cdots

1686 \cs_set_eq:NN \@@_old_vdots: \vdots

1687 \cs_set_eq:NN \Q@@_old_ddots: \ddots

1688 \cs_set_eq:NN \@@_old_iddots: \iddots

1689 \bool_if:NTF \1_@@_standard_cline_bool

1690 { \cs_set_eq:NN \cline \@@_standard_cline: }

1601 { \cs_set_eq:NN \cline \@@_cline: }

1602 \cs_set_eq:NN \Ldots \@@_Ldots:

1603 \cs_set_eq:NN \Cdots \@@_Cdots:

1694 \cs_set_eq:NN \Vdots \@@_Vdots:

1605 \cs_set_eq:NN \Ddots \@@_Ddots:

1696 \cs_set_eq:NN \Iddots \@@_Iddots:

1607 \cs_set_eq:NN \Hline \@@_Hline:

1698 \cs_set_eq:NN \Hspace \@@_Hspace:

1699 \cs_set_eq:NN \Hdotsfor \@Q_Hdotsfor:

1700 \cs_set_eq:NN \Vdotsfor \@@_Vdotsfor:

1701 \cs_set_eq:NN \Block \@@_Block:

1702 \cs_set_eq:NN \rotate \Q@Q@_rotate:

1703 \cs_set_eq:NN \OnlyMainNiceMatrix \@@_OnlyMainNiceMatrix:n
1704 \cs_set_eq:NN \dotfill \@@_dotfill:

1705 \cs_set_eq:NN \CodeAfter \Q@_CodeAfter:

1706 \cs_if_free:NT \Body { \cs_set_eq:NN \Body \@@_Body: }
1707 \cs_set_eq:NN \diagbox \@@_diagbox:nn

1708 \cs_set_eq:NN \NotEmpty \@Q_NotEmpty:

1709 \cs_set_eq:NN \TopRule \@@_TopRule

1710 \cs_set_eq:NN \MidRule \@@_MidRule

1711 \cs_set_eq:NN \BottomRule \@@_BottomRule

1712 \cs_set_eq:NN \RowStyle \@@_RowStyle:n

1713 \cs_set_eq:NN \Hbrace \@@_Hbrace

1714 \cs_set_eq:NN \Vbrace \QQ@_Vbrace

1715 \seq_map_inline:Nn \1_@@_custom_line_commands_seq

1716 { \cs_set_eq:cc { ##1 } { nicematrix - ##1 } }

1717 \cs_set_eq:NN \cellcolor \@@_cellcolor_tabular

1718 \cs_set_eq:NN \rowcolor \@@_rowcolor_tabular

1719 \cs_set_eq:NN \rowcolors \@@_rowcolors_tabular

1720 \cs_set_eq:NN \rowlistcolors \@Q_rowlistcolors_tabular
1721 \int_compare:nNnT { \1_@@_first_row_int } > { \c_zero_int }
1722 { \cs_set_eq:NN \@@_tuning_first_row: \prg_do_nothing: }
1723 \int_compare:nNnT { \1_0@_last_row_int } < { \c_zero_int }
1724 { \cs_set_eq:NN \@@_tuning_last_row: \prg_do_nothing: }

50

1725 \bool_if:NT \1_@@_renew_dots_bool { \@@_renew_dots: }

We redefine \multicolumn and, since we want \multicolumn to be available in the potential envi-
ronments {tabular} nested in the environments of nicematrix, we patch {tabular} to go back to the
original definition. A \hook_gremove_code:nn will be put in \@@_after_array:.

1726 \cs_set_eq:NN \multicolumn \@@_multicolumn:nnn

1727 \hook_gput_code:nnn { env / tabular / begin } { nicematrix }
1728 { \cs_set_eq:NN \multicolumn \@@_old_multicolumn: }

1729 \@@_revert_colortbl:

If there is one or several commands \tabularnote in the caption specified by the key caption and
if that caption has to be composed above the tabular, we have now that information because it has
been written in the aux file at a previous run. We use that information to start counting the tabular
notes in the main array at the right value (we remember that the caption will be composed after the
array!).

1730 \tl_if_exist:NT \1_@@_note_in_caption_tl

1731 {

1732 \tl_if_empty:NF \1_Q@@_note_in_caption_tl

1733 {

1734 \int_gset:Nn \g_0@_notes_caption_int { \1_Q@_note_in_caption_tl }
1735 \int_gset:Nn \c@tabularnote { \1_Q@_note_in_caption_tl }

1736 3

1737 }

The sequence \g_@@_multicolumn_cells_seq will contain the list of the cells of the array where a
command \multicolumn{n}{...}{...} with n > 1 is issued. In \g_0@_multicolumn_sizes_seq,
the “sizes” (that is to say the values of n) correspondent will be stored. These lists will be used for
the creation of the “medium nodes” (if they are created).

1738 \seq_gclear:N \g_0@_multicolumn_cells_seq

1739 \seq_gclear:N \g_0@_multicolumn_sizes_seq
The counter \c@iRow will be used to count the rows of the array (its incrementation will be in the
first cell of the row).

1740 \int_gset:Nn \c@iRow { \1_0@_first_row_int - 1 }
At the end of the environment {array}, \c@iRow will be the total number de rows.

\g_0@_row_total_int will be the number of rows excepted the last row (if \1_@@_last_row_bool
has been raised with the option last-row).

1741 \int_gzero:N \g_0@_row_total_int
The counter \c@jCol will be used to count the columns of the array. Since we want to know the total

number of columns of the matrix, we also create a counter \g_@@_col_total_int. These counters
are updated in the command \@@_cell_begin: executed at the beginning of each cell.

1742 \int_gzero:N \g_00@_col_total_int
1743 \cs_set_eq:NN \@ifnextchar \new@ifnextchar
1744 \bool_gset_false:N \g_0@_last_col_found_bool

During the construction of the array, the instructions \Cdots, \Ldots, etc. will be written in token
lists \g_@@_Cdots_lines_tl, etc. which will be executed after the construction of the array.

1745 \tl_gclear_new:N \g_0@_Cdots_lines_tl
1746 \tl_gclear_new:N \g_@@_Ldots_lines_tl
1747 \tl_gclear_new:N \g_0@_Vdots_lines_tl
1748 \tl_gclear_new:N \g_0@_Ddots_lines_tl
1749 \tl_gclear_new:N \g_@@_Iddots_lines_tl
1750 \tl_gclear_new:N \g_0@_HVdotsfor_lines_tl
1751 \tl_gclear:N \g_nicematrix_code_before_tl
1752 \tl_gclear:N \g_0@_pre_code_before_tl

51

We compute the width of both delimiters. We remind that, when the environment {NiceArray} is
used, it’s possible to specify the delimiters in the preamble (eg [cccl).

1753 \dim_zero_new:N \1_@@_left_delim_dim
1754 \dim_zero_new:N \1_0@_right_delim_dim
1755 \bool_if:NTF \g_0@_delims_bool
1756 {
The command \bBigg@ is a command of amsmath.
1757 \hbox_set:Nn \1_tmpa_box { $ \bBigg@ 5 \g_00@_left_delim_tl $ }
1758 \dim_set:Nn \1_0@_left_delim_dim { \box_wd:N \1_tmpa_box }
1759 \hbox_set:Nn \1_tmpa_box { $ \bBigg@ 5 \g_0@_right_delim_tl $ }
1760 \dim_set:Nn \1_0@_right_delim_dim { \box_wd:N \1_tmpa_box }
1761 }
1762 {
1763 \dim_gset:Nn \1_0@_left_delim_dim
1764 { 2 \bool_if:NTF \1_0@_tabular_bool { \tabcolsep } { \arraycolsep } }
1765 \dim_gset_eq:NN \1_@@_right_delim_dim \1_0@_left_delim_dim
1766 }
167}

This is the end of \@@_pre_array_after_CodeBefore:.

The command \@@_pre_array: will be executed after analysis of the keys of the environment. If
will, in particular, read the potential informations written on the aux file.

1765 \cs_new_protected:Npn \Q@@_pre_array:

1769 {

1770 \cs_if_exist:NT \theiRow { \int_set_eq:NN \1_@@_old_iRow_int \c@iRow }
1771 \int_gzero_new:N \c@iRow

1772 \cs_if_exist:NT \thejCol { \int_set_eq:NN \1_@@_old_jCol_int \c@jCol }
1773 \int_gzero_new:N \c@jCol

We give values to the LaTeX counters iRow and jCol. We remind that before and after the
main array (in particular in the \CodeBefore and the \CodeAfter, they represent the numbers
of rows and columns of the array (without the potential last row and last column). The value
of \g_0@_row_total_int is the number of the last row (with potentially a last exterior row) and
\g_00@_col_total_int is the number of the last column (with potentially a last exterior column).

1774 \int_compare:nNnT \1_0@_last_row_int > O

1775 { \int_set:Nn \c@iRow { \1_@@_last_row_int - 1 } }

1776 \int_compare:nNnT \1_0@_last_col_int > O

1777 { \int_set:Nn \c@jCol { \1_0@_last_col_int - 1 } }

1778 \bool_if:NT \g_@@_aux_found_bool

1779 {

1780 \int_set:Nn \c@iRow { \seq_item:Nn \g_0@_size_seq { 2 } }

1781 \int_set:Nn \c@jCol { \seq_item:Nn \g_0@_size_seq { 5 } }

1782 \int_gset:Nn \g_0@_row_total_int { \seq_item:Nn \g_0@_size_seq { 3 } }
1783 \int_gset:Nn \g_0@_col_total_int { \seq_item:Nn \g_0@_size_seq { 6 } }
1784 }

We recall that \1_@@_last_row_int and \1_@@_last_col_int are not the numbers of the last row
and last column of the array. There are only the values of the keys last-row and last-col (maybe
the user has provided erroneous values). The meaning of that counters does not change during the
environment of nicematrix. There is only a slight adjustment: if the user have used one of those keys
without value, we provide now the right value as read on the aux file (of course, it’s possible only
after the first compilation).

1785 \int_compare:nNnT { \1_@@_last_row_int } = { -1 }

1786 {

1787 \bool_set_true:N \1_@@_last_row_without_value_bool

1788 \bool_if:NT \g_0@_aux_found_bool

1789 { \int_set:Nn \1_0@_last_row_int { \seq_item:Nn \g_0@_size_seq { 3 } } }
1790 }

1701 \int_compare:nNnT { \1_@@_last_col_int } = { -1 }

1792 {

1793 \bool_if:NT \g_0@_aux_found_bool

52

1794 { \int_set:Nn \1_@@_last_col_int { \seq_item:Nn \g_00@_size_seq { 6 } } }
1795 }

If there is an exterior row, we patch a command used in \@@_cell_begin: in order to keep track of
some dimensions needed to the construction of that “last row”.

1796 \int_compare:nNnT { \1_@@_last_row_int } > { -2 }

1797 {

1798 \tl_put_right:Nn \@@_update_for_first_and_last_row:

1799 {

1800 \dim_compare:nNnT { \g_0@_ht_last_row_dim } < { \box_ht:N \1_0@_cell_box }
1801 { \dim_gset:Nn \g_0@_ht_last_row_dim { \box_ht:N \1_@@_cell_box } }

1802 \dim_compare:nNnT { \g_0@_dp_last_row_dim } < { \box_dp:N \1_0@_cell_box }
1803 { \dim_gset:Nn \g_0@_dp_last_row_dim { \box_dp:N \1_@@_cell_box } }

1804 i

1805 }

1806 \seq_gclear:N \g_00_cols_vlism_seq

1807 \seq_gclear:N \g_0Q@_submatrix_seq

Now the \CodeBefore.
1808 \bool_if:NT \1_@@_code_before_bool { \@@_exec_code_before: }

The code in \@@_pre_array_after_CodeBefore: is used only here.

1800 \@@_pre_array_after_CodeBefore:

Here is the beginning of the box which will contain the array. The \hbox_set_end: corresponding
to this \hbox_set :Nw will be in the second part of the environment (and the closing $ also).

1810 \hbox_set:Nw \1_@@_the_array_box

1811 \skip_horizontal:N \1_@@_left_margin_dim

1812 \skip_horizontal:N \1_@@_extra_left_margin_dim
1813 \UseTaggingSocket { tbl / hmode / begin }

The following code is a workaround to specify to the tagging system that the following code is fake
math (it raises \1__math_fakemath_bool in recent versions of LaTeX).

1814 \m@th

1815 $ 70 $

1816 \bool_if:NTF \1_0@_light_syntax_bool
1817 { \use:c { @@-1light-syntax } }

1818 { \use:c { @@-normal-syntax } }
1819 }

The following command \@@_CodeBefore_Body:w will be used when the keyword \CodeBefore is
present at the beginning of the environment.

1520 \cs_new_protected_nopar:Npn \@@_CodeBefore_Body:w #1 \Body

1821 {

1822 \tl_set:Nn \1_tmpa_tl { #1 }

1823 \int_compare:nNnT { \char_value_catcode:n { 60 } } = { 13 }
1824 { \@@_rescan_for_spanish:N \1_tmpa_tl }

1825 \tl_gput_left:No \g_0@_pre_code_before_tl \1_tmpa_tl

1826 \bool_set_true:N \1_@@_code_before_bool

We go on with \@@_pre_array: which will (among other) execute the \CodeBefore (specified in
the key code-before or after the keyword \CodeBefore). By definition, the \CodeBefore must be
executed before the body of the array...

1827 \@@_pre_array:
1828 3

53

9 The \CodeBefore

1520 \cs_new_protected_nopar:Npn \@@_Body: { \@@_fatal:n { Body~alone } }

The following command will be executed if the \CodeBefore has to be actually executed (that
command will be used only once and is present alone only for legibility).

1530 \cs_new_protected:Npn \@@_pre_code_before:

1831 {
We will create all the col nodes and row nodes with the information written in the aux file. You use
the technique described in the page 1247 of pgfmanual.pdf, version 3.1.10.

1832 \pgfsys@markposition { \@@_env: - position }

1833 \pgfsys@getposition { \@@_env: - position } \@@_picture_position:
1834 \pgfpicture

1835 \pgf@relevantforpicturesizefalse

First, the recreation of the row nodes.
1836 \int_step_inline:nnn { \1_@@_first_row_int } { \g_@@_row_total_int + 1 }
1837 {

1838 \pgfsys@getposition { \Q@@_env: - row - ##1 } \@@_node_position:
1839 \pgfcoordinate { \@@_env: - row - ##1 }
1840 { \pgfpointdiff \@@_picture_position: \@@_node_position: }
1841 }
Now, the recreation of the col nodes.
1842 \int_step_inline:nnn { \1_0@_first_col_int } { \g_0@@_col_total_int + 1 }
1843 {
1844 \pgfsys@getposition { \@@_env: - col - ##1 } \QO@_node_position:
1845 \pgfcoordinate { \Q@Q@_env: - col - ##1 }
1846 { \pgfpointdiff \@@_picture_position: \@@_node_position: }
1847 }
Now, the creation of the cell nodes (i-j), and, maybe also the “medium nodes” and the “large
nodes”.
1848 \bool_if:NT \g_Q@_create_cell_nodes_bool { \@@_recreate_cell_nodes: }
1849 \endpgfpicture

Now, you recreate the diagonal nodes by using the row nodes and the col nodes.
1850 \@@_create_diag_nodes:

Now, the recreation of the nodes of the blocks which have a name.

1851 \@@_create_blocks_nodes:

1852 \IfPackageLoadedT { tikz }

1853 {

1854 \tikzset

1855 {

1856 every~picture / .style =

1857 { overlay , name~prefix = \@@_env: - }

1858 }

1859 }

1860 \cs_set_eq:NN \cellcolor \@@_cellcolor

1861 \cs_set_eq:NN \rectanglecolor \@@_rectanglecolor

1862 \cs_set_eq:NN \roundedrectanglecolor \@@_roundedrectanglecolor
1863 \cs_set_eq:NN \rowcolor \@@_rowcolor

1864 \cs_set_eq:NN \rowcolors \@@_rowcolors

1865 \cs_set_eq:NN \rowlistcolors \@@_rowlistcolors

1866 \cs_set_eq:NN \arraycolor \@@_arraycolor

1867 \cs_set_eq:NN \columncolor \@@_columncolor

1868 \cs_set_eq:NN \chessboardcolors \@@_chessboardcolors
1860 \cs_set_eq:NN \SubMatrix \@@_SubMatrix_in_code_before
1870 \cs_set_eq:NN \ShowCellNames \@@_ShowCellNames

1871 \cs_set_eq:NN \TikzEveryCell \@@_TikzEveryCell

1872 \cs_set_eq:NN \EmptyColumn \@@_EmptyColumn:n

1873 \cs_set_eq:NN \EmptyRow \@@_EmptyRow:n

1874 i

54

1575 \cs_new_protected:Npn \Q@Q_exec_code_before:

1876 {

We mark the cells which are in the (empty) corners because those cells must not be colored. We
should try to find a way to detected whether we actually have coloring instructions to execute...

1877 \clist_map_inline:Nn \1_Q@_corners_cells_clist
1878 { \cs_set_nopar:cpn { @@ _ corner _ ##1 } { } }
1879 \seq_gclear_new:N \g_00_colors_seq

The sequence \g_0@_colors_seq will always contain as first element the special color nocolor: when
that color is used, no color will be applied in the corresponding cells by the other coloring commands
of nicematrix.

1880 \@@_add_to_colors_seq:nn { { nocolor } } { }
1881 \bool_gset_false:N \g_0@_create_cell_nodes_bool
1882 \group_begin:

We compose the \CodeBefore in math mode in order to nullify the spaces put by the user between
instructions in the \CodeBefore.

1883 \if_mode_math:

1884 \@@_exec_code_before_i:
1885 \else:

1886 $ % $

1887 \@@_exec_code_before_i:
1889 \fi:

1890 \group_end:

1891 3

The following code is a security for the case the user has used babel with the option spanish: in
that case, the characters < (de code Ascct 60) and > are activated and TikZ is not able to solve the
problem (even with the TikZ library babel).

1592 \cs_new_protected:Npn \@@_exec_code_before_i:

1893 {

1894 \int_compare:nNnT { \char_value_catcode:n { 60 } } = { 13 }

1805 { \@@_rescan_for_spanish:N \1_@@_code_before_tl }
Here is the \CodeBefore. The construction is a bit complicated because \g_0@_pre_code_before_tl
may begin with keys between square brackets. Moreover, after the analyze of those keys, we sometimes
have to decide to do not execute the rest of \g_0@_pre_code_before_tl (when it is asked for the
creation of cell nodes in the \CodeBefore). That’s why we use a \g_stop: it will be used to discard
the rest of \g_0@_pre_code_before_t1.

1896 \exp_last_unbraced:No \@@_CodeBefore_keys:

1807 \g_00@_pre_code_before_tl
Now, all the cells which are specified to be colored by instructions in the \CodeBefore will actually
be colored. It’s a two-stages mechanism because we want to draw all the cells with the same color at
the same time to absolutely avoid thin white lines in some PDF viewers.

1808 \@@_actually_color:
1809 \1_@@_code_before_tl
1900 \g_stop

1901 }

1002 \keys_define:nn { nicematrix / CodeBefore }

1903 {

1904 create-cell-nodes .bool_gset:N = \g_0@_create_cell_nodes_bool ,
1905 create-cell-nodes .default:n = true ,

1906 sub-matrix .code:n = \keys_set:nn { nicematrix / sub-matrix } { #1 } ,
1907 sub-matrix .value_required:n = true ,

1908 delimiters / color .tl_set:N = \1_@@_delimiters_color_tl ,

1909 delimiters / color .value_required:n = true ,

1010 unknown .code:n = \@@_error:n { Unknown~key~for~CodeBefore }
1911 }

1012 \NewDocumentCommand \@@_CodeBefore_keys: { 0 { } }

1913 {

55

1914

1915

1916

\keys_set:nn { nicematrix / CodeBefore } { #1 }
\@@_CodeBefore:w
}

We have extracted the options of the keyword \CodeBefore in order to see whether the key create-
cell-nodes has been used. Now, you can execute the rest of the \CodeBefore, excepted, of course,
if we are in the first compilation.

1917

1918

1919

1920

1921

1922

1923

\cs_new_protected:Npn \Q@_CodeBefore:w #1 \g_stop
{
\bool_if :NTF \g_@@_aux_found_bool
{
\@@_pre_code_before:
\legacy_if:nF { measuring@ } { #1 }
}

If we are in the first compilation, you won’t really execute the \CodeBefore but we have to execute
some instructions of creation of PGF/TikZ pictures in order to have the correct aux file in the next
run (hence, we avoid to “lose” a run).

1924
1925
1926
1927
1928

1929

The
1930
1931

1932

The
1933
1934
1935

1936

The

1937
1938
1939
1940

1941

{
\pgfsys@markposition { \@@_env: - position }
\pgfsys@getposition { \@@_env: - position } \@@_picture_position:
\pgfpicture
\pgf@relevantforpicturesizefalse
\endpgfpicture

following picture corresponds to \@@_create_diag_nodes:
\pgfpicture
\pgfrememberpicturepositiononpagetrue
\endpgfpicture

following picture corresponds to \@@_create_blocks_nodes:.
\pgfpicture
\pgf@relevantforpicturesizefalse
\pgfrememberpicturepositiononpagetrue
\endpgfpicture

following picture corresponds \@@_actually_color:
\pgfpicture
\pgf@relevantforpicturesizefalse
\endpgfpicture
}

By default, if the user uses the \CodeBefore, only the col nodes, row nodes and diag nodes are
available in that \CodeBefore. With the key create-cell-nodes, the cell nodes, that is to say the
nodes of the form (i-j) (but not the extra nodes) are also available because those nodes also are
recreated and that recreation is done by the following command.

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

\cs_new_protected:Npn \Q@_recreate_cell_nodes:
{
\int_step_inline:nnn { \1_@@_first_row_int } { \g_@@_row_total_int }
{
\pgfsys@getposition { \Q@Q@_env: - ##1 - base } \@Q_node_position:
\pgfcoordinate { \@@_env: - row - ##1 - base }
{ \pgfpointdiff \@@_picture_position: \@@_node_position: }
\int_step_inline:nnn { \1_@@_first_col_int } { \g_@@_col_total_int }
{
\cs_if_exist:cT
{ pgf @ sys @ pdf @ mark @ pos @ \QQ@_env: - ##1 - ####1 - NW }
{
\pgfsys@getposition
{ \Q0_env: - ##1 - ####1 - NW }
\@@_node_position:
\pgfsys@getposition
{ \@@_env: - ##1 - ####1 - SE }
\@@_node_position_i:

56

1960 \@@_pgf_rect_node:nnn

1961 { \QQ@_env: - ##1 - ####1 }

1962 { \pgfpointdiff \@@_picture_position: \@@_node_position: }
1963 { \pgfpointdiff \@@_picture_position: \@@_node_position_i: }
1964 }

1965 }

1966 }

1967 \@@_create_extra_nodes:

1968 \@@_create_aliases_last:

1969 }

1070 \cs_new_protected:Npn \Q@@_create_aliases_last:

1971 {

1972 \int_step_inline:nn { \c@iRow }

1973 {

1074 \pgfnodealias

1975 { \@@_env: - ##1 - last }

1976 { \@@_env: - ##1 - \int_use:N \c@jCol }
1977 }

1978 \int_step_inline:nn { \c@jCol }

1979 {

1980 \pgfnodealias

1981 { \@@_env: - last - ##1 }

1982 { \@@_env: - \int_use:N \c@iRow - ##1 }
1983 }

1084 \pgfnodealias

1985 { \@@_env: - last - last }

1986 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol }
1987 }

1055 \cs_new_protected:Npn \@@_create_blocks_nodes:

1989 {

1990 \pgfpicture

1991 \pgf@relevantforpicturesizefalse

1992 \pgfrememberpicturepositiononpagetrue

1993 \seq_map_inline:Nn \g_Q@_pos_of_blocks_seq
1994 { \@@_create_one_block_node:nnnnn ##1 }
1995 \endpgfpicture

1996

The following command is called \@@_create_one_block_node:nnnnn but, in fact, it creates a node
only if the last argument (#5) which is the name of the block, is not empty.”

1097 \cs_new_protected:Npn \Q@Q_create_one_block_node:nnnnn #1 #2 #3 #4 #5

1998 {

1999 \tl_if_empty:nF { #5 }

2000 {

2001 \@@_gpoint:n { col - #2 }

2002 \dim_set_eq:NN \1_tmpa_dim \pgf@x

2003 \@@_q_point:n { #1 }

2004 \dim_set_eq:NN \1_tmpb_dim \pgf@y

2005 \@@_gpoint:n { col - \int_eval:n { #4 + 1 } }
2006 \dim_set_eq:NN \1_0@_tmpc_dim \pgf@x
2007 \@@_gpoint:n { \int_eval:n { #3 + 1 } }
2008 \dim_set_eq:NN \1_0@_tmpd_dim \pgfQ@y
2009 \@@_pgf_rect_node:nnnnn

2010 { \@@_env: - #5 }

2011 { \dim_use:N \1_tmpa_dim }

2012 { \dim_use:N \1_tmpb_dim }

2013 { \dim_use:N \1_@@_tmpc_dim }

"Moreover, there is also in the list \g_00@_pos_of_blocks_seq the positions of the dotted lines (created by \Cdots,
etc.) and, for these entries, there is, of course, no name (the fifth component is empty).

57

2014
2015

2016

2017
2018
2019
2020
2021
2022
2023
2024
2025
2026

2027

2029
2030
2031

2032

10

2033
2034
2035

2036

2037

2038

\cs_

{

{ \dim_use:N \1_@@_tmpd_dim }

new_protected:Npn \@@_patch_for_revtex:

\cs_set_eq:NN \@addamp \@addamp@LaTeX
\cs_set_eq:NN \Q@array \Q@array@array

\cs_set_eq:NN \@tabular \@tabular@array
\cs_set:Npn \@tabarray { \@ifnextchar [{ \@array } { \@array [c] } }
\cs_set_eq:NN \array \array@array

\cs_set_eq:NN \endarray \endarray@array
\cs_set:Npn \endtabular { \endarray $\egroup} % $
\cs_set_eq:NN \@mkpream \@mkpream@array
\cs_set_eq:NN \@classx \@classx@array
\cs_set_eq:NN \insert@column \insert@column@array
\cs_set_eq:NN \@arraycr \@arraycr@array
\cs_set_eq:NN \@xarraycr \@xarraycr@array
\cs_set_eq:NN \@xargarraycr \@xargarraycr@array

The environment {NiceArrayWithDelims}

\NewDocumentEnvironment { NiceArrayWithDelims }

{
{

mmO9{3}m!0{3} t \CodeBefore }

\bool_if:NT \c_Q@_revtex_bool { \@@_patch_for_revtex: }

\@@_provide_pgfsyspdfmark:
\bool_if:NT \g_@@_footnote_bool { \savenotes }

The aim of the following \bgroup (the corresponding \egroup is, of course, at the end of the envi-
ronment) is to be able to put an exposant to a matrix in a mathematical formula.

2039

2040

2041

2042

2043

2051

2052

2053

2054

\bgroup

\tl_gset:Nn \g_Q@_left_delim_t1 { #1 }

\tl_gset:Nn \g_Q@_right_delim_tl { #2 }

\tl_gset:Nn \g_0@_user_preamble_tl { #4 }

\tl_if_empty:NT \g_0@@_user_preamble_tl { \@@_fatal:n { empty~preamble } }

\int_gzero:N \g_0@_block_box_int
\dim_gzero:N \g_00@_width_last_col_dim
\dim_gzero:N \g_0@_width_first_col_dim
\bool_gset_false:N \g_0@_row_of_col_done_bool
\str_if_empty:NT \g_QQ@_name_env_str

{ \str_gset:Nn \g_0@_name_env_str { NiceArrayWithDelims } }
\bool_if:NTF \1_@@_tabular_ bool

{ \mode_leave_vertical: }

{ \@@_test_if_math_mode: }
\bool_if:NT \1_@@_in_env_bool { \@@_fatal:n { Yet~in~env } }
\bool_set_true:N \1_@@_in_env_bool

The command \CT@arc@ contains the instruction of color for the rules of the array®. This command
is used by \CT@arc@ but we use it also for compatibility with colortbl. But we want also to be able
to use color for the rules of the array when colortbl is not loaded. That’s why we do the following
instruction which is in the patch of the beginning of arrays done by colortbl. Of course, we restore
the value of \CT@arc@ at the end of our environment.

2055

\cs_gset_eq:cN { @0_old_CT@arc@ } \CT@arc®@

8¢.g. \color[rgbl{0.5,0.5,0}

58

We deactivate TikZ externalization because we will use PGF pictures with the options overlay and
remember picture (or equivalent forms). We deactivate with \tikzexternaldisable and not with
\tikzset{external/export=false} which is not equivalent.

2056 \cs_if_exist:NT \tikz@library@external@loaded

2057 {

2058 \tikzexternaldisable

2059 \cs_if_exist:NT \ifstandalone

2060 { \tikzset { external / optimize = false } }
2061 }

We increment the counter \g_0@_env_int which counts the environments of the package.
2062 \int_gincr:N \g_0@_env_int
2063 \bool_if:NF \1_@@_block_auto_columns_width_bool
2064 { \dim_gzero_new:N \g_0@_max_cell_width_dim }

The sequence \g_0@_blocks_seq will contain the characteristics of the blocks (specified by \Block)
of the array. The sequence \g_0@_pos_of_blocks_seq will contain only the position of the blocks.
2065 \seq_gclear:N \g_00@_blocks_seq
2066 \seq_gclear:N \g_0@_pos_of_blocks_seq

In fact, the sequence \g_0@_pos_of_blocks_seq will also contain the positions of the cells with a
\diagbox and the \multicolumn.

2067 \seq_gclear:N \g_00@_pos_of_stroken_blocks_seq

2068 \seq_gclear:N \g_0@_pos_of_xdots_seq

2069 \tl_gclear_new:N \g_Q@_code_before_tl

2070 \tl_gclear:N \g_0@_row_style_tl

We load all the information written in the aux file during previous compilations corresponding to the
current environment.

2071 \tl_if_exist:cTF { g_0@ _ \int_use:N \g_Q@_env_int _ t1 }
2072 {

2073 \bool_gset_true:N \g_0@_aux_found_bool

2074 \use:c { g_@@ _ \int_use:N \g_0@_env_int _ t1 }

2075 }

2076 { \bool_gset_false:N \g_0@_aux_found_bool }

Now, we prepare the token list for the instructions that we will have to write on the aux file at the
end of the environment.

2077 \tl_gclear:N \g_0@_aux_tl

2078 \tl_if_empty:NF \g_0@_code_before_tl

2079 {

2080 \bool_set_true:N \1_0@_code_before_bool

2081 \tl_put_right:No \1_0@_code_before_tl \g_00_code_before_tl
2082 }

2083 \tl_if_empty:NF \g_0@_pre_code_before_tl

2084 { \bool_set_true:N \1_0@_code_before_bool }

The set of keys is not exactly the same for {NiceArray} and for the variants of {NiceArray}
({pNiceArray}, {bNiceArrayl}, etc.) because, for {NiceArray}, we have the options t, ¢, b and
baseline.

2085 \bool_if:NTF \g_0@_delims_bool

2086 { \keys_set:nn { nicematrix / pNiceArray } }
2087 { \keys_set:nn { nicematrix / NiceArray } }

2088 {#3 , #5 }

2089 \@@_set_CTarc:o \1_@@_rules_color_tl % noga: w302

The argument #6 is the last argument of {NiceArrayWithDelims}. With that argument of type
“t \CodeBefore”, we test whether there is the keyword \CodeBefore at the beginning of the body
of the environment. If that keyword is present, we have now to extract all the content between
that keyword \CodeBefore and the (other) keyword \Body. It’s the job that will do the command
\@@_CodeBefore_Body:w. After that job, the command \@@_CodeBefore_Body:w will go on with
\@@_pre_array:.

2090 \bool_if:nTF { #6 } { \@@_CodeBefore_Body:w } { \@@_pre_array: }

59

2091 }
Now, the second part of the environment {NiceArrayWithDelims}.

2092 {

2003 \bool_if:NTF \1_@@_light_syntax_bool

2004 { \use:c { end @@-light-syntax } }

2095 { \use:c { end @@-normal-syntax } }

2096 $%8%

2007 \skip_horizontal:N \1_@@_right_margin_dim

2008 \skip_horizontal:N \1_@@_extra_right_margin_dim
2099 \hbox_set_end:

2100 \UseTaggingSocket { tbl / hmode / end }

End of the construction of the array (in the box \1_0@_the_array_box).

If the user has used the key width without any column X, we raise an error.

2101 \bool_if:NT \1_@@_width_used_bool

2102 {

2103 \fp_compare:nNnT { \g_@@_total_X_weight_fp } = { \c_zero_fp }
2104 { \@@_error_or_warning:n { width~without~X~columns } }

2105 }

Now, if there is at least one X-column in the environment, we compute the width that those columns
will have (in the next compilation). In fact, 1_@@_X_columns_dim will be the width of a column of
weight 1.0. For a X-column of weight =, the width will be \1_0@_X_columns_dim multiplied by x.
2106 \fp_compare:nNnT { \g_0@_total_X_weight_fp } > { \c_zero_fp }
2107 { \@@_compute_width_X: }

It the user has used the key last-row with a value, we control that the given value is correct (since
we have just constructed the array, we know the actual number of rows of the array).

2108 \int_compare:nNnT { \1_@@_last_row_int } > { -2 }

2109 {

2110 \bool_if:NF \1_@@_last_row_without_value_bool

2111 {

2112 \int_compare:nNnF { \1_0@_last_row_int } = { \c@iRow }
2113 {

2114 \@@_error:n { Wrong~last~row }

2115 \int_set_eq:NN \1_0@_last_row_int \c@iRow
2116 }

2117 }

211¢ }

Now, the definition of \c@jCol and \g_0@_col_total_int changes: \c@jCol will be the number of
columns without the “last column”; \g_@@_col_total_int will be the number of columns with this

“last column”.?
2119 \int_gset_eq:NN \c@jCol \g_0@_col_total_int
2120 \bool_if:NTF \g_0@_last_col_found_bool
2121 { \int_gdecr:N \c@jCol }
2122 {
2123 \int_compare:nNnT { \1_0@_last_col_int } > { -1 }
2124 { \@@_error:n { last~col~not~used } }
2125 }
We fix also the value of \c@iRow and \g_0@@_row_total_int with the same principle.
2126 \int_gset_eq:NN \g_0@@_row_total_int \c@iRow
2127 \int_compare:nNnT { \1_0@_last_row_int } > { -1 }
2128 { \int_gdecr:N \c@iRow }

Now, we begin the real construction in the output flow of TeX. First, we take into account
a potential “first column” (we remind that this “first column” has been constructed in an overlapping
position and that we have computed its width in \g_0@_width_first_col_dim: see p. 95).

9We remind that the potential “first column” (exterior) has the number 0.

60

2129 \int_if_zero:nT { \1_@@_first_col_int }

2130 { \skip_horizontal:N \g_0@_width_first_col_dim }
The construction of the real box is different whether we have delimiters to put.

2131 \bool_if:nTF { ! \g_0@_delims_bool }

2132 {

2133 \str_if_eq:eeTF { \1_@@_baseline_tl } { ¢ }

2134 { \@@_use_arraybox_with_notes_c: }

2135 {

2136 \str_if_eq:eeTF { \1_0@_baseline_tl } { b }

2137 { \@@_use_arraybox_with_notes_b: }

2138 { \@@_use_arraybox_with_notes: }

2139 }

2140 }

Now, in the case of an environment with delimiters. We compute \1_tmpa_dim which is the total
height of the “first row” above the array (when the key first-row is used).

2141 {

2142 \int_if_zero:nTF { \1_@@_first_row_int }

2143 {

2144 \dim_set_eq:NN \1_tmpa_dim \g_Q@_dp_row_zero_dim
2145 \dim_add:Nn \1_tmpa_dim \g_@@_ht_row_zero_dim
2146 3

2147 { \dim_zero:N \1_tmpa_dim }

We compute \1_tmpb_dim which is the total height of the “last row” below the array (when the key

last-row is used). A value of —2 for \1_@@_last_row_int means that there is no “last row”.'"
2148 \int_compare:nNnTF { \1_@@_last_row_int } > { -2 }
2149 {
2150 \dim_set_eq:NN \1_tmpb_dim \g_Q@@_ht_last_row_dim
2151 \dim_add:Nn \1_tmpb_dim \g_0@_dp_last_row_dim
2152 ¥
2153 { \dim_zero:N \1_tmpb_dim }
2154 \hbox_set:Nn \1_tmpa_box
2155 {
2156 \m@th
2157 $ % $
2158 \@@_color:o \1_@@_delimiters_color_tl
2159 \exp_after:wN \left \g_00_left_delim_tl
2160 \vcenter
2161 {

We take into account the “first row” (we have previously computed its total height in \1_tmpa_dim).
The \hbox:n (or \hbox) is necessary here.

2162 \skip_vertical:n { - \l_tmpa_dim - \arrayrulewidth }
2163 \hbox
2164 {
2165 \bool_if:NTF \1_@@_tabular_bool
2166 { \skip_horizontal:n { - \tabcolsep } }
2167 { \skip_horizontal:n { - \arraycolsep } }
2168 \@@_use_arraybox_with_notes_c:
2169 \bool_if:NTF \1_@@_tabular_bool
2170 { \skip_horizontal:n { - \tabcolsep } }
2171 { \skip_horizontal:n { - \arraycolsep } }
2172 3
We take into account the “last row” (we have previously computed its total height in \1_tmpb_dim).
2173 \skip_vertical:n { - \1_tmpb_dim + \arrayrulewidth }
2174 }
2175 \exp_after:wN \right \g_0@_right_delim_tl
2176 $%$
2177 }

10A value of —1 for \1_@@_last_row_int means that there is a “last row” but the the user have not set the value
with the option last row (and we are in the first compilation).

61

Now, the box \1_tmpa_box is created with the correct delimiters.

We will put the box in the TeX flow. However, we have a small work to do when the option
delimiters/max-width is used.

2178 \bool_if:NTF \1_@@_delimiters_max_width_bool
2179 {

2180 \@@_put_box_in_flow_bis:nn

211 { \g_0@_left_delim_t1 }

2182 { \g_00@_right_delim_t1 }

2183 }

2184 \@@_put_box_in_flow:

2185 }

We take into account a potential “last column” (this “last column” has been constructed in an
overlapping position and we have computed its width in \g_0@_width_last_col_dim: see p. 96).
2186 \bool_if:NT \g_@@_last_col_found_bool

2187 { \skip_horizontal:N \g_0@_width_last_col_dim }

2188 \bool_if:NT \1_@@_preamble_bool

2189 {

2190 \int_compare:nNnT { \c@jCol } < { \g_@@_static_num_of_col_int }
2101 { \@@_err_columns_not_used: }

2192 }

2193 \@@_after_array:

The aim of the following \egroup (the corresponding \bgroup is, of course, at the beginning of the
environment) is to be able to put an exposant to a matrix in a mathematical formula.
2104 \egroup

We write on the aux file all the information corresponding to the current environment.

2195 \iow_now:Nn \@mainaux { \ExplSyntaxOn }

2196 \iow_now:Nn \@mainaux { \char_set_catcode_space:n { 32 } }
2197 \iow_now:Ne \@mainaux

2198 {

2199 \tl_gclear_new:c { g_0@_ \int_use:N \g_@@_env_int _ tl1 }
2200 \tl_gset:cn { g_0@_ \int_use:N \g_0@_env_int _ tl1 }

2201 { \exp_not:o \g_0@_aux_tl }

2202 }

2203 \iow_now:Nn \@mainaux { \ExplSyntaxOff }

2204 \bool_if:NT \g_@@_footnote_bool { \endsavenotes }
2205 }

This is the end of the environment {NiceArrayWithDelims}.

206 \cs_new_protected:Npn \Q@@_err_columns_not_used:

2207 {

2208 \@@_warning:n { columns~not~used }

2200 \cs_gset:Npn \@@_err_columns_not_used: { }
2210 }

The following command will be used only once. We have written that command for legibility. If there
is at least one X-column in the environment, we compute the width that those columns will have (in
the next compilation). In fact, 1_@@_X_columns_dim will be the width of a column of weight 1.0.

For a X-column of weight z, the width will be \1_0@_X_columns_dim multiplied by =x.
211 \cs_new_protected:Npn \@@_compute_width_X:

2212 {

213 \tl_gput_right:Ne \g_0@_aux_tl

2214 {

215 \bool_set_true:N \1_0@_X_columns_aux_bool
216 \dim_set:Nn \1_@@_X_columns_dim

2217 {

The flag g_0@_V_of_X_bool is raised when there is at least in the tabular a column of type X using
the key V. In that case, the width of the X column may be considered as correct even though the
tabular has not (of course) a width equal to \1_@@_width_dim

62

218 \bool_lazy_and:nnTF

2219 { \g_0@_V_of_X_bool }

2220 { \1_00@_X_columns_aux_bool }

2021 { \dim_use:N \1_@@_X_columns_dim }

2222 {

2223 \dim_compare:nNnTF

2224 {

2225 \dim_abs:n

2226 { \1_0@_width_dim - \box_wd:N \1_0@_the_array_box }
2227 }

2228 <

2229 { 0.001 pt }

2230 { \dim_use:N \1_@@_X_columns_dim }
2231 {

2232 \dim_eval:n

2233 {

2234 \1_0@_X_columns_dim

2235 +

2236 \fp_to_dim:n

2237 {

2238 (

2239 \dim_eval:n

2240 { \1_0@_width_dim - \box_wd:N \1_Q@_the_array_box }
2241)

2242 / \fp_use:N \g_00@_total_X_weight_fp
2243 }

2244 ¥

2245 }

2246 }

2247 }

2248 }

2249 }

11 Construction of the preamble of the array

The final user provides a preamble, but we must convert that preamble into a preamble which will
be given to {array} (of the package array).

The preamble given by the final user is stored in \g_@@_user_preamble_tl. The modified version
will be stored in \g_0Q@_array_preamble_tl.

25 \cs_new_protected:Npn \@Q_transform_preamble:

2251 {

2252 \@@_transform_preamble_i:

2253 \@@_transform_preamble_ii:

2254 }

255 \cs_new_protected:Npn \Q@@_transform_preamble_i:
2256 {

2257 \int_gzero:N \c@jCol
The sequence \g_0@_cols_vlsim_seq will contain the numbers of the columns where you will to
have to draw vertical lines in the potential sub-matrices (hence the name vlism).
2258 \seq_gclear:N \g_0@_cols_vlism_seq
\g_tmpb_bool will be raised if you have a | at the end of the preamble provided by the final user.
2259 \bool_gset_false:N \g_tmpb_bool
The following sequence will store the arguments of the successive > in the preamble.
2260 \tl_gclear_new:N \g_0@_pre_cell_tl

63

The counter \1_tmpa_int will count the number of consecutive occurrences of the symbol |.

2261 \int_zero:N \1_tmpa_int

2262 \tl_gclear:N \g_0@_array_preamble_tl

2263 \str_if_eq:eeTF { \1_0@_vlines_clist } { all }

2264 {

2265 \tl_gset:Nn \g_0Q@_array_preamble_tl

2266 { ! { \skip_horizontal:N \arrayrulewidth } }
2267 }

2268 {

2269 \clist_if_in:NnT \1_@@_vlines_clist 1

2270 {

271 \tl_gset:Nn \g_0Q@_array_preamble_tl

2072 { ! { \skip_horizontal:N \arrayrulewidth } }
2073 }

2274 }

Now, we actually make the preamble (which will be given to {array}). It will be stored in
\g_@0_array_preamble_tl.

275 \exp_last_unbraced:No \Q@Q@_rec_preamble:n \g_0@_user_preamble_tl \s_stop
2276 \int_gset_eq:NN \g_0@_static_num_of_col_int \c@jCol

2277 \@@_replace_columncolor:

2278 }

2279 \cs_new_protected:Npn \Q@@_transform_preamble_ii:

2280 {

If there were delimiters at the beginning or at the end of the preamble, the environment {NiceArray}
is transformed into an environment {xNiceMatrix}.

281 \tl_if_eq:NNTF \g_0@_left_delim_tl \c_0@_dot_tl

2282 {

2283 \tl_if_eq:NNF \g_0@_right_delim_tl \c_Q@_dot_tl
2084 { \bool_gset_true:N \g_00@_delims_bool }

2285 }

2286 { \bool_gset_true:N \g_00@_delims_bool }

We want to remind whether there is a specifier | at the end of the preamble.
2087 \bool_if:NT \g_tmpb_bool { \bool_set_true:N \1_Q@_bar_at_end_of_pream_bool }

We complete the preamble with the potential “exterior columns” (on both sides).

2288 \int_if_zero:nTF { \1_@@_first_col_int }

2289 { \tl_gput_left:No \g_0@_array_preamble_tl \c_0@_preamble_first_col_tl }
2290 {

2001 \bool_if:NF \g_0@_delims_bool

2292 {

2203 \bool_if:NF \1_@@_tabular_bool

2294 {

2205 \clist_if_empty:NT \1_Q@_vlines_clist

2296 {

2207 \bool_if:NF \1_0@_exterior_arraycolsep_bool

2208 { \tl_gput_left:Nn \g_0@_array_preamble_tl { @ { } } }
2299 }

2300 ¥

2301 }

2302 }

2303 \int_compare:nNnTF { \1_@@_last_col_int } > { -1 }

2304 { \tl_gput_right:No \g_0@_array_preamble_tl \c_Q@_preamble_last_col_tl }
2305 {

2306 \bool_if:NF \g_0@_delims_bool

2307 {

64

2308 \bool_if:NF \1_@@_tabular_bool

2309 {

2310 \clist_if_empty:NT \1_Q@_vlines_clist

2311 {

2312 \bool_if:NF \1_0@_exterior_arraycolsep_bool

213 { \tl_gput_right:Nn \g_0@_array_preamble_tl { @ { } } }
2314 T

2315 }

2316 }

2317 }

We try to give a good error message when the final user puts more columns than allowed by the
preamble of the array. The mechanism consists of an extra column. However, if tagging is in force,
that dummy extra column will be tagged (with <TD> tags) and that’s why we disable that mechanism
when tagging is in force.

2318 \tag_if_active:F

2319 {
Moreover, when {NiceTabularx*} is used, the mechanism can’t be used for technical reasons. We test
that situation with \1_@@_tabular_width_dim.

2320 \dim_compare:nNnT { \1_@@_tabular_width_dim } = { \c_zero_dim }
2321 {

2322 \tl_gput_right:Nn \g_0@_array_preamble_tl

2323 { > { \@@_err_too_many_cols: } 1 }

2324 }

2325 }

2326 }

We have used to add a last column to raise a good error message when the user puts more columns
than allowed by its preamble. For technical reasons, it was not possible to do that in {NiceTabular*}
and that’s why we used to control that with the value of \1_@@_tabular_width_dim).

The preamble provided by the final user will be read by a finite automata. The following function
\@@_rec_preamble:n will read that preamble (usually letter by letter) in a recursive way (hence the
name of that function). in the preamble.

2327 \cs_new_protected:Npn \@Q@_rec_preamble:n #1

2328 {
For the majority of the letters, we will trigger the corresponding action by calling directly a function
in the main hashtable of TeX (thanks to the mechanism \csname...\endcsname. Be careful: all
these functions take in as first argument the letter (or token) itself.'!

2329 \cs_if_exist:cTF { @@ _ \token_to_str:N #1 : }
2330 { \use:c { @ _ \token_to_str:N #1 : } { #1 } }
2331 {
Now, the columns defined by \newcolumntype of array.
2332 \cs_if_exist:cTF { NC @ find @ #1 }
2333 {
2334 \tl_set_eq:Nc \1_tmpb_tl { NC @ rewrite @ #1 }
2335 \exp_last_unbraced:No \@@_rec_preamble:n \1_tmpb_tl
2336 }
2337 {
2338 \str_if_eq:nnTF { #1 } { S }
2339 { \@@_fatal:n { unknown~column~type~S } }
2340 { \@@_fatal:nn { unknown~column~type } { #1 } }
2341 }
2342 }
2343 }

HWe do that because it’s an easy way to insert the letter at some places in the code that we will add to
\g_@0@_array_preamble_t1.

65

For c, 1 and r

2314 \cs_new_protected:Npn \Q@0@_c: #1

2345 {
2346 \tl_gput_right:No \g_0@_array_preamble_tl \g_Q@_pre_cell_tl
2347 \tl_gclear:N \g_0@_pre_cell_tl
2348 \tl_gput_right:Nn \g_0@_array_preamble_tl
2349 { > \@0@_cell_begin: ¢ < \@0_cell_end: }
We increment the counter of columns and then we test for the presence of a <.
2350 \int_gincr:N \c@jCol
2351 \@@_rec_preamble_after_col:n
2352 }
2353 \cs_new_protected:Npn \@@_1: #1
2354 {
2355 \tl_gput_right:No \g_0@_array_preamble_tl \g_@@_pre_cell_tl
2356 \tl_gclear:N \g_0@_pre_cell_tl
257 \tl_gput_right:Nn \g_0@_array_preamble_tl
2358 {
2359 > { \@@_cell_begin: \tl_set_eq:NN \1_@@_hpos_cell_tl \c_0@_1_tl1 }
2360 1
2361 < \@@_cell_end:
2362 }
2363 \int_gincr:N \c@jCol
2364 \@@_rec_preamble_after_col:n
2365 ¥
2366 \CS_new_protected:Npn \QQ_r: #1
2367 {
2368 \tl_gput_right:No \g_0@_array_preamble_tl \g_0Q@_pre_cell_tl
2369 \tl_gclear:N \g_0@_pre_cell_tl
2370 \tl_gput_right:Nn \g_Q@_array_preamble_tl
2371 {
2372 > { \@@_cell_begin: \tl_set_eq:NN \1_@@_hpos_cell_tl \c_@@_r_tl }
2373 r
2374 < \@@_cell_end:
2375 }
2376 \int_gincr:N \c@jCol
277 \@@_rec_preamble_after_col:n
2378 3
For ! and @
2379 \cs_new_protected:cpn { @@ _ \token_to_str:N ! : } #1 #2
2380 {
2381 \tl_gput_right:Nn \g_0@_array_preamble_tl { #1 { #2 } }
2382 \@@_rec_preamble:n
2383 }
234 \cs_set_eq:cc { @ _ \token_to_str:N @ : } { @@ _ \token_to_str:N ! : }
For |
235 \cs_new_protected:cpn { @@ _ | : } #1
2386 {
\1_tmpa_int is the number of successive occurrences of |
2387 \int_incr:N \1_tmpa_int
2388 \@@_make_preamble_i_i:n
2389 }
2300 \cs_new_protected:Npn \@@_make_preamble_i_i:n #1
2391 {
Here, we can’t use \str_if_eq:eeTF.
2392 \str_if_eq:nnTF { #1 } { | }
2303 {\use:c {@@ _ | :} |32}
2304 { \@@_make_preamble_i_ii:nn { } #1 }
2395 ¥

66

The following constructions aims to allow cumulative blocks of options between square brackets such
as in | [color=blue] [tikz=dashed].

2305 \cs_new_protected:Npn \@Q@_make_preamble_i_ii:nn #1 #2

2397 {

2308 \str_if_eq:nnTF { #2 } { [}

2399 { \@@_make_preamble_i_ii:nw { #1 } [}

2400 { \@@_make_preamble_i_iii:nn { #2 } { #1 } }
2401 }

2102 \cs_new_protected:Npn \Q@Q@_make_preamble_i_ii:nw #1 [#2]
2203 { \@@_make_preamble_i_ii:nn { #1 , #2 } }

2104 \cs_new_protected:Npn \@Q@_make_preamble_i_iii:nn #1 #2

2405 {
2406 \@@_compute_rule_width:n { multiplicity = \l_tmpa_int , #2 }
2407 \tl_gput_right:Ne \g_0@_array_preamble_tl
2408 {
Here, the command \dim_use:N is mandatory.
2409 \exp_not:N ! { \skip_horizontal:N \dim_use:N \1_@@_rule_width_dim }
2410 }
2411 \tl_gput_right:Ne \g_00_pre_code_after_tl
2412 {
2413 \@@_vline:n
2414 {
2415 position = \int_eval:n { \c@jCol + 1 } ,
2416 multiplicity = \int_use:N \1_tmpa_int ,
2417 total-width = \dim_use:N \1_@@_rule_width_dim ,
2418 #2
2419 3

We don’t have provided value for start nor for end, which means that the rule will cover (potentially)
all the rows of the array.

2420 }

2421 \int_zero:N \1_tmpa_int

2422 \str_if_eq:nnT { #1 } { \s_stop } { \bool_gset_true:N \g_tmpb_bool }
2423 \@@_rec_preamble:n #1

2424 3

225 \cs_new_protected:cpn { @@ _ > : } #1 #2

2426 {

2427 \tl_gput_right:Nn \g_0@_pre_cell_tl { > { #2 } }
2428 \@@_rec_preamble:n

2429 3

2230 \bool_new:N \1_Q@_bar_at_end_of_pream_bool

The specifier p (and also the specifiers m, b, V and X) have an optional argument between square
brackets for a list of key-value pairs. Here are the corresponding keys.

231 \keys_define:nn { nicematrix / p-column }

2432 {

2433 r .code:n = \str_set_eq:NN \1_@@_hpos_col_str \c_Q@_r_str ,
2434 r .value_forbidden:n = true ,

2435 c .code:n = \str_set_eq:NN \1_@@_hpos_col_str \c_0@_c_str ,
2436 ¢ .value_forbidden:n = true ,

2437 1 .code:n = \str_set_eq:NN \1_@@_hpos_col_str \c_@@_l_str ,
2438 1 .value_forbidden:n = true ,

2439 S .code:n = \str_set:Nn \1_@@_hpos_col_str { si } ,

2440 S .value_forbidden:n = true ,

2441 p .code:n = \str_set:Nn \1_@@_vpos_col_str { p } ,

2442 p .value_forbidden:n = true ,

2443 t .meta:n =p ,

2444 m .code:n = \str_set:Nn \1_0@_vpos_col_str { m } ,

2445 m .value_forbidden:n = true ,

67

2446 b .code:n = \str_set:Nn \1_0@_vpos_col_str { b } ,
2447 b .value_forbidden:n = true

2448 }

For p but also b and m.
2220 \cs_new_protected:Npn \@@_p: #1

2450 {
2451 \str_set:Nn \1_@@_vpos_col_str { #1 }
Now, you look for a potential character [after the letter of the specifier (for the options).
2452 \@@_make_preamble_ii_i:n
2453 }

250 \cs_new_eq:NN \@@_b: \@@_p:
2155 \cs_new_eq:NN \@@_m: \Q@@_p:

2156 \cs_new_protected:Npn \@Q@_make_preamble_ii_i:n #1

2457 {

2458 \str_if_eq:nnTF { #1 } { [}

2459 { \@@_make_preamble_ii_ii:w [}

2460 { \@@_make_preamble_ii_ii:w [] { #1 } }
2461 }

262 \cs_new_protected:Npn \Q@@_make_preamble_ii_ii:w [#1]
263 { \@Q@_make_preamble_ii_iii:nn { #1 } }

#1 is the optional argument of the specifier (a list of key-value pairs).
#2 is the mandatory argument of the specifier: the width of the column.
261 \cs_new_protected:Npn \Q@@_make_preamble_ii_iii:nn #1 #2
2465 {
The possible values of \1_0@_hpos_col_str are j (for justified which is the initial value), 1, c, r, L,
C and R (when the user has used the corresponding key in the optional argument of the specifier).
2466 \str_set:Nn \1_0@_hpos_col_str { j }
2467 \@@_keys_p_column:n { #1 }
We apply setlength in order to allow a width of column of the form \widthof{Some words}.
\widthof is a command of the package calc (not loaded by nicematrix) which redefines the com-
mand \setlength. Of course, even if calc is not loaded, the following code will work with the
standard version of \setlength.

2468 \setlength { \1_tmpa_dim } { #2 }
2469 \@@_make_preamble_ii_iv:nnn { \dim_use:N \1_tmpa_dim } { minipage } { }
2470 }

271 \cs_new_protected:Npn \Q@@_keys_p_column:n #1
> { \keys_set_known:nnN { nicematrix / p-column } { #1 } \1_tmpa_tl }

24

3

The first argument is the width of the column. The second is the type of environment: minipage or
varwidth. The third is some code added at the beginning of the cell.

2473 \cs_new_protected:Npn \@Q@_make_preamble_ii_iv:nnn #1 #2 #3
2474 {

Here, \expanded would probably be slightly faster than \use:e

2475 \use:e

2476 {

2477 \@@_make_preamble_ii_vi:nnnnnnnn

2478 { \str_if_eq:eeTF { \1_00@_vpos_col_str } { p} {t} {b} }
2479 { #1 }

2480 {

2481 \cs_set_eq:NN \rotate \@@_rotate_p_col:

68

The parameter \1_@@_hpos_col_str (as \1_@@_vpos_col_str) exists only during the construction
of the preamble. During the composition of the array itself, you will have, in each cell, the parameter
\1_@@_hpos_cell_t1 which will provide the horizontal alignment of the column to which belongs
the cell.

2482 \str_if_eq:eeTF { \1_0@_hpos_col_str } { j }
2483 { \tl_clear:N \exp_not:N \1_@@_hpos_cell_tl }
2484 {
Here, we use \def instead of \t1l_set:Nn for efficiency only.
2485 \def \exp_not:N \1_@@_hpos_cell_tl
2486 { \str_lowercase:f { \1_@@_hpos_col_str } }
2487 }
2488 \IfPackagelLoadedTF { ragged2e }
2489 {
2490 \str_case:on \1_0@_hpos_col_str
2491 {
The following \exp_not:N are mandatory.
2492 ¢ { \exp_not:N \Centering }
2493 1 { \exp_not:N \RaggedRight }
2494 r { \exp_not:N \RaggedLeft }
2495 3
2496 }
2497 {
2498 \str_case:on \1_Q@_hpos_col_str
2499 {

c { \exp_not:N \centering }
2501 1 { \exp_not:N \raggedright }
r { \exp_not:N \raggedleft }

2500

2502

2503 }
2504 }
2505 #3
2506 }
2507 { \str_if_eq:eeT { \1_@@_vpos_col_str } { m } \@@_center_cell_box: }
2508 { \str_if_eq:eeT { \1_@@_hpos_col_str } { si } \siunitx_cell_begin:w }
2509 { \str_if_eq:eeT { \1_@@_hpos_col_str } { si } \siunitx_cell_end: }
2510 {#2 }
2511 {
2512 \str_case:onF \1_@@_hpos_col_str
2513 {
2514 { J Y {c}?
2515 {si}{c}?
2516 }
We use \str_lowercase:n to convert R to r, etc.
2517 { \str_lowercase:f \1_0@@_hpos_col_str }
2518 }
2519 }
We increment the counter of columns, and then we test for the presence of a <.
2520 \int_gincr:N \c@jCol
2521 \@@_rec_preamble_after_col:n
2522 T

#1 is the optional argument of {minipage} (or {varwidth}): t or b. Indeed, for the columns of type
m, we use the value b here because there is a special post-action in order to center vertically the box
(see #4).

#2 is the width of the {minipage} (or {varwidth}), that is to say also the width of the column.

#3 is the coding for the horizontal position of the content of the cell (\centering, \raggedright,
\raggedleft or nothing). It’s also possible to put in that #3 some code to fix the value of
\1_@@_hpos_cell_t1 which will be available in each cell of the column.

#4 is an extra-code which contains \@@_center_cell_box: (when the column is a m column) or
nothing (in the other cases).

69

#5 is a code put just before the ¢ (or r or 1: see #8).

#6 is a code put just after the ¢ (or r or 1: see #8).

#7 is the type of environment: minipage or varwidth.

#8 is the letter ¢ or r or 1 which is the basic specifier of column which is used in fine.

2523 \cs_new_protected:Npn \Q@@_make_preamble_ii_vi:nnnnnnnn #1 #2 #3 #4 #5 #6 #7 #8
2524 {

2525 \str_if_eq:eeTF { \1_0@_hpos_col_str } { si }

2526 {

2527 \tl_gput_right:Nn \g_0@_array_preamble_tl

2528 { > \o@_test_if_empty_for_S: }

2529 }

2530 {

2531 \str_if_eq:eeTF { #7 } { varwidth }

2532 {

2533 \tl_gput_right:Nn \g_0@_array_preamble_tl

2534 { > \@0_test_if_empty_varwidth: }

2535 }

2536 { \tl_gput_right:Nn \g_0@_array_preamble_tl { > \Q@@_test_if_empty: } }
2537 }

2538 \tl_gput_right:No \g_0@_array_preamble_tl \g_0@_pre_cell_tl
2539 \tl_gclear:N \g_0@_pre_cell_tl

2540 \tl_gput_right:Nn \g_0@_array_preamble_tl

2541 {

2542 > {

The parameter \1_@@_col_width_dim, which is the width of the current column, will be available in
each cell of the column. It will be used by the mono-column blocks.

2543 \dim_set:Nn \1_@@_col_width_dim { #2 }
2544 \@@_cell_begin:

We use the form \minipage—\endminipage (\varwidth—\endvarwidth) for compatibility with collcell
(2023-10-31).
2545 \use:c { #7 } [#1 1 { #2 }

The following lines have been taken from array.sty.

2546 \everypar

2547 {

2548 \vrule height \box_ht:N \Qarstrutbox width \c_zero_dim
2549 \everypar { }

2550 }

Now, the potential code for the horizontal position of the content of the cell (\centering,
\raggedright, \RaggedRight, etc.).

2551 #3
The following code is to allow something like \centering in \RowStyle.
2552 \g_00_row_style_tl
2553 \arraybackslash
2554 #5
2555 3
2556 #8
2557 < {
2558 #6
The following line has been taken from array.sty.
2550 \@finalstrut \@arstrutbox
2560 \use:c { end #7 }

If the letter in the preamble is m, #4 will be equal to \@@_center_cell_box: (see just below).

2561 #4

2562 \@@_cell_end:
2563 }

2564 ¥

2565 }

70

The cell always begins with \ignorespaces with array and that’s why we retrieve that token.

2566 \CS_new_protected:Npn \@@_test_if_empty: \ignorespaces

2567 {
We open a special group with \group_align_safe_begin:. Thus, when \peek_meaning:NTF will
read the & (when the cell is empty), that lecture won’t trigger the end of the cell (since we are in a
lower group...). If the end of cell was trigerred, we would have other tokens in the TeX flow (and not

2568 \group_align_safe_begin:

2569 \peek_meaning:NTF &

2570 { \@@_the_cell_is_empty: }

2571 {

2572 \peek_meaning:NTF \\

2573 { \@@_the_cell_is_empty: }
2574 {

2575 \peek_meaning:NTF \crcr
2576 \@@_the_cell_is_empty:
2577 \group_align_safe_end:
2578 }

2579 }

2580 }

A special version of the previous function for the columns of type V (of varwidth).

2551 \cs_new_protected:Npn \@Q_test_if_empty_varwidth: \ignorespaces

2582 {

2583 \group_align_safe_begin:

2584 \peek_meaning:NTF &

2585 { \@@_the_cell_is_empty_varwidth: }

2586 {

2587 \peek_meaning:NTF \\

2588 { \@@_the_cell_is_empty_varwidth: }
2589 {

2590 \peek_meaning:NTF \crcr

2501 \@@_the_cell_is_empty_varwidth:
2502 \group_align_safe_end:

259 3

2594 }

2595 }

2506 \cs_new_protected:Npn \Q@@_the_cell_is_empty:
2597 {

2508 \group_align_safe_end:

2509 \tl_gput_right:Nn \g_00_cell_after_hook_tl
2600 {

Be careful: here, we can’t merely use \bool_gset_true: \g_@@_empty_cell_bool, in particular
because of the columns of type X.

2601 \box_set_wd:Nn \1_@@_cell_box \c_zero_dim

If all the cells of the column are empty, we still must have a column with the width required by the
column of type p (or b, or m).

2602 \skip_horizontal:N \1_Q@_col_width_dim

2603 }

2604 }

2605 \cs_new_protected:Npn \@@_the_cell_is_empty_varwidth:
2606 {

2607 \group_align_safe_end:

2608 \tl_gput_right:Nn \g_00_cell_after_hook_tl

2609 { \box_set_wd:Nn \1_@@_cell_box \c_zero_dim }
2610 }

71

2611 \cs_new_protected:Npn \@@_test_if_empty_for_S:

2612 {

2613 \peek_meaning:NT __siunitx_table_skip:n

2614 { \bool_gset_true:N \g_00@_empty_cell_bool }
2615 3

The following command will be used in m-columns in order to center vertically the box. In fact,
despite its name, the command does not always center the cell. Indeed, if there is only one row in
the cell, it should not be centered vertically. It’s not possible to know the number of rows of the
cell. However, we consider (as in array) that if the height of the cell is no more that the height of
\strutbox, there is only one row.

2616 \cs_new_protected:Npn \Q@@_center_cell_box:

2617 {
By putting instructions in \g_0@_cell_after_hook_tl, we require a post-action of the box
\1_@@_cell_box.

2618 \tl_gput_right:Nn \g_0@_cell_after_hook_tl
2619 {

2620 \dim_compare :nNnT

26021 { \box_ht:N \1_@@_cell_box }

2622 >

Previously, we had \@arstrutbox and not \strutbox in the following line but the code in array
has changed in v 2.5g and we follow the change (see array: Correctly identify single-line m-cells in
LaTeX News 36).

2623 { \box_ht:N \strutbox }

2624 {

2625 \hbox_set:Nn \1_@@_cell_box

2626 {

2607 \box_move_down:nn

2628 {

2629 (\box_ht:N \1_@@_cell_box - \box_ht:N \@arstrutbox
2630 + \baselineskip) / 2

2631 }

2632 { \box_use:N \1_@@_cell_box }
2633 }

2634 }

2635 }

2636 }

For V (similar to the V of varwidth).
2637 \cs_new_protected:Npn \@Q_V: #1 #2

2638 {

2639 \str_if_eq:nnTF { #2 } { [}

2640 { \@@_make_preamble_V_i:w [}

2641 { \@@_make_preamble V_i:w [] { #2 } }
2642 }

2643 \cs_new_protected:Npn \Q@Q_make_preamble V_i:w [#1]
2644 { \@@_make_preamble_V_ii:nn { #1 } }
2645 \cs_new_protected:Npn \@Q@_make_preamble_V_ii:nn #1 #2

2646 {

2647 \str_set:Nn \1_Q@_vpos_col_str { p }
2648 \str_set:Nn \1_@@_hpos_col_str { j }
2649 \@@_keys_p_column:n { #1 }

We apply setlength in order to allow a width of column of the form \widthof{Some words}.
\widthof is a command of the package calc (not loaded by nicematrix) which redefines the com-
mand \setlength. Of course, even if calc is not loaded, the following code will work with the
standard version of \setlength.

2650 \setlength { \1_tmpa_dim } { #2 }

2651 \IfPackagelLoadedTF { varwidth }

2652 { \@@_make_preamble_ii_iv:nnn { \dim_use:N \1_tmpa_dim } { varwidth } { } }
2653 {

72

2654 \@@_error_or_warning:n { varwidth~not~loaded }

2655 \@@_make_preamble_ii_iv:nnn { \dim_use:N \1_tmpa_dim } { minipage } { }
2656 }
2657 }

For w and W

2655 \cs_new_protected:Npn \@@_w: { \Q@@_make_preamble w:nnnn { } }
2650 \cs_new_protected:Npn \@@_W: { \Q@@_make_preamble_w:nnnn { \Q@@_special _W: } }
#1 is a special argument: empty for w and equal to \@@_special_W: for W;
#2 is the type of column (w or W);
#3 is the type of horizontal alignment (c, 1, r or s);
#4 is the width of the column.

2660 \cS_new_protected:Npn \@Q@_make_preamble_w:nnnn #1 #2 #3 #4

2661 {

2662 \str_if_eq:nnTF { #3 } { s }

2663 { \@@_make_preamble_w_i:nnnn { #1 } { #4 } }

2664 { \@@_make_preamble_w_ii:nnnn { #1 } { #2 } { #3 } { #4 } }
2665 }

First, the case of an horizontal alignment equal to s (for stretch).
#1 is a special argument: empty for w and equal to \@@_special_W: for W;
#2 is the width of the column.

2666 \cs_new_protected:Npn \Q@@_make_preamble_w_i:nnnn #1 #2

2667 {

2668 \tl_gput_right:No \g_0@_array_preamble_tl \g_Q@_pre_cell_tl
2669 \tl_gclear:N \g_0@_pre_cell_tl

2670 \tl_gput_right:Nn \g_0@_array_preamble_tl

2671 {

2672 > {

We use \setlength in order to allow \widthof which is a command of calc (when loaded calc redefines
\setlength). Of course, even if calc is not loaded, the following code will work with the standard
version of \setlength.

2673 \setlength { \1_@@_col_width_dim } { #2 }
2674 \@@_cell_begin:

2675 \tl_set_eq:NN \1_@@_hpos_cell_tl \c_0@_c_tl
2676 }

2677 C

2678 < {

2679 \@@_cell_end_for_w_s:

2680 #1

2681 \@Q@_adjust_size_box:

2682 \box_use_drop:N \1_0@_cell_box

2683 }

2684 }

2685 \int_gincr:N \c@jCol

2686 \@@_rec_preamble_after_col:n

2687 3

Then, the most important version, for the horizontal alignments types of ¢, 1 and r (and not s).

2655 \cs_new_protected:Npn \@Q@_make_preamble_w_ii:nnnn #1 #2 #3 #4

2689 {

2690 \tl_gput_right:No \g_0@_array_preamble_tl \g_0Q@_pre_cell_tl
2601 \tl_gclear:N \g_0@_pre_cell_tl

2692 \tl_gput_right:Nn \g_0@_array_preamble_tl

2693 {

2604 > {

73

The parameter \1_0@_col_width_dim, which is the width of the current column, will be available in
each cell of the column. It will be used by the mono-column blocks.

We use \setlength in order to allow \widthof which is a command of calc (when loaded calc redefines
\setlength). Of course, even if calc is not loaded, the following code will work with the standard
version of \setlength.

2695 \setlength { \1_@@_col_width_dim } { #4 }
2696 \hbox_set:Nw \1_@@_cell_box

2607 \@@_cell_begin:

2698 \tl_set:Nn \1_@@_hpos_cell_tl { #3 }

2699 }

2700 C

2701 < {

2702 \@@_cell_end:

2703 \hbox_set_end:

2704 #1

2705 \@@_adjust_size_box:

2706 \makebox [#4 1 [#3 1 { \box_use_drop:N \1_0@_cell_box }
2707 }

2708 }

We increment the counter of columns and then we test for the presence of a <.

2700 \int_gincr:N \c@jCol
2710 \@@_rec_preamble_after_col:n

2711 }

2712 \cs_new_protected:Npn \@@_special _W:

2713 {

2714 \dim_compare:nNnT { \box_wd:N \1_0@_cell_box } > { \1_0@_col_width_dim }
2715 { \@@_warning:n { W~warning } }

2716 }

For S (of siunitx).
o7 \cs_new_protected:Npn \@Q_S: #1 #2

2718 {

2710 \str_if_eq:nnTF { #2 } { [}

2720 { \@@_make_preamble_S:w [}

2721 { \@@_make_preamble_S:w [] { #2 } }
2722 }

o723 \cs_new_protected:Npn \Q@@_make_preamble_S:w [#1]
o224 { \@@_make_preamble_S_i:n { #1 } }

2725 \cs_new_protected:Npn \@Q_make_preamble_S_i:n #1

2726 {

2727 \IfPackageLoadedF { siunitx } { \@@_fatal:n { siunitx~not~loaded } }
2728 \tl_gput_right:No \g_0@_array_preamble_tl \g_Q@_pre_cell_tl

2729 \tl_gclear:N \g_0@_pre_cell_tl

2730 \tl_gput_right:Nn \g_0@_array_preamble_tl

2731 {

2732 > {

In the cells of a column of type S, we have to wrap the command \@@_node_cell: for the horizontal
alignment of the content of the cell (siunitx has done a job but it’s without effect since we have to
put the content in a box for the PGF/TikZ node and that’s why we have to do the job of horizontal
alignement once again).

2733 \socket_assign_plug:nn { nicematrix / siunitx-wrap } { active }

2734 \keys_set:nn { siunitx } { #1 }
2735 \@@_cell_begin:

2736 \siunitx_cell_begin:w

2737 }

2738 C

2739 <

2740 {

2741 \siunitx_cell_end:

74

We want the value of \1__siunitx_table_text_bool available after \@@_cell_end: because we
need it to know how to align our box after the construction of the PGF/TikZ node. That’s why
we use \g_0@_cell_after_hook_tl to reset the correct value of \1__siunitx_table_text_bool (of
course, if will stay local within the cell of the underlying \halign).

2742 \tl_gput_right:Ne \g_0@_cell_after_hook_tl
2743 {
2744 \bool_if:NTF \1__siunitx_table_text_bool
2745 { \bool_set_true:N }
2746 { \bool_set_false:N }
2747 \1__siunitx_table_text_bool
2748 }
2749 \@@_cell_end:
2750 }
2751 }
We increment the counter of columns and then we test for the presence of a <.
2752 \int_gincr:N \c@jCol
2753 \@@_rec_preamble_after_col:n
2754 }

For (, [and \{.
2755 \cs_new_protected:cpn { @@ _ \token_to_str:N (: } #1 #2

2756 {
2757 \bool_if:NT \1_@@_small_bool { \@@_fatal:n { Delimiter~with~small } }
If we are before the column 1 and not in {NiceArray}, we reserve space for the left delimiter.
2758 \int_if_zero:nTF { \c@jCol }
2759 {
2760 \tl_if_eq:NNTF \g_0@_left_delim_tl \c_@@_dot_tl
2761 {

In that case, in fact, the first letter of the preamble must be considered as the left delimiter of the
array.

2762 \tl_gset:Nn \g_00@_left_delim_tl { #1 }

2763 \tl_gset_eq:NN \g_0@_right_delim_tl \c_@@_dot_tl
2764 \@Q@_rec_preamble:n #2

2765 }

2766 {

2767 \tl_gput_right:Nn \g_0@_array_preamble_tl { ! { \enskip } }
2768 \@@_make_preamble_iv:nn { #1 } { #2 }

2769 }

2770 }

2771 { \@@_make_preamble_iv:nn { #1 } { #2 } }

s}

2773 \cs_set_eq:cc { @@ _ \token_to_str:N [: } { @@ _ \token_to_str:N (: }
2774 \cs_set_eq:cc { @ _ \token_to_str:N \{ : } { @ _ \token_to_str:N (: }

2775 \cs_new_protected:Npn \Q@O_make_preamble_iv:nn #1 #2

2776 {

2777 \tl_gput_right:Ne \g_0@_pre_code_after_tl

2778 { \@@_delimiter:nnn #1 { \int_eval:n { \c@jCol + 1 } } \c_true_bool }
2779 \tl_if_in:nnTF { ([\{) 1 \} \left \right } { #2 }

2780 {

2781 \@@_error:nn { delimiter~after~opening } { #2 }

2782 \@Q@_rec_preamble:n

2783 }

2784 { \@@_rec_preamble:n #2 }

2785 }

In fact, if would be possible to define \1left and \right as no-op.

276 \cs_new_protected:cpn { @@ _ \token_to_str:N \left : } #1
27 { \use:c { @@ _ \token_to_str:N (: } }

(0]

For the closing delimiters. We have two arguments for the following command because we directly
read the following letter in the preamble (we have to see whether we have a opening delimiter following
and we also have to see whether we are at the end of the preamble because, in that case, our letter
must be considered as the right delimiter of the environment if the environment is {NiceArrayl}).

275 \cs_new_protected:cpn { @@ _ \token_to_str:N) : } #1 #2

2789 {

2790 \bool_if:NT \1_@@_small_bool { \@@_fatal:n { Delimiter~with~small } }
2701 \tl_if_in:nnTF {) 1 \} } { #2 }

2792 { \@@_make_preamble_v:nnn #1 #2 }

2793 {

2794 \str_if_eq:nnTF { \s_stop } { #2 }

2795 {

2796 \tl_if_eq:NNTF \g_@@_right_delim_t1l \c_0@_dot_tl

2797 { \tl_gset:Nn \g_0@_right_delim_t1 { #1 } }

2798 {

2799 \tl_gput_right:Nn \g_Q@_array_preamble_tl { ! { \enskip } }
2800 \tl_gput_right:Ne \g_0@_pre_code_after_tl

2801 { \@@_delimiter:nnn #1 { \int_use:N \c@jCol } \c_false_bool }
2802 \@@_rec_preamble:n #2

2803 }

2804 ¥

2805 {

2806 \tl_if_din:nnT { ([\{ \left } { #2 }

2807 { \tl_gput_right:Nn \g_00@_array_preamble_tl { ! { \enskip } } }
2808 \tl_gput_right:Ne \g_0@_pre_code_after_tl

2809 { \@@_delimiter:nnn #1 { \int_use:N \c@jCol } \c_false_bool }
2810 \@Q@_rec_preamble:n #2

2811 }

2812 }

2813 3

2514 \cs_set_eq:cc { @@ _ \token_to_str:N] : } { @@ _ \token_to_str:N) : }
2515 \cs_set_eq:cc { @@ _ \token_to_str:N \} : } { @ _ \token_to_str:N) : }

2516 \cs_new_protected:Npn \@Q@_make_preamble_v:nnn #1 #2 #3

2817 {

2818 \str_if_eq:nnTF { \s_stop } { #3 }

2819 {

2820 \tl_if_eq:NNTF \g_0@_right_delim_t1l \c_@@_dot_tl

2821 {

2822 \tl_gput_right:Nn \g_0@_array_preamble_tl { ! { \enskip } }
2823 \tl_gput_right:Ne \g_0@_pre_code_after_tl

2824 { \@@_delimiter:nnn #1 { \int_use:N \c@jCol } \c_false_bool }
2825 \tl_gset:Nn \g_00@_right_delim_t1 { #2 }

2826 }

2827 {

2828 \tl_gput_right:Nn \g_0@_array_preamble_tl { ! { \enskip } }
2829 \tl_gput_right:Ne \g_0@_pre_code_after_tl

2830 { \@@_delimiter:nnn #1 { \int_use:N \c@jCol } \c_false_bool }
2831 \@@_error:nn { double~closing~delimiter } { #2 }

2832 }

2833 }

2834 {

2835 \tl_gput_right:Ne \g_0@_pre_code_after_tl

2836 { \0@_delimiter:nnn #1 { \int_use:N \c@jCol } \c_false_bool }
2837 \@@_error:nn { double~closing~delimiter } { #2 }

2838 \@@_rec_preamble:n #3

2839 }

2840 3

2341 \cs_new_protected:cpn { @@ _ \token_to_str:N \right : } #1
22 { \use:c { @@ _ \token_to_str:N) : } }

After a specifier of column, we have to test whether there is one or several <{. .} because, after those

76

potential <{. ..}, we have to insert !{\skip_horizontal:N ...} when the key vlines is used. In
fact, we have also to test whether there is, after the <{...}, a @{...}.

2343 \cs_new_protected:Npn \@@_rec_preamble_after_col:n #1

2844 {

2845 \str_if_eq:nnTF { #1 } { < }

2846 { \@@_rec_preamble_after_col_i:n }

2847 {

2848 \str_if_eq:nnTF { #1 } { @ }

2849 { \@@_rec_preamble_after_col_ii:n }

2850 {

2851 \str_if_eq:eeTF { \1_0@_vlines_clist } { all }
2852 {

2853 \tl_gput_right:Nn \g_0@_array_preamble_tl

2854 { ! { \skip_horizontal:N \arrayrulewidth } }
2855 }

2856 {

2857 \clist_if_in:NeT \1_Q@_vlines_clist

2858 { \int_eval:n { \c@jCol + 1 } }

2859 {

2860 \tl_gput_right:Nn \g_0@_array_preamble_tl
2861 { ! { \skip_horizontal:N \arrayrulewidth } }
2862 }

2863 }

2864 \@@_rec_preamble:n { #1 }

2865 }

2866 }

2867 }

2365 \CS_new_protected:Npn \@@_rec_preamble_after_col_i:n #1

2869 {

2870 \tl_gput_right:Nn \g_@@_array_preamble_tl { < { #1 } }
2871 \@@_rec_preamble_after_col:n

2872 ¥

We have to catch a @{. ..} after a specifier of column because, if we have to draw a vertical rule, we
have to add in that @{. ..} a \hskip corresponding to the width of the vertical rule.

2573 \cs_new_protected:Npn \@@_rec_preamble_after_col_ii:n #1

2874 {

2875 \str_if_eq:eeTF { \1_0@_vlines_clist } { all }

2876 {

2877 \tl_gput_right:Nn \g_0@_array_preamble_tl

2878 { @ { #1 \skip_horizontal:N \arrayrulewidth } }

2879 }

2880 {

2881 \clist_if_in:NeTF \1_0@@_vlines_clist { \int_eval:n { \c@jCol + 1 } }
2882 {

2883 \tl_gput_right:Nn \g_0@_array_preamble_tl

2884 { @ { #1 \skip_horizontal:N \arrayrulewidth } }

2885 }

2886 { \tl_gput_right:Nn \g_0@_array_preamble_tl { @ { #1 } } }
2887 }

2888 \@@_rec_preamble:n

2889 }

2300 \cs_new_protected:cpn { @@ _ * : } #1 #2 #3

2891 {

2892 \tl_clear:N \1_tmpa_tl

2893 \int_step_inline:nn { #2 } { \tl_put_right:Nn \1_tmpa_tl { #3 } }
2894 \exp_last_unbraced:No \@@_rec_preamble:n \1_tmpa_tl

2895 }

The token \NC@find is at the head of the definition of the columns type done by \newcolumntype.
We want that token to be no-op here.

7

2306 \cs_new_protected:cpn { @@ _ \token_to_str:N \NC@find : } #1
207 { \@@_rec_preamble:n }

For the case of a letter X. This specifier may take in an optional argument (between square brackets).
That’s why we test whether there is a [after the letter X.

2308 \cs_new_protected:Npn \QQ_X: #1 #2

2899 {

2000 \str_if_eq:nnTF { #2 } { [}

2001 { \@@_make_preamble X:w [}

2002 { \@@_make_preamble _X:w [] #2 }
2903 }

2004 \cs_new_protected:Npn \Q@@_make_preamble_X:w [#1]
2005 { \@Q@_make_preamble X_i:n { #1 } }

#1 is the optional argument of the X specifier (a list of key-value pairs).

The following set of keys is for the specifier X in the preamble of the array. Such specifier may have as
keys all the keys of { nicematrix / p-column } but also a key V and also a key which corresponds
to a positive number (1, 2, 0.5, etc.) which is the weight of the columns. The following set of keys
will be used to retrieve that value and store it in \1_tmpa_£fp.

2005 \keys_define:nn { nicematrix / X-column }

2907 {

2908 V .code:n =

2909 \IfPackageLoadedTF { varwidth }

2910 {

2011 \bool_set_true:N \1_@@_V_of_X_bool

2012 \bool_gset_true:N \g_0@_V_of_X_bool

2013 }

2014 { \@@_error_or_warning:n { varwidth~not~loaded~in~X } } ,
2015 unknown .code:n =

2016 \regex_if_match:nVTF { \A[0-9]1*\.7[0-9]1*\Z } \1_keys_key_str
2017 { \fp_set:Nn \1_tmpa_fp { \1l_keys_key_str } }

2018 { \@@_error_or_warning:n { invalid~weight } }

2919 }

In the following command, #1 is the list of the options of the specifier X.

220 \cs_new_protected:Npn \@Q@_make_preamble_X_i:n #1
2921 {

The possible values of \1_0@_hpos_col_str are j (for justified which is the initial value), 1, c and r
(when the user has used the corresponding key in the optional argument of the specifier X).

2022 \str_set:Nn \1_@@_hpos_col_str { j }
The possible values of \1_0@_vpos_col_str are p (the initial value), m and b (when the user has used
the corresponding key in the optional argument of the specifier X).

2023 \str_set:Nn \1_@@_vpos_col_str { p }
We will store in \1_tmpa_£fp the weight of the column (\1_tmpa_£fp also appears in {nicematrix/X-
column} and the error message invalid~weight.

2024 \fp_set:Nn \1_tmpa_fp { 1.0 }

2025 \@@_keys_p_column:n { #1 }
The unknown keys have been stored by \@@_keys_p_column:n in \1_tmpa_t1 and we use them right

away in the set of keys nicematrix/X-column in order to retrieve the potential weight explicitely
provided by the final user.

2026 \bool_set_false:N \1_@@_V_of_X_bool
2027 \keys_set:no { nicematrix / X-column } \1_tmpa_tl

Now, the weight of the column is stored in \1_tmpa_t1.
2028 \fp_gadd:Nn \g_0@_total_X_weight_fp \1_tmpa_fp

78

We test whether we know the actual width of the X-columns by reading the aux file (after the first
compilation, the width of the X-columns is computed and written in the aux file).

2029 \bool_if:NTF \1_@@_X_columns_aux_bool
2030 {

2031 \@@_make_preamble_ii_iv:nnn

Of course, the weight of a column depends of its weight (in \1_tmpa_£p).

2032 { \fp_use:N \1_tmpa_fp \1_@@_X_columns_dim }

2033 { \bool_if:NTF \1_@@_V_of_X_bool { varwidth } { minipage } }
2034 { \@@_no_update_width: }

2035 }

In the current compilation, we don’t known the actual width of the X column. However, you have to
construct the cells of that column! By convention, we have decided to compose in a {minipage} of
width 5 cm even though we will nullify \1_@@_cell_box after its composition.

2936 {

2037 \tl_gput_right:Nn \g_0@_array_preamble_t1l
2938 {

2939 > {

2040 \@@_cell_begin:

2041 \bool_set_true:N \1_@@_X_bool

You encounter a problem on 2023-03-04: for an environment with X columns, during the first com-
pilations (which are not the definitive one), sometimes, some cells are declared empty even if they
should not. That’s a problem because user’s instructions may use these nodes. That’s why we have
added the following \NotEmpty.

2042 \NotEmpty

The following code will nullify the box of the cell.
2043 \tl_gput_right:Nn \g_0@_cell_after_hook_tl
2044 { \hbox_set:Nn \1_@@_cell box { } }

We put a {minipage} to give to the user the ability to put a command such as \centering in the
\RowStyle.

2045 \begin { minipage } { 5 cm } \arraybackslash
2046 }

2947 C

2948 < {

2049 \end { minipage }
2050 \@@_cell_end:

2951 }

2052 ¥

2053 \int_gincr:N \c@jCol

2954 \@@_rec_preamble_after_col:n
2055 }

2956 }

2057 \cs_new_protected:Npn \@@_no_update_width:

2058 {

2059 \tl_gput_right:Nn \g_00_cell_after_hook_tl

2060 { \cs_set_eq:NN \@@_update_max_cell_width: \prg_do_nothing: }
2061 ¥

For the letter set by the user with vlines-in-sub-matrix (vlism).

2062 \cs_new_protected:Npn \@@_make_preamble_vlism:n #1

2963 {

2064 \seq_gput_right:Ne \g_0@_cols_vlism_seq

2965 { \int_eval:n { \c@jCol + 1 } }

2066 \tl_gput_right:Ne \g_0@_array_preamble_tl

2067 { \exp_not:N ! { \skip_horizontal:N \arrayrulewidth } }
2068 \@@_rec_preamble:n

2969 }

79

The

token \s_stop is a marker that we have inserted to mark the end of the preamble (as provided

by the final user) that we have inserted in the TeX flow.

2970

The

\cs_set_eq:cN { @@ _ \token_to_str:N \s_stop : } \use_none:n

following lines try to catch some errors (when the final user has forgotten the preamble of its

environment).

2971

2972

2973

2974

2975

2976

2977

2978
2979
2980
2981
2982
2983

2984

12

The

2985

2986

The

\cs_new_protected:cpn { @ _ \token_to_str:N \hline : }
{ \@@_fatal:n { Preamble~forgotten } }
\cs_set_eq:cc { @@ _ \token_to_str:N \Hline : } { @@ _ \token_to_str:N \hline : }
\cs_set_eq:cc { @@ _ \token_to_str:N \toprule : }
{ @@ _ \token_to_str:N \hline : }
\cs_set_eq:cc { @@ _ \token_to_str:N \Block : } { @ _ \token_to_str:N \hline : }
\cs_set_eq:cc { @@ _ \token_to_str:N \CodeBefore : }
{ @@ _ \token_to_str:N \hline : }
\cs_set_eq:cc { @@ _ \token_to_str:N \RowStyle : }
{ @@ _ \token_to_str:N \hline : }
\cs_set_eq:cc { @@ _ \token_to_str:N \diagbox : }
{ @@ _ \token_to_str:N \hline : }
\cs_set_eq:cc { @@ _ \token_to_str:N & : }
{ @@ _ \token_to_str:N \hline : }

The redefinition of \multicolumn

following command must not be protected since it begins with \multispan (a TeX primitive).

\cs_new:Npn \Q@@_multicolumn:nnn #1 #2 #3
{

following lines are from the definition of \multicolumn in array (and not in standard LaTeX).

The first line aims to raise an error if the user has put more that one column specifier in the preamble
of \multicolumn.

2987
2988
2989

2990

Now

2991

2992

The

2993
2994
2995
2996
2997
2998
2999
3000
3001

3002

Now

\multispan { #1 }

\cs_set_eq:NN \Q@0_update_max_cell_width: \prg_do_nothing:
\begingroup

\tbl_update_multicolumn_cell_data:n { #1 }

, we patch the (small) preamble as we have done with the main preamble of the array.

\tl_gclear:N \g_0Q@_preamble_tl
\@@_make_m_preamble:n #2 \qg_stop

following lines are an adaptation of the definition of \multicolumn in array.

\def \Q@addamp
{
\legacy_if:nTF { @firstamp }
{ \legacy_if_set_false:n { @firstamp } }
{ \@preamerr 5 }
}
\exp_args:No \@mkpream \g_0Q@_preamble_tl
\@addtopreamble \Qempty
\endgroup
\UseTaggingSocket { tbl / colspan } { #1 }

, we do a treatment specific to nicematrix which has no equivalent in the original definition of

\multicolumn.

3003

3004

3005

3006

3007

\int_compare:nNnT { #1 } > { \c_one_int }
{
\seq_gput_left:Ne \g_0@_multicolumn_cells_seq

{ \int_use:N \c@iRow - \int_eval:n { \c@jCol + 1 } }
\seq_gput_left:Nn \g_0@_multicolumn_sizes_seq { #1 }

80

3008 \seq_gput_right:Ne \g_Q@_pos_of_blocks_seq
{

3009

3010 {

3011 \int_if_zero:nTF { \c@jCol }

3012 { \int_eval:n { \c@iRow + 1 } }

3013 { \int_use:N \c@iRow }

3014 }

3015 { \int_eval:n { \c@jCol + 1 } }

3016 {

3017 \int_if_zero:nTF { \c@jCol }

3018 { \int_eval:n { \c@iRow + 1 } }

3019 { \int_use:N \c@iRow }

3020 }

3021 { \int_eval:n { \c@jCol + #1 } }
The last argument is for the name of the block.

3022 {1

3023 3

3024 }

We want \cellcolor to be available in \multicolumn because \cellcolor of colortbl is available in
\multicolumn.

3025 \RenewDocumentCommand { \cellcolor } { 0 { } m }
3026 {
3027 \tl_gput_right:Ne \g_0@_pre_code_before_tl
3028 {
3029 \@@_rectanglecolor [##1]
3030 { \exp_not:n { ##2 } }
3031 { \int_use:N \c@iRow - \int_use:N \c@jCol }
3032 { \int_use:N \c@iRow - \int_eval:n { \c@jCol + #1 } }
3033 }
3034 \ignorespaces
3035 }
The following lines were in the original definition of \multicolumn.
3036 \def \@sharp { #3 }
3037 \@arstrut
3038 \@preamble
3039 \null

We add some lines.

3040 \int_gadd:Nn \c@jCol { #1 - 1 }

3041 \int_compare:nNnT { \c@jCol } > { \g_@@_col_total_int }
3042 { \int_gset_eq:NN \g_00@_col_total_int \c@jCol }

3043 \ignorespaces

3044 }

The following commands will patch the (small) preamble of the \multicolumn. All those commands
have a m in their name to recall that they deal with the redefinition of \multicolumn.

5005 \cs_new_protected:Npn \@@_make_m_preamble:n #1
3046 {

3047 \str_case:nnF { #1 }

3048 {
3049 \@@_make_m_preamble_i:n #1 }
\@@_make_m_preamble_i:n #1 }
\@@_make_m_preamble_i:n #1 }
\@Q@_make_m_preamble_ii:nn #1
\@@_make_m_preamble_ii:nn #1
\@@_make_m_preamble_ii:nn #1
\@@_make_m_preamble_iii:n #1 }
\@@_make_m_preamble_iv:nnn t #1 }
\@@_make_m_preamble_iv:nnn c #1 }

3050

3051

3052

- VvV R 0

P N N N T S YT ST S S,

3053

N

3054

3055

3056

80 — e

3057

81

3058 b { \@@_make_m_preamble_iv:nnn b #1 }

3059 w { \@@_make_m_preamble_v:nnnn { } #1 }

3060 W { \@@_make_m_preamble_v:nnnn { \@@_special _W: } #1 }

3061 \q_stop {1}

3062 }

3063 {

3064 \cs_if_exist:cTF { NC @ find @ #1 }

3065 {

3066 \tl_set_eq:Nc \1_tmpa_tl { NC @ rewrite @ #1 }

3067 \exp_last_unbraced:No \@@_make_m_preamble:n \1_tmpa_tl
3068 ¥

3069 {

3070 \str_if_eq:nnTF { #1 } { S }

3071 { \ee_fatal:n { unknown~column~type~S~multicolumn } }
3072 { \@@_fatal:nn { unknown~column~type~multicolumn } { #1 } }
3073 }

3074 }

3075 }

For c,1land r

3076 \cs_new_protected:Npn \@@_make_m_preamble_i:n #1

3077 {
3078 \tl_gput_right:Nn \g_0@_preamble_tl
3079 {
3080 > { \@@_cell_begin: \tl_set:Nn \1_Q@_hpos_cell_tl { #1 } }
3081 #1
3082 < \@@_cell_end:
3083 }
We test for the presence of a <.
3084 \@@_make_m_preamble_x:n
3085 }
For >, ! and @
3036 \cs_new_protected:Npn \@@_make_m_preamble_ii:nn #1 #2
3087 {
3088 \tl_gput_right:Nn \g_0@_preamble_tl { #1 { #2 } }
3089 \@@_make_m_preamble:n
3090 }
For |
301 \cs_new_protected:Npn \Q@@_make_m_preamble_iii:n #1
3092 {
3093 \tl_gput_right:Nn \g_0@_preamble_tl { #1 }
3004 \@@_make_m_preamble:n
3095 }
For p, m and b
3096 \cs_new_protected:Npn \@@_make_m_preamble_iv:nnn #1 #2 #3
3097 {
3098 \tl_gput_right:Nn \g_0Q@_preamble_tl
3099 {
3100 > {

3101 \@@_cell_begin:

We use \setlength instead of \dim_set:N to allow a specifier like p{\widthof{Some words}}.
widthof is a command provided by calc. Of course, even if calc is not loaded, the following code will
work with the standard version of \setlength.

3102 \setlength { \1_tmpa_dim } { #3 }

3103 \begin { minipage } [#1] { \1_tmpa_dim }

3104 \mode_leave_vertical:

3105 \arraybackslash

3106 \vrule height \box_ht:N \@arstrutbox depth \c_zero_dim width \c_zero_dim

82

3107

3108

3109

3110

3111

3112

3113

3114

c
< {
\vrule height \c_zero_dim depth \box_dp:N \@arstrutbox width \c_zero_dim
\end { minipage }
\@@_cell_end:
}
}

We test for the presence of a <.

3115

\@@_make_m_preamble_x:n

3116 }
For wand W
517 \cs_new_protected:Npn \Q@_make_m_preamble_v:nnnn #1 #2 #3 #4
3118 {
3119 \tl_gput_right:Nn \g_@@_preamble_tl
3120 {
3121 > {
3122 \dim_set:Nn \1_@@_col_width_dim { #4 }
3123 \hbox_set:Nw \1_@@_cell_box
3124 \@@_cell_begin:
3125 \tl_set:Nn \1_@@_hpos_cell_tl { #3 }
3126 }
3127 C
3128 < {
3129 \@@_cell_end:
3130 \hbox_set_end:
3131 \bool_if:NT \g_0@_rotate_bool { \@@_rotate_cell_box: }
3132 #1
3133 \@Q@_adjust_size_box:
3134 \makebox [#4 1 [#3 1 { \box_use_drop:N \1_0@_cell_box }
3135 }
3136 }

We test for the presence of a <.

3137

3138

\@@_make_m_preamble_x:n

}

After a specifier of column, we have to test whether there is one or several <{..}.

3139

3140

3145

3146

3147

3148

3149

\cs_new_protected:Npn \Q@@_make_m_preamble_x:n #1
{
\str_if_eq:nnTF { #1 } { < }
{ \@@_make_m_preamble_ix:n }
{ \@@_make_m_preamble:n { #1 } }
}

\cs_new_protected:Npn \Q@0@_make_m_preamble_ix:n #1
{
\tl_gput_right:Nn \g_Q@_preamble_tl { < { #1 } }
\@@_make_m_preamble_x:n

}

The command \@@_put_box_in_flow: puts the box \1_tmpa_box (which contains the array) in the

flow.

It is used for the environments with delimiters. First, we have to modify the height and the

depth to take back into account the potential exterior rows (the total height of the first row has been
computed in \1_tmpa_dim and the total height of the potential last row in \1_tmpb_dim).

3150

3151

3152

3153

3154

3155

3156

3157

\cs_new_protected:Npn \@@_put_box_in_flow:
{
\box_set_ht:Nn \1_tmpa_box { \box_ht:N \1_tmpa_box + \1l_tmpa_dim }
\box_set_dp:Nn \1_tmpa_box { \box_dp:N \1_tmpa_box + \1_tmpb_dim }
\str_if_eq:eeTF { \1_0@_baseline_tl } { c }
{ \box_use_drop:N \1_tmpa_box }
{ \@@_put_box_in_flow_i: }

83

The command \@@_put_box_in_flow_i: is used when the value of \1_0@_baseline_t1 is different
of ¢ (the initial value).

3155 \cs_new_protected:Npn \@@_put_box_in_flow_i:

3159

3160

3161

3162

3163

3164

3165

{
\pgfpicture
\@@_gpoint:n { row - 1 }
\dim_gset_eq:NN \g_tmpa_dim \pgfQy
\@@_qgpoint:n { row - \int_eval:n { \c@iRow + 1 } }
\dim_gadd:Nn \g_tmpa_dim \pgf@y
\dim_gset:Nn \g_tmpa_dim { 0.5 \g_tmpa_dim }

Now, \g_tmpa_dim contains the y-value of the center of the array (the delimiters are centered in
relation with this value).

3166

3167

3168

3169

3170

3171

3172

3174

3175

3176

3177

3178

3179

3180

3182

3183

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

\tl_if_in:NnTF \1_@@_baseline_tl { line- }
{
\int_set:Nn \1_tmpa_int
{ \str_range:Nnn \1_Q0@_baseline_tl { 6 } { -1 } }
\bool_lazy_or:nnT
{ \int_compare_p:nNn { \1_tmpa_int
{ \int_compare_p:nNn { \1_tmpa_int
{
\@@_error:n { bad~value~for~baseline-line }
\int_set_eq:NN \1_tmpa_int \c_one_int
}
\@@_gpoint:n { row - \int_use:N \1_tmpa_int }
}
{
\str_if_eq:eeTF { \1_0@_baseline_tl } { t }
{ \int_set_eq:NN \1_tmpa_int \c_one_int }
{
\str_if_eq:onTF \1_@@_baseline_tl { b }
{ \int_set_eq:NN \1_tmpa_int \c@iRow }
{ \int_set:Nn \1_tmpa_int \1_@@_baseline_tl }

133
\c@iRow + 1 } }

}
\bool_lazy_or:nnT
{ \int_compare_p:nNn { \1_tmpa_int } < { \1_@@_first_row_int } }
{ \int_compare_p:nNn { \1_tmpa_int } > { \g_@@_row_total_int } }
{
\@@_error:n { bad~value~for~baseline }
\int_set_eq:NN \1_tmpa_int \c_one_int
}
\@@_gpoint:n { row - \int_use:N \1_tmpa_int - base }

We take into account the position of the mathematical axis.

3195

3196

3197

\dim_gsub:Nn \g_tmpa_dim { \fontdimen22 \textfont2 }
}
\dim_gsub:Nn \g_tmpa_dim \pgfQy

Now, \g_tmpa_dim contains the value of the y translation we have to to.

3198

3199

3200

3201

\endpgfpicture
\box_move_up:nn \g_tmpa_dim { \box_use_drop:N \1_tmpa_box }
\box_use_drop:N \1_tmpa_box

}

The following command is always used by {NiceArrayWithDelims} (even if, in fact, there is no
tabular notes: in fact, it’s not possible to know whether there is tabular notes or not before the
composition of the blocks).

2202 \cs_new_protected:Npn \Q@_use_arraybox_with_notes_c:

3203

{

With an environment {Matrix}, you want to remove the exterior \arraycolsep but we don’t know
the number of columns (since there is no preamble) and that’s why we can’t put @{} at the end of
the preamble. That’s why we remove a \arraycolsep now.

3204

\bool_if:NT \1_@@_NiceMatrix_without_vlines_bool

84

3205 {

3206 \int_compare:nNnT { \c@jCol } > { \c_one_int }

3207 {

3208 \box_set_wd:Nn \1_0@_the_array_box

3200 { \box_wd:N \1_@@_the_array_box - \arraycolsep }
3210 }

3211 }

We need a {minipage} because we will insert a LaTeX list for the tabular notes (that means that a
\vtop{\hsize=. ..} is not enough).

3212 \begin { minipage } [t] { \box_wd:N \1_@@_the_array_box }
3213 \bool_if:NT \1_@@_caption_above_bool

3214 {

3215 \tl_if_empty:NF \1_0@_caption_tl

3216 {

3217 \bool_set_false:N \g_00_caption_finished_bool

3218 \int_gzero:N \c@tabularnote

3219 \@@_insert_caption:

If there is one or several commands \tabularnote in the caption, we will write in the aux file the
number of such tabular notes... but only the tabular notes for which the command \tabularnote
has been used without its optional argument (between square brackets).

3220 \int_compare:nNnT { \g_0@_notes_caption_int } > { \c_zero_int }
3221 {

3222 \tl_gput_right:Ne \g_00@_aux_tl

3223 {

3204 \tl_set:Nn \exp_not:N \1_0@_note_in_caption_tl
3225 { \int_use:N \g_0@@_notes_caption_int }

3226 }

3207 \int_gzero:N \g_0@@_notes_caption_int

3228 }

3229 ¥

3230 }

The \hbox avoids that the pgfpicture inside \@@_draw_blocks adds a extra vertical space before
the notes.

3231 \hbox

3232 {

3233 \box_use_drop:N \1_0@_the_array_box
We have to draw the blocks right away because there may be tabular notes in some blocks (which are
not mono-column: the blocks which are mono-column have been composed in boxes yet)... and we
have to create (potentially) the extra nodes before creating the blocks since there are medium nodes
to create for the blocks.

3234 \@@_create_extra_nodes:
3235 \seq_if_empty:NF \g_0@_blocks_seq { \@@_draw_blocks: }
3236 }

We don’t do the following test with \c@tabularnote because the value of that counter is not reli-
able when the command \ttabbox of floatrow is used (because \ttabbox de-activate \stepcounter
because it compiles twice its tabular).

3237 \bool_lazy_any:nT

3238 {

3239 { ! \seq_if_empty_p:N \g_0Q@_notes_seq }

3240 { ! \seq_if_empty_p:N \g_0@_notes_in_caption_seq }
3241 { ! \tl_if_empty_p:o \g_0@_tabularnote_tl }

3242 }

3243 \@@_insert_tabularnotes:

3244 \cs_set_eq:NN \tabularnote \@@_tabularnote_error:n

3245 \bool_if:NF \1_Q@_caption_above_bool { \@@_insert_caption: }
3246 \end { minipage }

3247 3

85

55 \cs_new_protected:Npn \Q@@_insert_caption:

3249 {

3250 \tl_if_empty:NF \1_0@_caption_tl

3251 {

3252 \cs_if_exist:NTF \@captype

3253 { \@@_insert_caption_i: }

3254 { \@@_error:n { caption~outside~float } }
3255 }

3256 }

257 \cs_new_protected:Npn \@@_insert_caption_i:
3258 {
3250 \group_begin:

The flag \1_@@_in_caption_bool affects only the behavior of the command \tabularnote when
used in the caption.

3260 \bool_set_true:N \1_Q@_in_caption_bool
The package floatrow does a redefinition of \@makecaption which will extract the caption from the

tabular. However, the old version of \@makecaption has been stored by floatrow in \FR@makecaption.
That’s why we restore the old version.

3261 \IfPackageLoadedT { floatrow } { \cs_set_eq:NN \@makecaption \FR@makecaption }
3262 \tl_if_empty:NTF \1_Q@_short_caption_tl

3263 { \caption }

3264 { \caption [\1_0@_short_caption_tl] }

3265 { \1_00@_caption_t1 }

In some circonstancies (in particular when the package caption is loaded), the caption is composed
several times. That’s why, when the same tabular note is encountered (in the caption!), we consider
that you are in the second compilation and you can give to \g_0@_notes_caption_int its final value,
which is the number of tabular notes in the caption. But sometimes, the caption is composed only
once. In that case, we fix the value of \g_0@_caption_finished_bool now.

3266 \bool_if:NF \g_0@_caption_finished_bool

3267 {

3268 \bool_gset_true:N \g_0@_caption_finished_bool

3269 \int_gset_eq:NN \g_0@_notes_caption_int \c@tabularnote
3270 \int_gzero:N \c@tabularnote

3271 }

3272 \tl_if_empty:NF \1_0@_label_tl { \label { \1_0@@_label_tl } }
3073 \group_end:

3274 3

2275 \cs_new_protected:Npn \Q@_tabularnote_error:n #1

3276 {

3277 \@@_error_or_warning:n { tabularnote~below~the~tabular }

3278 \cs_gset:Npn \@@_tabularnote_error:n ##1 { }

3279 3

3280 \cs_new_protected:Npn \Q@_insert_tabularnotes:

3281 {

3282 \seq_gconcat:NNN \g_0@_notes_seq \g_00_notes_in_caption_seq \g_0@_notes_seq
3283 \int_set:Nn \c@tabularnote { \seq_count:N \g_0Q@_notes_seq }
3284 \skip_vertical:N 0.65ex

The TeX group is for potential specifications in the \1_@@_notes_code_before_t1.

3285 \group_begin:

3286 \1_@@_notes_code_before_tl

3287 \tl_if_empty:NF \g_0@_tabularnote_tl
3288 {

3280 \g_0@_tabularnote_tl \par

3200 \tl_gclear:N \g_0@@_tabularnote_tl
3201 }

86

We compose the tabular notes with a list of enumitem. The \strut and the \unskip are designed to
give the ability to put a \bottomrule at the end of the notes with a good vertical space.

3292 \int_compare:nNnT { \c@tabularnote } > { \c_zero_int }
3293 {

3204 \bool_if:NTF \1_@@_notes_para_bool

3205 {

3296 \begin { tabularnotes* }

3207 \seq_map_inline:Nn \g_0@_notes_seq

3208 { \@@_one_tabularnote:nn ##1 }

3299 \strut

3300 \end { tabularnotes* }

The following \par is mandatory for the event that the user has put \footnotesize (for example)
in the notes/code-before.

3301 \par

3302 }

3303 {

3304 \tabularnotes

3305 \seq_map_inline:Nn \g_0@_notes_seq
3306 { \@@_one_tabularnote:nn ##1 }
3307 \strut

3308 \endtabularnotes

3309 }

3310 }

3311 \unskip

3312 \group_end:

3313 \bool_if:NT \1_@@_notes_bottomrule_bool
3314 {

3315 \IfPackageLoadedTF { booktabs }

3316 {

The two dimensions \aboverulesep et \heavyrulewidth are parameters defined by booktabs.
3317 \skip_vertical:N \aboverulesep

\CT@arc@ is the specification of color defined by colortbl but you use it even if colortbl is not loaded.

3318 { \CT@arc@ \hrule height \heavyrulewidth }

3319 }

3320 { \@@_error_or_warning:n { bottomrule~without~booktabs } }
3321 }

3322 \1_@@_notes_code_after_tl

3323 \seq_gclear:N \g_0@_notes_seq

3324 \seq_gclear:N \g_0@_notes_in_caption_seq

3325 \int_gzero:N \c@tabularnote

3326 }

The following command will format (after the main tabular) one tabularnote (with the command
\item) . #1 is the label (when the command \tabularnote has been used with an optional argument
between square brackets) and #2 is the text of the note. The second argument is provided by
curryfication.

3327 \cs_set_protected:Npn \Q@@_one_tabularnote:nn #1

3328 {

3329 \tl_if_novalue:nTF { #1 }

3330 { \item }

3331 { \item [\@@_notes_label_in_list:n { #1 }] }
3332 }

The case of baseline equal to b. Remember that, when the key b is used, the {array} (of array)
is constructed with the option t (and not b). Now, we do the translation to take into account the
option b.

3333 \cs_new_protected:Npn \@@_use_arraybox_with_notes_b:

3334 {

3335 \pgfpicture

3336 \@@_gpoint:n { row - 1 }

3337 \dim_gset_eq:NN \g_tmpa_dim \pgfQy

87

3338 \@@_gpoint:n { row - \int_use:N \c@iRow - base }

3339 \dim_gsub:Nn \g_tmpa_dim \pgf@y

3340 \endpgfpicture

3341 \dim_gadd:Nn \g_tmpa_dim \arrayrulewidth

3342 \int_if_zero:nT { \1_@@_first_row_int }

3343 {

3344 \dim_gadd:Nn \g_tmpa_dim \g_0@_ht_row_zero_dim

3345 \dim_gadd:Nn \g_tmpa_dim \g_@@_dp_row_zero_dim

3346 }

3347 \box_move_up:nn \g_tmpa_dim { \hbox { \@@_use_arraybox_with_notes_c: } }
3348 3

Now, the general case.

3300 \cs_new_protected:Npn \@@_use_arraybox_with_notes:

3350 {

We convert a value of t to a value of 1.
3351 \str_if_eq:eeT { \1_@@_baseline_tl } { t }
3352 { \tl_set:Nn \1_@@_baseline tl { 1 } }

Now, we convert the value of \1_0@_baseline_t1 (which should represent an integer) to an integer
stored in \1_tmpa_int.

3353 \pgfpicture

3354 \@@_gpoint:n { row - 1 }

3355 \dim_gset_eq:NN \g_tmpa_dim \pgfQ@y

3356 \tl_if_in:NnTF \1_@@_baseline_tl { line- }

3357 {

3358 \int_set:Nn \1_tmpa_int

3359 {

3360 \str_range:Nnn

3361 \1_@@_baseline_t1

3362 {67}

3363 { \tl_count:o \1_@@_baseline_tl }

3364 }

3365 \@@_gpoint:n { row - \int_use:N \1l_tmpa_int }
3366 }

3367 {

3368 \int_set:Nn \1_tmpa_int \1_Q@_baseline_tl

3369 \bool_lazy_or:nnT

3370 { \int_compare_p:nNn { \1_tmpa_int } < { \1_@@_first_row_int } }
3371 { \int_compare_p:nNn { \1_tmpa_int } > { \g_0@@_row_total_int } }
3372 {

3373 \@@_error:n { bad~value~for~baseline }

3374 \int_set:Nn \1_tmpa_int 1

3375 }

3376 \@@_gpoint:n { row - \int_use:N \1_tmpa_int - base }
3377 }

3378 \dim_gsub:Nn \g_tmpa_dim \pgf@y

3379 \endpgfpicture

3380 \dim_gadd:Nn \g_tmpa_dim \arrayrulewidth

3381 \int_if_zero:nT { \1_@@_first_row_int }

3382 {

3383 \dim_gadd:Nn \g_tmpa_dim \g_0@_ht_row_zero_dim
3384 \dim_gadd:Nn \g_tmpa_dim \g_0@_dp_row_zero_dim
3385 }

3386 \box_move_up:nn \g_tmpa_dim { \hbox { \@@_use_arraybox_with_notes_c: } }

3387 }

The command \@@_put_box_in_flow_bis: is used when the option delimiters/max-width is used
because, in this case, we have to adjust the widths of the delimiters. The arguments #1 and #2 are
the delimiters specified by the user.

3338 \cs_new_protected:Npn \Q@@_put_box_in_flow_bis:nn #1 #2
3389 {

88

We will compute the real width of both delimiters used.

3390 \dim_zero_new:N \1_Q@_real_left_delim_dim

3301 \dim_zero_new:N \1_@@_real_right_delim_dim

3392 \hbox_set:Nn \1_tmpb_box

3393 {

3304 \m@th

3395 $ % $

3306 \left #1

3307 \vcenter

3398 {

3399 \vbox_to_ht:nn

3400 { \box_ht_plus_dp:N \1_tmpa_box }

3401 {3}

3402 }

3403 \right

3404 $ % $

3405 }

3406 \dim_set:Nn \1_@@_real_left_delim_dim

3407 { \box_wd:N \1_tmpb_box - \nulldelimiterspace }

3408 \hbox_set:Nn \1_tmpb_box

3409 {

3410 \m@th

3411 $ % $

3412 \left .

3413 \vbox_to_ht:nn

3414 { \box_ht_plus_dp:N \1_tmpa_box }

3415 {12

3416 \I‘ight #2

3417 $ % $

3418 }

3419 \dim_set:Nn \1_Q@_real_right_delim_dim

3420 { \box_wd:N \1_tmpb_box - \nulldelimiterspace }
Now, we can put the box in the TeX flow with the horizontal adjustments on both sides.

3421 \skip_horizontal:n { \1_@@_left_delim_dim - \1_0@_real_left_delim_dim }

3422 \@@_put_box_in_flow:

3423 \skip_horizontal:n { \1_Q@@_right_delim_dim - \1_@@_real_right_delim_dim }
3424 T

The construction of the array in the environment {NiceArrayWithDelims} is, in fact, done by the
environment {@@-light-syntax} or by the environment {@@-normal-syntax} (whether the option
light-syntax is in force or not). When the key light-syntax is not used, the construction is a
standard environment (and, thus, it’s possible to use verbatim in the array).

2125 \NewDocumentEnvironment { ©@@-normal-syntax } { }

First, we test whether the environment is empty. If it is empty, we raise a fatal error (it’s only a
security). In order to detect whether it is empty, we test whether the next token is \end and, if it’s
the case, we test if this is the end of the environment (if it is not, a standard error will be raised by
LaTeX for incorrect nested environments).

3426 {

3427 \peek_remove_spaces:n

3428 {

3429 \peek_meaning:NTF \end

3430 { \@@_analyze_end:Nn }
3431 {

3432 \@@_transform_preamble:

Here is the call to \array (we have a dedicated macro \@@_array:n because of compatibility with
the classes revtex4-1 and revtex4-2).

3433 \@@_array:o \g_00_array_preamble_tl

3434 }

3435 }

3436 }

89

3437 {
3438 \@@_create_col_nodes:
3439 \endarray

3440 }

When the key light-syntax is in force, we use an environment which takes its whole body as an
argument (with the specifier b).

;141 \NewDocumentEnvironment { @@-light-syntax } { b }
3442 {

First, we test whether the environment is empty. It’s only a security. Of course, this test is more easy
than the similar test for the “normal syntax” because we have the whole body of the environment in
#1.

3443 \tl_if_empty:nT { #1 }

3444 { \@@_fatal:n { empty~environment } }

3445 \tl_if_in:nnT { #1 } { & }

3446 { \@@_fatal:n { ampersand~in~light-syntax } }

3447 \tl_if_in:nnT { #1 > { \\ }

3448 { \@@_fatal:n { double-backslash~in~light-syntax } }

Now, you extract the \CodeAfter of the body of the environment. Maybe, there is no com-
mand \CodeAfter in the body. That’s why you put a marker \CodeAfter after #1. If there
is yet a \CodeAfter in #1, this second (or third...) \CodeAfter will be caught in the value of
\g_nicematrix_code_after_tl. That doesn’t matter because \CodeAfter will be set to no-op be-
fore the execution of \g_nicematrix_code_after_tl.

3449 \@@_light_syntax_i:w #1 \CodeAfter \g_stop
The command \array is hidden somewhere in \@@_light_syntax_i:w.

3450 }

Now, the second part of the environment. We must leave these lines in the second part (and not put
them in the first part even though we caught the whole body of the environment with an argument
of type b) in order to have the columns S of siunitx working fine.

3451 {

3452 \@@_create_col_nodes:
3453 \endarray

3454 }

3155 \cs_new_protected:Npn \@@_light_syntax_i:w #1\CodeAfter #2 \g_stop
3456 {
3457 \tl_gput_right:Nn \g_nicematrix_code_after_tl { #2 }
The body of the array, which is stored in the argument #1, is now split into items (and not tokens).
3458 \seq_clear_new:N \1_@@_rows_seq

We rescan the character of end of line in order to have the correct catcode.

3459 \tl_set_rescan:Nno \1_@@_end_of row_tl { } \1_@@_end_of_row_t1
3460 \bool_if:NTF \1_@@_light_syntax_expanded_bool
3461 { \seq_set_split:Nee }
3462 { \seq_set_split:Non }
3463 \1_0@_rows_seq \1_@@_end_of _row_tl { #1 }
We delete the last row if it is empty.
3464 \seq_pop_right:NN \1_0@_rows_seq \1l_tmpa_tl
3465 \tl_if_empty:NF \1_tmpa_tl
3466 { \seq_put_right:No \1_@@_rows_seq \1_tmpa_tl }

If the environment uses the option last-row without value (i.e. without saying the number of the
rows), we have now the opportunity to compute that value. We do it, and so, if the token list
\1_0@_code_for_last_row_t1l is not empty, we will use directly where it should be.

3467 \int_compare:nNnT { \1_@@_last_row_int } = { -1 }

3468 { \int_set:Nn \1_@@_last_row_int { \seq_count:N \1_0@_rows_seq } }

90

The new value of the body (that is to say after replacement of the separators of rows and columns
by \\ and &) of the environment will be stored in \1_@@_new_body_t1 in order to allow the use of
commands such as \hline or \hdottedline with the key light-syntax).

3469 \tl_build_begin:N \1_0@_new_body_tl
3470 \int_zero_new:N \1_@@_nb_cols_int

First, we treat the first row.

3471 \seq_pop_left:NN \1_@@_rows_seq \l_tmpa_tl
3472 \@@_line_with_light_syntax:o \1l_tmpa_tl

Now, the other rows (with the same treatment, excepted that we have to insert \\ between the rows).

3473 \seq_map_inline:Nn \1_@@_rows_seq

3474 {

3475 \tl_build_put_right:Nn \1_0@_new_body_t1l { \\ }
3476 \@@_line_with_light_syntax:n { ##1 }

3477 }

3478 \tl_build_end:N \1_@@_new_body_tl

3479 \int_compare:nNnT { \1_@@_last_col_int } = { -1 }
3480 {

3481 \int_set:Nn \1_@@_last_col_int

3482 { \1_@@_nb_cols_int - 1 + \1_@@_first_col_int }
3483 }

Now, we can construct the preamble: if the user has used the key last-col, we have the correct
number of columns even though the user has used last-col without value.

3484 \@@_transform_preamble:

The call to \array is in the following command (we have a dedicated macro \@@_array: because of
compatibility with the classes revtex4-1 and revtex4-2).

3485 \@@_array:o \g_QQ@_array_preamble_tl \1_0Q@_new_body_tl
3486 }

257 \cs_new_protected:Npn \@0_line_with_light_syntax:n #1

3488 {

3480 \seq_clear_new:N \1_00@_cells_seq

3490 \seq_set_split:Nnn \1_@@_cells_seq { ~ } { #1 }

3491 \int_set:Nn \1_@@_nb_cols_int

3492 {

3493 \int_max:nn

3494 { \1_@@_nb_cols_int }

3495 { \seq_count:N \1_0@_cells_seq }

3496 }

3497 \seq_pop_left:NN \1_@@_cells_seq \1_tmpa_tl

3498 \tl_build_put_right:No \1_0@_new_body_tl \1_tmpa_tl
3499 \seq_map_inline:Nn \1_@@_cells_seq

3500 { \tl_build_put_right:Nn \1_@@_new_body_tl { & ##1 } }
3501 }

302 \cs_generate_variant:Nn \@Q@_line_with_light_syntax:n { o }

The following command is used by the code which detects whether the environment is empty (we
raise a fatal error in this case: it’s only a security). When this command is used, #1 is, in fact, always
\end.

5503 \cs_new_protected:Npn \Q@_analyze_end:Nn #1 #2

3504 {

3505 \str_if_eq:eeT { \g_0@_name_env_str } { #2 }

3506 { \@e@_fatal:n { empty~environment } }
We reput in the stream the \end{. ..} we have extracted and the user will have an error for incorrect
nested environments.

3507 \end { #2 }

3508 }

91

The command \@@_create_col_nodes: will construct a special last row. That last row is a false
row used to create the col nodes and to fix the width of the columns (when the array is constructed
with an option which specifies the width of the columns such as columns-width).

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

\cs_new:Npn \Q@_create_col_nodes:

{

\crcr
\int_if_zero:nT { \1_@@_first_col_int }

{

}

\omit
\hbox_overlap_left:n
{
\bool_if:NT \1_@@_code_before_bool
{ \pgfsys@markposition { \@@_env: - col - 0 } }
\pgfpicture
\pgfrememberpicturepositiononpagetrue
\pgfcoordinate { \@@_env: - col - 0 } \pgfpointorigin
\str_if_empty:NF \1_0@_name_str
{ \pgfnodealias { \1_0@_name_str - col - 0 } { \@@_env: - col - 0 } }
\endpgfpicture
\skip_horizontal:n { 2 \col@sep + \g_0@_width_first_col_dim }

&

\omit

The following instruction must be put after the instruction \omit since, of course, it is not expandable.

3530

\bool_gset_true:N \g_00_row_of_col_done_bool

First, we put a col node on the left of the first column (of course, we have to do that after the
\omit).

3543

3544

3545

3546

3547

3548

3550

3551

3553

3554

3555

3556

3557

3558

\int_if_zero:nTF { \1_@@_first_col_int }

{

}

\@@_mark_position:n { 1 }
\pgfpicture
\pgfrememberpicturepositiononpagetrue
\pgfcoordinate { \@@_env: - col - 1 }
{ \pgfpoint { - 0.5 \arrayrulewidth } \c_zero_dim }
\str_if_empty:NF \1_Q@_name_str
{ \pgfnodealias { \1_0@_name_str - col - 1 } { \@@_env: - col - 1 } }
\endpgfpicture

\bool_if:NT \1_@@_code_before_bool
{
\hbox
{
\skip_horizontal:n { 0.5 \arrayrulewidth }
\pgfsys@markposition { \@@_env: - col - 1 }
\skip_horizontal:n { -0.5 \arrayrulewidth }
}
}
\pgfpicture
\pgfrememberpicturepositiononpagetrue
\pgfcoordinate { \@@_env: - col - 1 }
{ \pgfpoint { 0.5 \arrayrulewidth } \c_zero_dim }
\@@_node_alias:n { 1 }
\endpgfpicture

We compute in \g_tmpa_skip the common width of the columns (it’s a skip and not a dimension).
We use a global variable because we are in a cell of an \halign and because we have to use that
variable in other cells (of the same row). The affectation of \g_tmpa_skip, like all the affectations,
must be done after the \omit of the cell.

92

We give a default value for \g_tmpa_skip (0 pt plus 1 fill) but we will add some dimensions to
it.

3550 \skip_gset:Nn \g_tmpa_skip { O pt~plus 1 fill }

3560 \bool_if:NF \1_@@_auto_columns_width_bool

3561 { \dim_compare:nNnT { \1_0@_columns_width_dim } > { \c_zero_dim } }
3562 {

3563 \bool_lazy_and:nnTF

3564 { \1_0@@_auto_columns_width_bool }

3565 { \bool_not_p:n \1_@@_block_auto_columns_width_bool }
3566 { \skip_gadd:Nn \g_tmpa_skip \g_@@_max_cell_width_dim }
3567 { \skip_gadd:Nn \g_tmpa_skip \1_Q@_columns_width_dim }
3568 \skip_gadd:Nn \g_tmpa_skip { 2 \col@sep }

3569 }

3570 \skip_horizontal:N \g_tmpa_skip

3571 \hbox

3572 {

3573 \@@_mark_position:n { 2 }

3574 \pgfpicture

3575 \pgfrememberpicturepositiononpagetrue

3576 \pgfcoordinate { \@@_env: - col - 2 }

3577 { \pgfpoint { - 0.5 \arrayrulewidth } \c_zero_dim }
3578 \@@_node_alias:n { 2 }

3579 \endpgfpicture

3580 }

We begin a loop over the columns. The integer \g_tmpa_int will be the number of the current
column. This integer is used for the TikZ nodes.

3581 \int_gset_eq:NN \g_tmpa_int \c_one_int
3582 \bool_if:NTF \g_0@_last_col_found_bool
3583 { \prg_replicate:nn { \int_max:nn { \g_@@_col_total_int - 3} {0} } }
3584 { \prg_replicate:nn { \int_max:nn { \g_@@_col_total_int - 2} {0} } }
3585 {
3586 &
3587 \omit
3588 \int_gincr:N \g_tmpa_int
The incrementation of the counter \g_tmpa_int must be done after the \omit of the cell.
3589 \skip_horizontal:N \g_tmpa_skip
3500 \@@_mark_position:n { \int_eval:n { \g_tmpa_int + 1 } }

We create the col node on the right of the current column.

3501 \pgfpicture

3502 \pgfrememberpicturepositiononpagetrue

3503 \pgfcoordinate { \@@_env: - col - \int_eval:n { \g_tmpa_int + 1 } }
3504 { \pgfpoint { - 0.5 \arrayrulewidth } \c_zero_dim }

3505 \@@_node_alias:n { \int_eval:n { \g_tmpa_int + 1 } }

3596 \endpgfpicture

3597 }

If there is only one column (and a potential “last column”), we don’t have to put the following code
(there is only one column and we have put the correct code previously).

3598 \bool_lazy_or:nnF

3509 { \int_compare_p:nNn \g_0@_col_total_int = 1 }

3600 { \int_compare_p:nNn \g_0@_col_total_int = 2 && \g_0@_last_col_found_bool }
3601 {

3602 &

3603 \omit

3604 \skip_horizontal:N \g_tmpa_skip

3605 \int_gincr:N \g_tmpa_int

3606 \bool_lazy_any:nF

3607 {

3608 \g_00_delims_bool

3609 \1_@@_tabular_bool

3610 { ' \clist_if_empty_p:N \1_@@_vlines_clist }
3611 \1_0@_exterior_arraycolsep_bool

93

3612 \1_0@_bar_at_end_of_pream_bool

3613 }

3614 { \skip_horizontal:n { - \col@sep } }

3615 \bool_if:NT \1_@@_code_before_bool

3616 {

3617 \hbox

3618 {

3619 \skip_horizontal:n { -0.5 \arrayrulewidth }

With an environment {Matrix}, you want to remove the exterior \arraycolsep but we don’t know
the number of columns (since there is no preamble) and that’s why we can’t put @{} at the end of
the preamble. That’s why we remove a \arraycolsep now.

3620 \bool_if:NT \1_@@_NiceMatrix_without_vlines_bool

3621 { \skip_horizontal:n { - \arraycolsep } }

3622 \pgfsys@markposition

3623 { \@@_env: - col - \int_eval:n { \g_tmpa_int + 1 } }
3624 \skip_horizontal:n { 0.5 \arrayrulewidth }

3625 \bool_if:NT \1_@@_NiceMatrix_without_vlines_bool

3626 { \skip_horizontal:N \arraycolsep }

3627 ¥

3628 }

3629 \pgfpicture

3630 \pgfrememberpicturepositiononpagetrue

3631 \pgfcoordinate { \@@_env: - col - \int_eval:n { \g_tmpa_int + 1 } }
3632 {

3633 \bool_if:NT \1_@@_NiceMatrix_without_vlines_bool

3634 {

3635 \pgfpoint

3636 { - 0.5 \arrayrulewidth - \arraycolsep }

3637 \c_zero_dim

3638 }

3639 { \pgfpoint { - 0.5 \arrayrulewidth } \c_zero_dim }

3640 }

3641 \@@_node_alias:n { \int_eval:n { \g_tmpa_int + 1 } }
3642 \endpgfpicture

3643 }

3644 \bool_if:NT \g_0@_last_col_found_bool

3645 {

3646 \hbox_overlap_right:n

3647 {

3648 \skip_horizontal:N \g_0@_width_last_col_dim

3649 \skip_horizontal:N \col@sep

3650 \bool_if:NT \1_@@_code_before_bool

3651 {

3652 \pgfsys@markposition

3653 { \@@_env: - col - \int_eval:n { \g_00@_col_total_int + 1 } }
3654 }

3655 \pgfpicture

3656 \pgfrememberpicturepositiononpagetrue

3657 \pgfcoordinate

3658 { \@@_env: - col - \int_eval:n { \g_Q@@_col_total_int + 1 } }
3650 \pgfpointorigin

3660 \@@_node_alias:n { \int_eval:n { \g_0@_col_total_int + 1 } }
3661 \endpgfpicture

3662 }

3663 }

3664 3

3665 \cs_new_protected:Npn \@@_mark_position:n #1
3666 {

3667 \bool_if:NT \1_@@_code_before_bool

94

3668 {

3669 \hbox

3670 {

3671 \skip_horizontal:n { -0.5 \arrayrulewidth }
3672 \pgfsys@markposition { \@@_env: - col - #1 }
3673 \skip_horizontal:n { 0.5 \arrayrulewidth }
3674 }

3675 }

3676 }

3677 \cs_new_protected:Npn \Q@Q_node_alias:n #1

3678 {

3679 \str_if_empty:NF \1_Q@_name_str

3680 { \pgfnodealias { \1_0@_name_str - col - #1 } { \@@_env: - col - #1 } }
3681 }

Here is the preamble for the “first column” (if the user uses the key first-col)

362 \tl_const:Nn \c_QQ@_preamble_first_col_tl

3683 {

3684 >

3685 {
At the beginning of the cell, we link \CodeAfter to a command which begins with \\ (whereas the
standard version of \CodeAfter begins does not).

3686 \cs_set_eq:NN \CodeAfter \@Q@_CodeAfter_i:
3687 \bool_gset_true:N \g_0@_after_col_zero_bool
3688 \@Q@_begin_of_row:

3689 \hbox_set:Nw \1_@@_cell_box

3690 \@@_math_toggle:

3691 \@@_tuning_key_small:

We insert \1_@@_code_for_first_col_tl... but we don’t insert it in the potential “first row” and
in the potential “last row”.

3692 \int_compare:nNnT { \c@iRow } > { \c_zero_int }

3693 {

3694 \bool_lazy_or:nnT

3605 { \int_compare_p:nNn { \1_@@_last_row_int } < { \c_zero_int } }
3696 { \int_compare_p:nNn { \c@iRow } < { \1_@@_last_row_int } }
3697 {

3608 \1_0@_code_for_first_col_tl

3699 \xglobal \colorlet { nicematrix-first-col } { . }

3700 }

3701 }

3702 }

Be careful: despite this letter 1 the cells of the “first column” are composed in a R manner since they
are composed in a \hbox_overlap_left:n.

3703 1

3704 <

3705 {

3706 \@@_math_toggle:

3707 \hbox_set_end:

3708 \bool_if:NT \g_0@_rotate_bool { \@@_rotate_cell_box: }
3700 \@@_adjust_size_box:

3710 \@@_update_for_first_and_last_row:

We actualise the width of the “first column” because we will use this width after the construction of
the array.

3711 \dim_gset:Nn \g_0@_width_first_col_dim

3712 { \dim_max:nn { \g_0@@_width_first_col_dim } { \box_wd:N \1_@@_cell_box } }
The content of the cell is inserted in an overlapping position.

3713 \hbox_overlap_left:n

3714 {

95

3715 \dim_compare:nNnTF { \box_wd:N \1_@@_cell_box } > { \c_zero_dim }
3716 { \@@_node_cell: }

3717 { \box_use_drop:N \1_0@_cell_box }

3718 \skip_horizontal:N \1_@@_left_delim_dim

3719 \skip_horizontal:N \1_@@_left_margin_dim

3720 \skip_horizontal:N \1_@@_extra_left_margin_dim
3721 T

3722 \bool_gset_false:N \g_0Q@_empty_cell_bool

3723 \skip_horizontal:n { -2 \col@sep }

3724 ¥

3725 3

Here is the preamble for the “last column” (if the user uses the key last-col).

5726 \tl_const:Nn \c_@@_preamble_last_col_tl

3727 {

3728 >

3729 {

3730 \bool_set_true:N \1_@@_in_last_col_bool
At the beginning of the cell, we link \CodeAfter to a command which begins with \\ (whereas the
standard version of \CodeAfter begins does not).

3731 \cs_set_eq:NN \CodeAfter \@@_CodeAfter_i:
With the flag \g_0@@_last_col_found_bool, we will know that the “last column” is really used.
3732 \bool_gset_true:N \g_0@_last_col_found_bool
3733 \int_gincr:N \c@jCol
3734 \int_gset_eq:NN \g_0@_col_total_int \c@jCol
3735 \hbox_set:Nw \1_@@_cell_box
3736 \@@_math_toggle:
3737 \@@_tuning_key_small:

We insert \1_0@_code_for_last_col_tl... but we don’t insert it in the potential “first row” and in
the potential “last row”.

3738 \int_compare:nNnT { \c@iRow } > { \c_zero_int }

3739 {

3740 \bool_lazy_or:nnT

3741 { \int_compare_p:nNn { \1_0@_last_row_int } < { \c_zero_int } }
3742 { \int_compare_p:nNn { \c@iRow } < { \1_@@_last_row_int } }
3743 {

3744 \1_0@_code_for_last_col_tl

3745 \xglobal \colorlet { nicematrix-last-col } { . }

3746 }

3747 }

3748 }

3749 1

3750 <

3751 {

3752 \@@_math_toggle:

3753 \hbox_set_end:

3754 \bool_if:NT \g_0@_rotate_bool { \@@_rotate_cell_box: }

3755 \@@_adjust_size_box:

3756 \@@_update_for_first_and_last_row:

We actualise the width of the “last column” because we will use this width after the construction of
the array.

3757 \dim_gset:Nn \g_0@_width_last_col_dim
3758 { \dim_max:nn { \g_00_width_last_col_dim } { \box_wd:N \1_@@_cell_box } }
3759 \skip_horizontal:n { -2 \col@sep }

The content of the cell is inserted in an overlapping position.

3760 \hbox_overlap_right:n

3761 {

3762 \dim_compare:nNnT { \box_wd:N \1_0@_cell_box } > { \c_zero_dim }
3763 {

3764 \skip_horizontal:N \1_Q@_right_delim_dim

3765 \skip_horizontal:N \1_Q@_right_margin_dim

96

3766 \skip_horizontal:N \1_@@_extra_right_margin_dim

3767 \@@_node_cell:

3768 }

3769 }

3770 \bool_gset_false:N \g_QQ@_empty_cell_bool
3771 }

3772}

The environment {NiceArray} is constructed upon the environment {NiceArrayWithDelims}.

5773 \NewDocumentEnvironment { NiceArray } { }

3774 {

3775 \bool_gset_false:N \g_0@_delims_bool

3776 \str_if_empty:NT \g_QQ@_name_env_str

3777 { \str_gset:Nn \g_0@@_name_env_str { NiceArray } }

We put . and . for the delimiters but, in fact, that doesn’t matter because these arguments won’t be
used in {NiceArrayWithDelims} (because the flag \g_0@_delims_bool is set to false).

3778 \NiceArrayWithDelims .
3779 }
5720 { \endNiceArrayWithDelims }

We create the variants of the environment {NiceArrayWithDelims}.

ars1 \cs_new_protected:Npn \@Q_def_env:NNN #1 #2 #3

3782 {

3783 \NewDocumentEnvironment { #1 NiceArray } { }
3784 {

3785 \bool_gset_true:N \g_00_delims_bool

3786 \str_if_empty:NT \g_0Q@_name_env_str

3787 { \str_gset:Nn \g_0@_name_env_str { #1 NiceArray } }
3788 \@@_test_if_math_mode:

3789 \NiceArrayWithDelims #2 #3

3790 }

3791 { \endNiceArrayWithDelims }

3792 ¥

5703 \@@_def_env:NNN p ()

3700 \@@_def_env:NNN b []

3705 \@@_def_env:NNN B \{ \}
;79 \@@_def_env:NNN v \vert \vert
3707 \@@_def_env:NNN V \Vert \Vert

13 The environment {NiceMatrix} and its variants

;793 \cs_new_protected:Npn \Q@@_begin_of _NiceMatrix:nn #1 #2

3799 {

3800 \bool_set_false:N \1_Q@_preamble_bool

3801 \tl_clear:N \1_tmpa_tl

3802 \bool_if:NT \1_@@_NiceMatrix_without_vlines_bool
3803 { \tl_set:Nn \1_tmpa_tl { @ {2} 3} }

3804 \tl_put_right:Nn \1_tmpa_tl

3805 {

3806 *

3807 {

3808 \int_case:nnF \1_@@_last_col_int

3809 {

3810 { -2 } { \c@MaxMatrixCols }

3811 { -1} { \int_eval:n { \c@MaxMatrixCols + 1 } }

97

The value 0 can’t occur here since we are in a matrix (which is an environment without preamble).
3812 }

3813 { \int_eval:n { \1_@@_last_col_int - 1 } }
3814 }

3815 { #2 }

3816 }

3817 \tl_set:Nn \1_tmpb_tl { \use:c { #1 NiceArray } }
3818 \exp_args:No \1_tmpb_tl \1_tmpa_tl

3819 }

320 \cs_generate_variant:Nn \@Q_begin_of_NiceMatrix:nn { n o }

se21 \clist_map_inline:nn { p , b , B, v, V }

3822 {

3823 \NewDocumentEnvironment { #1 NiceMatrix } { ! 0 { } }

3824 {

3825 \bool_gset_true:N \g_0@_delims_bool

3826 \str_gset:Nn \g_0@_name_env_str { #1 NiceMatrix }

3827 \int_if_zero:nT { \1_@@_last_col_int }

3828 {

3829 \bool_set_true:N \1_@@_last_col_without_value_bool
3830 \int_set:Nn \1_@@_last_col_int { -1 }

3831 }

3832 \keys_set:nn { nicematrix / NiceMatrix } { ##1 }

3833 \@@_begin_of_NiceMatrix:no { #1 } { \1_@@_columns_type_t1l }
3834 }

3835 { \use:c { end #1 NiceArray } }

3836 }

We define also an environment {NiceMatrix}
3337 \NewDocumentEnvironment { NiceMatrix } { ' 0 { } }

3838 {

3839 \str_gset:Nn \g_0@_name_env_str { NiceMatrix }

3840 \int_if_zero:nT { \1_@@_last_col_int }

3841 {

3842 \bool_set_true:N \1_0@_last_col_without_value_bool
3843 \int_set:Nn \1_@@_last_col_int { -1 }

3844 }

3845 \keys_set:nn { nicematrix / NiceMatrix } { #1 }

3846 \bool_lazy_or:nnT

3847 { \clist_if_empty_p:N \1_0@_vlines_clist }

3848 { \1_@@_except_borders_bool }

3849 { \bool_set_true:N \1_@@_NiceMatrix_without_vlines_bool }
3850 \@@_begin_of_NiceMatrix:no { } { \1_@@_columns_type_tl }
3851 }

;62 { \endNiceArray }

The following command will be linked to \NotEmpty in the environments of nicematrix.
3653 \cs_new_protected:Npn \Q@@_NotEmpty:
354 { \bool_gset_true:N \g_00@_not_empty_cell_bool }

14 {NiceTabular}, {NiceTabularX} and {NiceTabular*}

3355 \NewDocumentEnvironment { NiceTabular } { 0 { }m ' 0 { } }
3856 {

If the dimension \1_@@_width_dim is equal to 0 pt, that means that it has not been set by a previous
use of \NiceMatrixOptions.

3857 \dim_compare:nNnT { \1_0@_width_dim } = { \c_zero_dim }
3858 { \dim_set_eq:NN \1_@@_width_dim \linewidth }

3859 \str_gset:Nn \g_00@_name_env_str { NiceTabular }

3860 \keys_set:nn { nicematrix / NiceTabular } { #1 , #3 }
3861 \tl_if_empty:NF \1_@@_short_caption_tl

98

3862 {

3863 \tl_if_empty:NT \1_Q@_caption_tl

3864 {

3865 \@@_error_or_warning:n { short-caption~without~caption }
3866 \tl_set_eq:NN \1_@@_caption_tl \1_@@_short_caption_tl
3867 }

3868 }

3869 \tl_if_empty:NF \1_@@_label_tl

3870 {

3871 \tl_if_empty:NT \1_Q@_caption_tl

3872 { \@@_error_or_warning:n { label~without~caption } }
3873 }

3874 \NewDocumentEnvironment { TabularNote } { b }

3875 {

3876 \bool_if:NTF \1_@@_in_code_after_bool

3877 { \@@_error_or_warning:n { TabularNote~in~CodeAfter } }
3878 {

3879 \tl_if_empty:NF \g_0@_tabularnote_tl

3880 { \tl_gput_right:Nn \g_0@_tabularnote_tl { \par } }
3881 \tl_gput_right:Nn \g_0@_tabularnote_tl { ##1 }

3882 }

3883 }

3884 {3}

3885 \@@_settings_for_tabular:

3886 \NiceArray { #2 }

3887 }

sses { \endNiceArray }
350 \cs_new_protected:Npn \@@_settings_for_tabular:

3890 {

3891 \bool_set_true:N \1_@@_tabular_bool

3892 \cs_set_eq:NN \@@_math_toggle: \prg_do_nothing:

3803 \cs_set_eq:NN \@@_tuning_not_tabular_begin: \prg_do_nothing:
3894 \cs_set_eq:NN \@@_tuning_not_tabular_end: \prg_do_nothing:
3895 }

3306 \NewDocumentEnvironment { NiceTabularX } {m 0 { }m ' 0{ } }
3897 {

3808 \str_gset:Nn \g_0@_name_env_str { NiceTabularX }

3890 \dim_set:Nn \1_@@_width_dim { #1 }

3900 \keys_set:nn { nicematrix / NiceTabular } { #2 , #4 }
3901 \@@_settings_for_tabular:

3902 \NiceArray { #3 }

3903 }

3004 {

3905 \endNiceArray

3006 \fp_compare:nNnT { \g_0@_total_X_weight_fp } = { \c_zero_fp }
3907 { \@@_error:n { NiceTabularX~without~X } }

3908 }

3000 \NewDocumentEnvironment { NiceTabular* } {m 0 { }m ! 0 { } }

3910 {

3011 \str_gset:Nn \g_0@_name_env_str { NiceTabular* }

3912 \dim_set:Nn \1_@@_tabular_width_dim { #1 }

3013 \keys_set:nn { nicematrix / NiceTabular } { #2 , #4 }
3914 \@@_settings_for_tabular:

3915 \NiceArray { #3 }

3916 }

307 { \endNiceArray }

99

15 After the construction of the array

The following command will be used when the key rounded-corners is in force (this is the key
rounded-corners for the whole environment and not the key rounded-corners of a command
\Block).

3015 \cs_new_protected:Npn \Q@@_deal_with_rounded_corners:

3919 {

3920 \bool_lazy_all:nT

3021 {

3022 { \dim_compare_p:nNn { \1_Q@_tab_rounded_corners_dim } > { \c_zero_dim } }
3023 { \1_@@_hvlines_bool }

3924 { ! \g_@0@_delims_bool }

3025 { ! \1_@@_except_borders_bool }

3926 }

3027 {

3928 \bool_set_true:N \1_@@_except_borders_bool

3029 \clist_if_empty:NF \1_Q@_corners_clist

3930 { \@@_error:n { hvlines,~rounded-corners~and~corners } }
3031 \tl_gput_right:Nn \g_0Q@_pre_code_after_tl

3932 {

3933 \@@_stroke_block:nnn

3934 {

3935 rounded-corners = \dim_use:N \1_@@_tab_rounded_corners_dim ,
3936 draw = \1_@@_rules_color_tl

3037 }

3038 {1-11}%}

3939 { \int_use:N \c@iRow - \int_use:N \c@jCol }

3940 }

3041 }

3042 T

3043 \cs_new_protected:Npn \Q@@_after_array:

3044 {

There was a \hook_gput_code:nnn { env / tabular / begin } { nicematrix } in the com-
mand \@@_pre_array_after_CodeBefore: in order to come back to the standard definition of
\multicolumn (in the tabulars used by the final user in the cells of our array of nicematrix) and
maybe another linked to colortbl.

3945 \hook_gremove_code:nn { env / tabular / begin } { nicematrix }

3046 \group_begin:
When the option last-col is used in the environments with explicit preambles (like {NiceArray},
{pNiceArray}, etc.) a special type of column is used at the end of the preamble in order to compose
the cells in an overlapping position (with \hbox_overlap_right:n) but (if last-col has been used),
we don’t have the number of that last column. However, we have to know that number for the
color of the potential \Vdots drawn in that last column. That’s why we fix the correct value of
\1_0@_last_col_int in that case.

3047 \bool_if:NT \g_0@_last_col_found_bool

3048 { \int_set_eq:NN \1_@@_last_col_int \g_0@_col_total_int }
If we are in an environment without preamble (like {NiceMatrix} or {pNiceMatrix}) and if the
option last-col has been used without value we also fix the real value of \1_@@_last_col_int.

3049 \bool_if:NT \1_@@_last_col_without_value_bool

3950 { \int_set_eq:NN \1_@@_last_col_int \g_0@_col_total_int }

It’s also time to give to \1_@@_last_row_int its real value.

3051 \bool_if:NT \1_@@_last_row_without_value_bool
3952 { \int_set_eq:NN \1_@@_last_row_int \g_0@_row_total_int }

100

3953 \tl_gput_right:Ne \g_0@_aux_tl

3954 {

3055 \seq_gset_from_clist:Nn \exp_not:N \g_00_size_seq
3956 {

3057 \int_use:N \1_@@_first_row_int ,

3058 \int_use:N \c@iRow ,

3959 \int_use:N \g_0@_row_total_int ,

3960 \int_use:N \1_@@_first_col_int ,

3061 \int_use:N \c@jCol ,

3962 \int_use:N \g_0@_col_total_int

3963 }

3964 }

3065 \clist_if_empty:NF \g_0@_cbic_clist { \@@_cbic: }

We write also the potential content of \g_@@_pos_of_blocks_seq. It will be used to recreate the
blocks with a name in the \CodeBefore and also if the command \rowcolors is used with the key
respect-blocks).

3966 \seq_if_empty:NF \g_@@_pos_of_blocks_seq

3967 {

3068 \tl_gput_right:Ne \g_00_aux_tl

3969 {

3970 \seq_gset_from_clist:Nn \exp_not:N \g_00@_pos_of_blocks_seq

3071 { \seq_use:Nn \g_0@_pos_of_blocks_seq { , } }

3072 }

3973 }

3074 \seq_if_empty:NF \g_0@_multicolumn_cells_seq

3975 {

3976 \tl_gput_right:Ne \g_0@@_aux_tl

3977

3978 \seq_gset_from_clist:Nn \exp_not:N \g_0@_multicolumn_cells_seq
3979 { \seq_use:Nn \g_@@_multicolumn_cells_seq { , } }

3080 \seq_gset_from_clist:Nn \exp_not:N \g_00@_multicolumn_sizes_seq
3081 { \seq_use:Nn \g_0@_multicolumn_sizes_seq { , } }

3982 }

3983 }

Now, you create the diagonal nodes by using the row nodes and the col nodes.

3084 \@@_create_diag_nodes:

We create the aliases using last for the nodes of the cells in the last row and the last column.

3985 \pgfpicture

3986 \@@_create_aliases_last:

3087 \str_if_empty:NF \1_@@_name_str { \@Q_create_alias_nodes: }
3088 \endpgfpicture

By default, the diagonal lines will be parallelized'?. There are two types of diagonals lines: the
\Ddots diagonals and the \Iddots diagonals. We have to count both types in order to know whether
a diagonal is the first of its type in the current {NiceArray} environment.

3989 \bool_if:NT \1_Q@_parallelize_diags_bool
3990 {

3001 \int_gzero:N \g_0@_ddots_int

3902 \int_gzero:N \g_0@_iddots_int

The dimensions \g_0@_delta_x_one_dim and \g_@@_delta_y_one_dim will contain the A, and A,
of the first \Ddots diagonal. We have to store these values in order to draw the others \Ddots
diagonals parallel to the first one. Similarly \g_0@_delta_x_two_dim and \g_@@_delta_y_two_dim
are the A, and A, of the first \Iddots diagonal.

3993 \dim_gzero:N \g_0@_delta_x_one_dim

3994 \dim_gzero:N \g_0@_delta_y_one_dim

3995 \dim_gzero:N \g_0@@_delta_x_two_dim

121t’s possible to use the option parallelize-diags to disable this parallelization.

101

3996 \dim_gzero:N \g_0@_delta_y_two_dim

3997 }
3098 \bool_set_false:N \1_0@_initial_open_bool
3999 \bool_set_false:N \1_0@_final_open_bool

If the option small is used, the values \1_0@_xdots_radius_dim and \1_0@_xdots_inter_dim (used
to draw the dotted lines created by \hdottedline and \vdottedline and also for all the other dotted
lines when line-style is equal to standard, which is the initial value) are changed.

4000 \bool_if:NT \1_@@_small_bool { \@@_tuning_key_small_for_dots: }

Now, we actually draw the dotted lines (specified by \Cdots, \Vdots, etc.).
4001 \@@_draw_dotted_lines:

The following computes the “corners” (made up of empty cells) but if there is no corner to compute,
it won’t do anything. The corners are computed in \1_@@_corners_cells_clist which will contain
all the cells which are empty (and not in a block) considered in the corners of the array.

4002 \clist_if_empty:NF \1_@@_corners_clist

4003 {

4004 \bool_if:NTF \1_@@_no_cell_nodes_bool

4005 { \@@_error:n { corners~with~no-cell-nodes } }
4006 { \@@_compute_corners: }

4007 }

By design, we have computed the corners before the adjonction of \g_@@_future_pos_of_blocks_seq
is used by \EmptyRow and \EmptyColumn in the \CodeBefore.

4008 \seq_gconcat:NNN \g_@@_pos_of_blocks_seq

4009 \g_00_pos_of_blocks_seq

4010 \g_00_future_pos_of_blocks_seq

4011 \seq_gclear:N \g_00_future_pos_of_blocks_seq

The sequence \g_0@_pos_of_blocks_seq must be “adjusted” (for the case where the user have
written something like \Block{1-%}).

4012 \@@_adjust_pos_of_blocks_seq:
4013 \@@_deal_with_rounded_corners:
4014 \clist_if_empty:NF \1_@@_hlines_clist { \@@_draw_hlines: }
4015 \clist_if_empty:NF \1_@@_vlines_clist { \@@_draw_vlines: }

Now, the pre-code-after and then, the \CodeAfter.

4016 \IfPackageLoadedT { tikz }

4017 {

4018 \tikzset

4019 {

4020 every~picture / .style =

4021 {

4022 overlay ,

4023 remember~picture ,

4024 name~prefix = \@Q@_env: -

4025 }

4026 }

4027 }

4028 \cs_set_eq:NN \ar@ialign \@@_old_ar@ialign:
4029 \cs_set_eq:NN \SubMatrix \@@_SubMatrix

4030 \cs_set_eq:NN \UnderBrace \@@_UnderBrace

4031 \cs_set_eq:NN \OverBrace \@@_OverBrace

4032 \cs_set_eq:NN \ShowCellNames \@@_ShowCellNames
4033 \cs_set_eq:NN \TikzEveryCell \@@_TikzEveryCell

4034 \cs_set_eq:NN \line \@@_line

102

The LaTeX-style boolean \ifmeasuring@ is used by amsmath during the phase of measure in envi-
ronments such as {align}, etc.

4035 \legacy_if:nF { measuring@ } { \g_@@_pre_code_after_tl }

4036 \tl_gclear:N \g_0@_pre_code_after_tl
When light-syntax is used, we insert systematically a \CodeAfter in the flow. Thus, it’s possible
to have two instructions \CodeAfter and the second may be in \g_nicematrix_code_after_tl.
That’s why we set \CodeAfter to be no-op now.

4037 \cs_set_eq:NN \CodeAfter \prg_do_nothing:
We clear the list of the names of the potential \SubMatrix that will appear in the \CodeAfter
(unfortunately, that list has to be global).

4038 \seq_gclear:N \g_00_submatrix_names_seq

The following code is a security for the case the user has used babel with the option spanish: in that
case, the characters > and < are activated and TikZ is not able to solve the problem (even with the
TikZ library babel).

4039 \int_compare:nNnT { \char_value_catcode:n { 60 } } = { 13 }

4040 { \@@_rescan_for_spanish:N \g_nicematrix_code_after_tl }

And here’s the \CodeAfter. Since the \CodeAfter may begin with an “argument” between
square brackets of the options, we extract and treat that potential “argument” with the command
\Q@_CodeAfter_keys:.

4041 \bool_set_true:N \1_QQ@_in_code_after_bool

4042 \exp_last_unbraced:No \@@_CodeAfter_keys: \g_nicematrix_code_after_tl
4043 \scan_stop:

4044 \tl_gclear:N \g_nicematrix_code_after_tl

4045 \group_end:

\g_0@_pre_code_before_tl is for instructions in the cells of the array such as \rowcolor and
\cellcolor. These instructions will be written on the aux file to be added to the code-before
in the next run.

4046 \seq_if_empty:NF \g_@@_rowlistcolors_seq { \@@_clear_rowlistcolors_seq: }
4047 \tl_if_empty:NF \g_@@_pre_code_before_tl

4048 {

4049 \tl_gput_right:Ne \g_0@_aux_tl

4050 {

4051 \tl_gset:Nn \exp_not:N \g_Q@_pre_code_before_tl
4052 { \exp_not:o \g_0@_pre_code_before_tl }

4053 ¥

4054 \tl_gclear:N \g_0@_pre_code_before_tl

4055 }

4056 \tl_if_empty:NF \g_nicematrix_code_before_tl

4057 {

4058 \tl_gput_right:Ne \g_0@_aux_tl

4059 {

4060 \tl_gset:Nn \exp_not:N \g_0@_code_before_tl
4061 { \exp_not:o \g_nicematrix_code_before_tl }
4062 }

4063 \tl_gclear:N \g_nicematrix_code_before_tl

4064 }

4065 \str_gclear:N \g_00@_name_env_str

4066 \@@_restore_iRow_jCol:

The command \CT@arc@ contains the instruction of color for the rules of the array'®. This command
is used by \CT@arc@ but we use it also for compatibility with colortbl. But we want also to be able
to use color for the rules of the array when colortbl is not loaded. That’s why we do the following
instruction which is in the patch of the end of arrays done by colortbl.

4067 \cs_gset_eq:NN \CT@arc@ \@@_old_CT@arc@

4068 }

13e.g. \color[rgb]{0.5,0.5,0}

103

2060 \cs_new_protected:Npn \@@_tuning_key_small_for_dots:

4070 {

4071 \dim_set:Nn \1_@@_xdots_radius_dim { 0.7 \1_0@_xdots_radius_dim }

4072 \dim_set:Nn \1_@@_xdots_inter_dim { 0.55 \1_@@_xdots_inter_dim }
The dimensions \1_@@_xdots_shorten_start_dim and \1_0@@_xdots_shorten_start_dim corre-
spond to the options xdots/shorten-start and xdots/shorten-end available to the user.

4073 \dim_set:Nn \1_@@_xdots_shorten_start_dim

4074 { 0.6 \1_@@_xdots_shorten_start_dim }
4075 \dim_set:Nn \1_@@_xdots_shorten_end_dim
4076 { 0.6 \1_00@_xdots_shorten_end_dim }
4077 }

The following command will extract the potential options (between square brackets) at the begin-
ning of the \CodeAfter (that is to say, when \CodeAfter is used, the options of that “command”
\CodeAfter). Idem for the \CodeBefore.

207 \NewDocumentCommand \@@_CodeAfter_keys: { 0 { } }
w9 { \keys_set:nn { nicematrix / CodeAfter } { #1 } }

2050 \cs_new_protected:Npn \@@_create_alias_nodes:

4081 {

4082 \int_step_inline:nn { \c@iRow }

4083 {

4084 \pgfnodealias

4085 { \1_0@_name_str - ##1 - last }

4086 { \@@_env: - ##1 - \int_use:N \c@jCol }
4087 }

4088 \int_step_inline:nn { \c@jCol }

4089 {

4090 \pgfnodealias

4001 { \1_@@_name_str - last - ##1 }

4002 { \@@_env: - \int_use:N \c@iRow - ##1 }
4093 }

4094 \pgfnodealias

4005 { \1_0@_name_str - last - last }

4096 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol }
4097 }

We remind that the first mandatory argument of the command \Block is the size of the block with
the special format i-j. However, the user is allowed to omit ¢ or j (or both). This will be interpreted
as: the last row (resp. column) of the block will be the last row (resp. column) of the block
(without the potential exterior row—resp. column—of the array). By convention, this is stored in
\g_0@_pos_of_blocks_seq (and \g_0@_blocks_seq) as a number of rows (resp. columns) for the
block equal to 100. It’s possible, after the construction of the array, to replace these values by the
correct ones (since we know the number of rows and columns of the array).

2008 \cs_new_protected:Npn \@@_adjust_pos_of_blocks_seq:

4099 {

4100 \seq_gset_map_e:NNn \g_00_pos_of_blocks_seq \g_0Q@_pos_of_blocks_seq
4101 { \@@_adjust_pos_of_blocks_seq_i:nnnnn ##1 }

4102 3

The following command must not be protected.
2103 \cs_new:Npn \@@_adjust_pos_of_blocks_seq_i:nnnnn #1 #2 #3 #4 #5

4104 {

4105 { #1 }

4106 {#2}

4107 {

4108 \int_compare:nNnTF { #3 } > { 98 }
4109 { \int_use:N \c@iRow }

4110 { #3 }

4111 }

104

4112 {

a113 \int_compare:nNnTF { #4 } > { 98 }
4114 { \int_use:N \c@jCol }

4115 { #4 }

4116 }

4117 { #5 }

4118 }

We recall that, when externalization is used, \tikzpicture and \endtikzpicture (or \pgfpicture
and \endpgfpicture) must be directly “visible”. That’s why we have to define the adequate version
of \@@_draw_dotted_lines: whether TikZ is loaded or not (in that case, only PGF is loaded).

2119 \hook_gput_code:nnn { begindocument } { . }

4120 {

4121 \cs_new_protected:Npe \Q@0_draw_dotted_lines:
4122 {

4123 \c_00@_pgfortikzpicture_tl

4124 \@@_draw_dotted_lines_i:

4125 \c_0@_endpgfortikzpicture_tl

4126 }

4127 3

The following command must be protected because it will appear in the construction of the command
\@@_draw_dotted_lines:.

2126 \cs_new_protected:Npn \@Q_draw_dotted_lines_i:

4129 {

4130 \pgfrememberpicturepositiononpagetrue
4131 \pgf@relevantforpicturesizefalse

4132 \g_0@_HVdotsfor_lines_tl

4133 \g_00_Vdots_lines_tl

4134 \g_00@_Ddots_lines_tl

4135 \g_0@_Iddots_lines_tl

4136 \g_00_Cdots_lines_tl

4137 \g_00@_Ldots_lines_tl

4138 }

2130 \cs_new_protected:Npn \@@_restore_iRow_jCol:

4140 {
4141 \cs_if_exist:NT \theiRow { \int_gset_eq:NN \c@iRow \1_@@_old_iRow_int }
4142 \cs_if_exist:NT \thejCol { \int_gset_eq:NN \c@jCol \1_@@_old_jCol_int }
4143 }

We define a new PGF shape for the diag nodes because we want to provide an anchor called .5 for
those nodes.

2124 \pgfdeclareshape { ©@@_diag node }

4145 {

4146 \savedanchor { \five }

4147 {

4148 \dim_gset_eq:NN \pgfOx \1_tmpa_dim

4149 \dim_gset_eq:NN \pgf@y \1_tmpb_dim

4150 }

4151 \anchor { 5 } { \five }

4152 \anchor { center } { \pgfpointorigin }

4153 \anchor { 1 } { \five \pgf@x = 0.2 \pgf@x \pgf@y = 0.2 \pgf@y }
4154 \anchor { 2 } { \five \pgf@x = 0.4 \pgf@x \pgf@y = 0.4 \pgfQy }
4155 \anchor { 25 } { \five \pgf@x = 0.5 \pgfOx \pgf@y = 0.5 \pgf@y }
4156 \anchor { 3 } { \five \pgf@x = 0.6 \pgf@x \pgf@y = 0.6 \pgf@y }
4157 \anchor { 4 } { \five \pgf@x = 0.8 \pgf@x \pgf@y = 0.8 \pgfQy }
4158 \anchor { 6 } { \five \pgf@x = 1.2 \pgfOx \pgf@y = 1.2 \pgf@y }
4150 \anchor { 7 } { \five \pgf@x = 1.4 \pgf@x \pgf@y = 1.4 \pgf@y }
4160 \anchor { 75 } { \five \pgf@x = 1.5 \pgf@x \pgf@y = 1.5 \pgfQy }
4161 \anchor { 8 } { \five \pgf@x = 1.6 \pgfOx \pgf@y = 1.6 \pgfQy }
4162 \anchor { 9 } { \five \pgf@x = 1.8 \pgf@x \pgf@y = 1.8 \pgf@y }
4163 ¥

105

The following command creates the diagonal nodes (in fact, if the matrix is not a square matrix, not
all the nodes are on the diagonal).

264 \cs_new_protected:Npn \@@_create_diag_nodes:

4165 {

4166 \pgfpicture

4167 \pgfrememberpicturepositiononpagetrue

4168 \int_step_inline:nn { \int_max:nn { \c@iRow } { \c@jCol } }

4169 {

4170 \@@_gpoint:n { col - \int_min:nn { ##1 } { \c@jCol + 1 } }

171 \dim_set_eq:NN \1_tmpa_dim \pgf@x

a72 \@@_gpoint:n { row - \int_min:nn { ##1 } { \c@iRow + 1 } }

4173 \dim_set_eq:NN \1_tmpb_dim \pgfQy

4174 \@@_gpoint:n { col - \int_min:nn { ##1 + 1 } { \c@jCol + 1 } }
a7s \dim_set_eq:NN \1_Q@_tmpc_dim \pgfOx

4176 \@@_gpoint:n { row - \int_min:nn { ##1 + 1 } { \c@iRow + 1 } }
4177 \dim_set_eq:NN \1_@@_tmpd_dim \pgfQy

4178 \pgftransformshift { \pgfpoint \1_tmpa_dim \1_tmpb_dim }

Now, \1_tmpa_dim and \1_tmpb_dim become the width and the height of the node (of shape
@@_diag_node) that we will construct.

4179 \dim_set:Nn \1_tmpa_dim { (\1_@@_tmpc_dim - \1_tmpa_dim) / 2 }
4180 \dim_set:Nn \1_tmpb_dim { (\1_@@_tmpd_dim - \1l_tmpb_dim) / 2 }
4181 \pgfnode { @@_diag_node } { center } { } { \@@_env: - ##1 } { }
4182 \str_if_empty:NF \1_Q@_name_str

4183 { \pgfnodealias { \1_0@_name_str - ##1 } { \@@_env: - ##1 } }
4184 }

Now, the last node. Of course, that is only a coordinate because there is not .5 anchor for that
node.

4185 \int_set:Nn \1_tmpa_int { \int_max:nn { \c@iRow } { \c@jCol } + 1 }

4186 \@@_gpoint:n { row - \int_min:nn { \1_tmpa_int } { \c@iRow + 1 } }

4187 \dim_set_eq:NN \1_tmpa_dim \pgf@y

4188 \@@_gpoint:n { col - \int_min:nn { \1_tmpa_int } { \c@jCol + 1 } }

4189 \pgfcoordinate

4190 { \@@_env: - \int_use:N \1_tmpa_int } { \pgfpoint \pgf@x \1_tmpa_dim }
4101 \pgfnodealias

4102 { \@@_env: - last }

4103 { \@@_env: - \int_eval:n { \int_max:nn { \c@iRow } { \c@jCol } + 1 } }
4104 \str_if_empty:NF \1_QQ@_name_str

4195 {

4196 \pgfnodealias

4107 { \1_0@_name_str - \int_use:N \1_tmpa_int }

4108 { \@@_env: - \int_use:N \1_tmpa_int }

4199 \pgfnodealias

4200 { \1_@@_name_str - last }

4201 { \@@_env: - last }

4202 }

4203 \endpgfpicture

4204 }

16 We draw the dotted lines

A dotted line will be said open in one of its extremities when it stops on the edge of the matrix and
closed otherwise. In the following matrix, the dotted line is closed on its left extremity and open on
its right.

a+b+c a+b a

a a+b a+b+e

106

The command \@@_find_extremities:nnnn takes four arguments:

o the first argument is the row of the cell where the command was issued;

the second argument is the column of the cell where the command was issued;

e the third argument is the z-value of the orientation vector of the line;

the fourth argument is the y-value of the orientation vector of the line.
This command computes:

e \1_@@_initial_i_int and \1_@@_initial_j_int which are the coordinates of one extremity
of the line;

e \1_@@_final_i_int and \1_@@_final_j_int which are the coordinates of the other extremity
of the line;

e \1_@0_initial_open_bool and \1_Q@_final_open_bool to indicate whether the extremities
are open or not.

We provide first a version in the L3 syntax, and, then a version slightly more efficient.

\cs_new_protected:Npn \Q@_find_extremities:nnnn #1 #2 #3 #4
{
\cs_set:cpn { @@ _ dotted _ #1 - #2 } { }
\int_set:Nn \1_@@_initial_i_int { #1 }
\int_set:Nn \1_Q@_initial_j_int { #2 }
\int_set:Nn \1_@@_final i_int { #1 }
\int_set:Nn \1_@@_final_j_int { #2 }
\bool_set_false:N \1_0@_stop_loop_bool
\bool_do_until:Nn \1_0@_stop_loop_bool
{

\int_add:Nn \1_@@_final_i_int { #3 }

\int_add:Nn \1_@@_final_j_int { #4 }

\bool_set_false:N \1_@@_final_open_bool

\int_compare:nNnTF { \1_@@_final_i_int } > { \1_@@_row_max_int }

{
\int_compare:nNnTF { #3 } = {1}
{ \bool_set_true:N \1_@@_final_open_bool }
{
\int_compare:nNnT { \1_@@_final_j_int } > { \1_@@_col_max_int }
{ \bool_set_true:N \1_@@_final_open_bool }

}
}
{
\int_compare:nNnTF \1_@@_final_j_int < \1_@@_col_min_int
{
\int_compare:nNnT { #4 } = { -1 }
{ \bool_set_true:N \1_@@_final_open_bool }
}
{
\int_compare:nNnT { \1_0@_final_j_int } > { \1_@@_col_max_int }
{
\int_compare:nNnT { #4 } = { 1 }
{ \bool_set_true:N \1_@@_final_open_bool }
}
}
}
\bool_if :NTF \1_@@_final_open_bool
{

\int_sub:Nn \1_@@_final_i_int { #3 }

\int_sub:Nn \1_@@_final_j_int { #4 }

\bool_set_true:N \1_@@_stop_loop_bool
}

107

{
\cs_if_exist:cTF

{
Q@@ _ dotted _
\int_use:N \1_@@_final_i_int -
\int_use:N \1_0@@_final_j_int

}

{
\int_sub:Nn \1_@@_final_i_int { #3 }
\int_sub:Nn \1_Q@_final_j_int { #4 }
\bool_set_true:N \1_@@_final_open_bool
\bool_set_true:N \1_@@_stop_loop_bool

}
{
\cs_if_exist:cTF
{
pgf @ sh @ ns @ \@Q_env:
- \int_use:N \1_@@_final_i_int
- \int_use:N \1_0@@_final_j_int
}
{ \bool_set_true:N \1_0@_stop_loop_bool }
{
\cs_set_nopar:cpn
{
Q@@ _ dotted _
\int_use:N \1_@@_final_i_int -
\int_use:N \1_0@@_final_j_int
}
{1}
}
}

¥
\bool_set_false:N \1_0@_stop_loop_bool
\int_set:Nn \1_tmpa_int { \1_@@_col_min_int - 1 }
\bool_do_until:Nn \1_0@_stop_loop_bool
{
\int_sub:Nn \1_@@_initial_i_int { #3 }
\int_sub:Nn \1_@@_initial_j_int { #4 }
\bool_set_false:N \1_0@_initial_open_bool
\int_compare:nNnTF { \1_@@_initial_i_int } < { \1_@@_row_min_int }
{
\int_compare:nNnTF { #3} = { 1 }
{ \bool_set_true:N \1_@@_initial_open_bool }

{
\int_compare:nNnT { \1_0@_initial_j_int } = { \1_tmpa_int }
{ \bool_set_true:N \1_@@_initial_open_bool }
¥
}
{
\int_compare:nNnTF { \1_@@_initial_j_int } < { \1_@@_col_min_int }
{
\int_compare:nNnT { #4 } = { 1 }
{ \bool_set_true:N \1_@@_initial_open_bool }
}
{
\int_compare:nNnT { \1_0@_initial_j_int } > { \1_@@_col_max_int }
{
\int_compare:nNnT { #4 } = { -1 }
{ \bool_set_true:N \1_@@_initial_open_bool }
}
}
}

108

\bool_if:NTF \1_@@_initial_open_bool
{
\int_add:Nn \1_@@_initial_i_int { #3 }
\int_add:Nn \1_@@_initial_j_int { #4 }
\bool_set_true:N \1_@@_stop_loop_bool

}
{
\cs_if_exist:cTF
{
Q@@ _ dotted _
\int_use:N \1_@@_initial_i_int -
\int_use:N \1_@@_initial_j_int
}
{
\int_add:Nn \1_@@_initial_i_int { #3 }
\int_add:Nn \1_Q@_initial_j_int { #4 }
\bool_set_true:N \1_@@_initial_open_bool
\bool_set_true:N \1_@@_stop_loop_bool
}
{
\cs_if_exist:cTF
{
pgf @ sh @ ns @ \@@_env:
- \int_use:N \1_@@_initial_i_int
- \int_use:N \1_0@_initial_j_int
}
{ \bool_set_true:N \1_@@_stop_loop_bool }
{
\cs_set_nopar:cpn
{
Q@@ _ dotted _
\int_use:N \1_@@_initial_i_int -
\int_use:N \1_@@_initial_j_int
}
{1}
}
}
}
¥
\seq_gput_right:Ne \g_0@_pos_of_xdots_seq
{

{ \int_use:N \1_@@_initial_i_int }

{ \int_min:nn { \1_@@_initial_j_int } { \1_0@_final_j_int } }
{ \int_use:N \1_@@_final i_int }

{ \int_max:nn { \1_@@_initial_j_int } { \1_@@_final_j_int } }
{12

The following version is slightly more efficient.

205 \cs_new_protected:Npn \@@_find_extremities:nnnn #1 #2 #3 #4
4206 {

First, we declare the current cell as “dotted” because we forbide intersections of dotted lines.
4207 \cs_set_nopar:cpn { @@ _ dotted _ #1 - #2 } { }

Initialization of variables.
4208 \1_@@_initial_i_int = #1

4200 \1_0Q@_initial_j_int = #2
4210 \1_@@_final_i_int = #1
4211 \1_@@_final_j_int = #2

109

We will do two loops: one when determining the initial cell and the other when determining the final
cell. The boolean \1_@@_stop_loop_bool will be used to control these loops. In the first loop, we
search the “final” extremity of the line.

4212 \let \1_0@_stop_loop_bool \c_false_bool
4213 \bool_do_until:Nn \1_0@_stop_loop_bool
4214 {
We test if we are still in the matrix.
4215 \advance \1_Q@@_final_i_int by #3
4216 \advance \1_@@_final_j_int by #4
4217 \let \1_0@_final_open_bool \c_false_bool
4218 \if_int_compare:w \1_@@_final_i_int > \1_0@_row_max_int
4219 \if_int_compare:w #3 = \c_one_int
4220 \let \1_0@_final_open_bool \c_true_bool
4221 \else:
4222 \if_int_compare:w \1_0@_final_j_int > \1_0@@_col_max_int
4223 \let \1_0@_final_open_bool \c_true_bool
4224 \fi:
4225 \fi:
4226 \else:
4227 \if_int_compare:w \1_@@_final_j_int < \1_Q@_col_min_int
4228 \if_int_compare:w #4 = -1
4229 \let \1_0@_final_open_bool \c_true_bool
4230 \fi:
4231 \else:
4232 \if_int_compare:w \1_@@_final_j_int > \1_0@_col_max_int
4233 \if_int_compare:w #4 = \c_one_int
4234 \let \1_@@_final_open_bool \c_true_bool
4235 \fi:
4236 \fi:
4237 \fi:
4238 \fi:
4239 \bool_if:NTF \1_@@_final_open_bool

If we are outside the matrix, we have found the extremity of the dotted line and it’s an open extremity.
4240 {

We do a step backwards.

4241 \advance \1_@@_final_i_int by - #3

4242 \advance \1_@@_final_j_int by - #4

4243 \let \1_0@@_stop_loop_bool \c_true_bool
4244 }

If we are in the matrix, we test whether the cell is empty. If it’s not the case, we stop the loop because
we have found the correct values for \1_@@_final_i_int and \1_Q@@_final_j_int.

4245 {

4246 \cs_if_exist:cTF

4247 {

4248 Q@0 _ dotted _

4249 \int_use:N \1_@@_final_ i_int -

4250 \int_use:N \1_@@_final_j_int

4251 }

4252 {

4253 \advance \1_@@_final_i_int by - #3

4254 \advance \1_@@_final_j_int by - #4

4255 \let \1_0@_final_open_bool \c_true_bool
4256 \let \1_@@_stop_loop_bool \c_true_bool
4257 }

4258 {

4259 \cs_if_exist:cTF

4260 {

4261 pgf @ sh @ ns @ \QQ@_env:

4262 - \int_use:N \1_@@_final_i_int

4263 - \int_use:N \1_0@_final_j_int

4264 }

110

4265 { \let \1_0@_stop_loop_bool \c_true_bool }

If the case is empty, we declare that the cell as non-empty. Indeed, we will draw a dotted line and the
cell will be on that dotted line. All the cells of a dotted line have to be marked as “dotted” because
we don’t want intersections between dotted lines. We recall that the research of the extremities of
the lines are all done in the same TeX group (the group of the environment), even though, when the
extremities are found, each line is drawn in a TeX group that we will open for the options of the line.

4266 {

4267 \cs_set_nopar:cpn

4268 {

4269 @@ _ dotted _

4270 \int_use:N \1_@@_final_i_int -
4211 \int_use:N \1_@@_final_j_int
4272 ¥

4273 {3}

4274 }

4275 ¥

4276 }

4277 }

For \1_@@_initial_i_int and \1_Q@_initial_j_int the programmation is similar to the previous
one.

4278 \let \1_0Q@_stop_loop_bool \c_false_bool
The following line of code is only for efficiency in the following loop.
4279 \1_tmpa_int = \1_@@_col_min_int
4280 \advance \1_tmpa_int by -1
4281 \bool_do_until:Nn \1_0@_stop_loop_bool
4282 {
4283 \advance \1_@@_initial_i_int by - #3
4284 \advance \1_@@_initial_j_int by - #4
4285 \let \1_0@_initial_open_bool \c_false_bool

We test if we are still in the matrix. Since this is the core of the loop, we optimize the code by using
a TeX-style of conditionals.

4286 \if_int_compare:w \1_0@_initial_i_int < \1_Q@@_row_min_int
4287 \if_int_compare:w #3 = \c_one_int

4288 \let \1_0@_initial_open_bool \c_true_bool

4289 \else:

\1_tmpa_int contains \1_@@_col_min_int - 1 (only for efficiency).

4290 \if_int_compare:w \1_0@_initial_j_int = \1_tmpa_int
4201 \let \1_0@_initial_open_bool \c_true_bool

4292 \fi:

4293 \fi:

4294 \else:

4205 \if_int_compare:w \1_Q@_initial_j_int < \1_@@_col_min_int
4296 \if_int_compare:w #4 = \c_one_int

4207 \let \1_0@@_initial_open_bool \c_true_bool

4298 \fi:

4299 \else:

4300 \if_int_compare:w \1_0@_initial_j_int > \1_@@_col_max_int
4301 \if _int_compare:w #4 = -1

4302 \let \1_0@_initial_open_bool \c_true_bool

4303 \fi:

4304 \fi:

4305 \fi:

4306 \fi:

4307 \bool_if:NTF \1_@@_initial_open_bool

4308 {

a0 \advance \1_0@_initial_i_int by #3

4310 \advance \1_Q@_initial_j_int by #4

111

4311 \let \1_0@_stop_loop_bool \c_true_bool

4312 }

4313 {

4314 \cs_if_exist:cTF

4315 {

4316 Q@@ _ dotted _

4317 \int_use:N \1_@@_initial_i_int -

4318 \int_use:N \1_@@_initial_j_int

4319 }

4320 {

4321 \advance \1_@@_initial_i_int by #3

4322 \advance \1_@@_initial_j_int by #4

4323 \let \1_0@_initial_open_bool \c_true_bool
4324 \let \1_0Q@_stop_loop_bool \c_true_bool
4325 }

4326 {

4327 \cs_if_exist:cTF

4328 {

4329 pgf @ sh @ ns @ \@Q@_env:

4330 - \int_use:N \1_@@_initial_i_int
4331 - \int_use:N \1_@@_initial_j_int
4332 }

4333 { \let \1_@@_stop_loop_bool \c_true_bool }
4334 {

4335 \cs_set_nopar:cpn

4336 {

4337 @@ _ dotted _

4338 \int_use:N \1_@@_initial_i_int -
4339 \int_use:N \1_0@_initial_j_int
4340 }

4341 {}

4342 }

4343 ¥

4344 }

4345 }

We remind the rectangle described by all the dotted lines in order to respect the corresponding virtual
“block” when drawing the horizontal and vertical rules.

4346 \seq_gput_right:Ne \g_0@_pos_of_xdots_seq
4347 {
4348 { \int_use:N \1_@@_initial_i_int }

Be careful: with \Iddots, \1_@@_final_j_int is inferior to \1_@@_initial_j_int. That’s why we
use \int_min:nn and \int_max:nn.

4349 { \int_min:nn { \1_@@_initial_j_int } { \1_@@_final_j_int } }
4350 { \int_use:N \1_@@_final_i_int }

4351 { \int_max:nn { \1_@@_initial_j_int } { \1_@@_final_j_int } }
4352 {1}

4353 }

4354 }

If the final user uses the key xdots/shorten in \NiceMatrixOptions or at the level of an environment
(such as {pNiceMatrix}, etc.), only the so called “closed extremities” will be shortened by that key.
The following command will be used after the detection of the extremities of a dotted line (hence
at a time when we known whether the extremities are closed or open) but before the analysis of
the keys of the individual command \Cdots, \Vdots. Hence, the keys shorten, shorten-start and
shorten-end of that individual command will be applied.

4355 \cs_new_protected:Npn \@@_open_shorten:

4356 {

4357 \bool_if:NT \1_@@_initial_open_bool

4358 { \dim_zero:N \1_0@@_xdots_shorten_start_dim }
4359 \bool_if:NT \1_@@_final_open_bool

4360 { \dim_zero:N \1_@@_xdots_shorten_end_dim }
4361 ¥

112

The following command (when it will be written) will set the four counters \1_0@_row_min_int,
\1_@@_row_max_int, \1_@@_col_min_int and \1_@@_col_max_int to the intersections of the sub-
matrices which contains the cell of row #1 and column #2. As of now, it’s only the whole array
(excepted exterior rows and columns).

2362 \cs_new_protected:Npn \Q@@_adjust_to_submatrix:nn #1 #2

4363 {

4364 \int_set_eq:NN \1_@@_row_min_int \c_one_int
4365 \int_set_eq:NN \1_@@_col_min_int \c_one_int
4366 \int_set_eq:NN \1_@@_row_max_int \c@iRow
4367 \int_set_eq:NN \1_0@_col_max_int \c@jCol

We do a loop over all the submatrices specified in the code-before. We have stored the position of
all those submatrices in \g_0@_submatrix_seq.

4368 \seq_if_empty:NF \g_QQ@_submatrix_seq

4369 {

4370 \seq_map_inline:Nn \g_0@_submatrix_seq

4371 { \@0@_adjust_to_submatrix:nnnnnn { #1 } { #2 } ##1 }
4372 }

4373 }

#1 and #2 are the numbers of row and columns of the cell where the command of dotted line (ex.:
\Vdots) has been issued. #3, #4 #5 and #6 are the specification (in ¢ and j) of the submatrix we are
analyzing.

Here is the programmation of that command with the the standard syntax of L3.

\cs_new_protected:Npn \Q@Q@_adjust_to_submatrix:nnnnnn #1 #2 #3 #4 #5 #6
{

\bool_if:nT
{
\int_compare_p:n { #3 <= #1 <= #5 }
&&
\int_compare_p:n { #4 <= #2 <= #6 }
}
{
\int_set:Nn \1_@@_row_min_int { \int_max:nn \1_@@_row_min_int { #3 } }
\int_set:Nn \1_@@_col_min_int { \int_max:nn \1_0@_col_min_int { #4 } }
\int_set:Nn \1_@@_row_max_int { \int_min:nn \1_Q@_row_max_int { #5 } }
\int_set:Nn \1_@@_col_max_int { \int_min:nn \1_@@_col_max_int { #6 } }
}
}
However, for efficiency, we will use the following version.
2374 \cs_new_protected:Npn \@@_adjust_to_submatrix:nnnnnn #1 #2 #3 #4 #5 #6
4375 {
4376 \if_int_compare:w #3 > #1
4377 \else:
4378 \if_int_compare:w #1 > #5
4379 \else:
4380 \if_int_compare:w #4 > #2
4381 \else:
4382 \if_int_compare:w #2 > #6
4383 \else:
4384 \if_int_compare:w \1_0@_row_min_int < #3 \1_0@_row_min_int = #3 \fi:
4385 \if_int_compare:w \1_0@_col_min_int < #4 \1_0@_col_min_int = #4 \fi:
4386 \if_int_compare:w \1_0@_row_max_int > #5 \1_0@_row_max_int = #5 \fi:
4387 \if_int_compare:w \1_0@_col_max_int > #6 \1_0Q@_col_max_int = #6 \fi:
4388 \fi:
4389 \fi:
4390 \fi:
4391 \fi:
4392 }

113

4393

4394

4395

4396

4397

4398

4399

4400

4401

4402

4403

4404

4405

4406

4407

4408

4409

4415

4416

4417

4418

4419

4439

\cs_new_protected:Npn \QQ@_set_initial_coords:

{

}

\dim_set_eq:NN \1_@@_x_initial_dim \pgf@x
\dim_set_eq:NN \1_@@_y_initial_dim \pgf@y

\cs_new_protected:Npn \@@_set_final_coords:

{

}

\dim_set_eq:NN \1_@@_x_final_dim \pgf@x
\dim_set_eq:NN \1_@@_y_final_dim \pgf@y

\cs_new_protected:Npn \@@_set_initial_coords_from_anchor:n #1

{

}

\pgfpointanchor

{

}
{

\@a_

\@@_env:
- \int_use:N \1_@@_initial_i_int
- \int_use:N \1_@@_initial_j_int

#1 }
set_initial_coords:

\cs_new_protected:Npn \QQ@_set_final_coords_from_anchor:n #1

{

}

\pgfpointanchor

{

}
{

\ee_

\@@_env:
- \int_use:N \1_@@_final_i_int
- \int_use:N \1_@@_final_j_int

#1 }
set_final_coords:

\cs_new_protected:Npn \Q@_open_x_initial_dim:

{

\dim_set_eq:NN \1_@@_x_initial_dim \c_max_dim
\int_step_inline:nnn { \1_0@_first_row_int } { \g_Q@_row_total_int }

{

}

\cs_if_exist:cT
{ pgf @ sh @ ns @ \@@_env: - ##1 - \int_use:N \1_@@_initial_j_int }
{
\pgfpointanchor
{ \@@_env: - ##1 - \int_use:N \1_@@_initial_j_int }
{ west }
\dim_set:Nn \1_@@_x_initial_dim
{ \dim_min:nn { \1_@@_x_initial_dim } { \pgfeéx } }

, in fact, all the cells of the column are empty (no PGF/TikZ nodes in those cells).

4440

4441

4442

4443

4444

4445

4446

}

\dim_compare:nNnT { \1_@@_x_initial_dim } = { \c_max_dim }

{

}

\@@_gpoint:n { col - \int_use:N \1_@@_initial_j_int }
\dim_set_eq:NN \1_0@_x_initial_dim \pgf@x
\dim_add:Nn \1_@@_x_initial_dim \col@sep

\cs_new_protected:Npn \@@_open_x_final_dim:

{

\dim_set:Nn \1_@@_x_final_dim { - \c_max_dim }
\int_step_inline:nnn { \1_Q@_first_row_int } { \g_@@_row_total_int }

{

\cs_if_exist:cT
{ pgf @ sh @ ns @ \@@_env: - ##1 - \int_use:N \1_Q@_final_j_int }

114

4459

4460

4461

\pgfpointanchor
{ \@@_env: - ##1 - \int_use:N \1_@@_final_j_int }
{ east }

\dim_compare:nNnT { \pgf@x } > { \1_0@_x_final_dim }
{ \dim_set_eq:NN \1_@@_x_final_dim \pgf@x }

}

If, in fact, all the cells of the columns are empty (no PGF/TikZ nodes in those cells).

The

\dim_compare:nNnT { \1_@@_x_final_dim } = { - \c_max_dim }
{
\@@_gpoint:n { col - \int_eval:n { \1_@@_final_j_int + 1 } }
\dim_set_eq:NN \1_@@_x_final_dim \pgf@x
\dim_sub:Nn \1_0@_x_final_dim \col@sep
}

first and the second arguments are the coordinates of the cell where the command has been

issued. The third argument is the list of the options.

4469

4470

4471

4472

4473

4474

\cs_new_protected:Npn \Q@@_draw_Ldots:nnn #1 #2 #3
{
\@@_adjust_to_submatrix:nn { #1 } { #2 }
\cs_if_free:cT { @@ _ dotted _ #1 - #2 }
{
\@@_find_extremities:nnnn { #1 } { #2 } 0 1

The previous command may have changed the current environment by marking some cells as “dotted”,

but,

4475

fortunately, it is outside the group for the options of the line.

\bool_if:NT \g_0@_aux_found_bool
{
\group_begin:
\@@_open_shorten:
\int_if_zero:nTF { #1 }
{ \color { nicematrix-first-row } }

{

We remind that, when there is a “last row” \1_0@_last_row_int will always be (after the construction
of the array) the number of that “last row” even if the option last-row has been used without value.

4490

4491

The

\int_compare:nNnT { #1 } = { \1_@@_last_row_int }
{ \color { nicematrix-last-row } }
¥
\keys_set:nn { nicematrix / xdots } { #3 }
\@@_color:o \1_@@_xdots_color_tl
\@@_actually_draw_Ldots:
\group_end:
}

}
command \@@_actually_draw_Ldots: has the following implicit arguments
\1_@@_initial_i_int
\1_@@_initial_j_int
\1_@@_initial_open_bool
\1_@@_final _i_int
\1_@@_final_j_int

\1_0@_final_open_bool

115

The following function is also used by \Hdotsfor.
292 \cs_new_protected:Npn \@@_actually_draw_Ldots:

4493 {

4494 \bool_if:NTF \1_@@_initial_open_bool

4495 {

4496 \@@_open_x_initial_dim:

4497 \@@_gpoint:n { row - \int_use:N \1_@@_initial_i_int - base }
4498 \dim_set_eq:NN \1_0Q@_y_initial_dim \pgf@y

4499 }

4500 { \@@_set_initial_coords_from_anchor:n { base~east } }

4501 \bool_if:NTF \1_0@_final_open_bool

4502 {

4503 \@@_open_x_final_dim:

4504 \@@_gpoint:n { row - \int_use:N \1_Q@_final_i_int - base }
4505 \dim_set_eq:NN \1_0@_y_final_dim \pgf@y

4506 }

4507 { \@@_set_final_coords_from_anchor:n { base~west } }

Now the case of a \Hdotsfor (or when there is only a \Ldots) in the “last row” (that case will
probably arise when the final user draws an arrow to indicate the number of columns of the matrix).
In the “first row”, we don’t need any adjustment.

4508 \bool_lazy_all:nTF

4509 {

4510 \1_@@_initial_open_bool

4511 \1_0@_final_open_bool

4512 { \int_compare_p:nNn { \1_@@_initial_i_int } = { \1_@@_last_row_int } }
4513 }

4514 {

4515 \dim_add:Nn \1_0@_y_initial_dim \c_@@_shift_Ldots_last_row_dim

4516 \dim_add:Nn \1_0@_y_final_dim \c_@@_shift_Ldots_last_row_dim

4517 }

We raise the line of a quantity equal to the radius of the dots because we want the dots really “on”
the line of texte. Of course, maybe we should not do that when the option line-style is used (7).

4518 {

4519 \dim_add:Nn \1_@@_y_initial_dim \1_@@_xdots_radius_dim
4520 \dim_add:Nn \1_@@_y_final_dim \1_@@_xdots_radius_dim
4521 }

4522 \@@_draw_line:

4523 }

The first and the second arguments are the coordinates of the cell where the command has been
issued. The third argument is the list of the options.

224 \cs_new_protected:Npn \Q@@_draw_Cdots:nnn #1 #2 #3

4525 {

4526 \@Q@_adjust_to_submatrix:nn { #1 } { #2 }

4527 \cs_if_free:cT { @@ _ dotted _ #1 - #2 }

4528 {

4529 \@@_find_extremities:nnnn { #1 } { #2 } {0} {1}

The previous command may have changed the current environment by marking some cells as “dotted”,
but, fortunately, it is outside the group for the options of the line.

4530 \bool_if:NT \g_0@_aux_found_bool

4531 {

4532 \group_begin:

4533 \@@_open_shorten:

4534 \int_if_zero:nTF { #1 }

4535 { \color { nicematrix-first-row } }
4536 {

We remind that, when there is a “last row” \1_0@_last_row_int will always be (after the construction
of the array) the number of that “last row” even if the option last-row has been used without value.

4537 \int_compare:nNnT { #1 } = { \1_@@_last_row_int }

116

4538 { \color { nicematrix-last-row } }

4539 3

4540 \keys_set:nn { nicematrix / xdots } { #3 }
4541 \@@_color:o \1_@@_xdots_color_tl

4542 \@@_actually_draw_Cdots:

4543 \group_end:

4544 }

4545 }

4546 }

The command \@@_actually_draw_Cdots: has the following implicit arguments:
e \1_Q@_initial_i_int
e \1_0@_initial_j_int
e \1_@@_initial_open_bool
e \1_Q0@_final i_int
e \1_0@@_final_j_int
e \1_00_final_open_bool.

2547 \cs_new_protected:Npn \@@_actually_draw_Cdots:

4548 {

4549 \bool_if:NTF \1_0@_initial_open_bool

4550 { \@@_open_x_initial_dim: }

4551 { \@@_set_initial_coords_from_anchor:n { mid~east } }

4552 \bool_if:NTF \1_0@_final_open_bool

4553 { \@@_open_x_final_dim: }

4554 { \@@_set_final_coords_from_anchor:n { mid~west } }

4555 \bool_lazy_and:nnTF

4556 { \1_@@_initial_open_bool }

4557 { \1_@@_final_open_bool }

4558 {

4559 \@@_gpoint:n { row - \int_use:N \1_@@_initial_i_int }

4560 \dim_set_eq:NN \1_tmpa_dim \pgf@y

4561 \@@_gpoint:n { row - \int_eval:n { \1_@@_initial_i_int + 1 } }
4562 \dim_set:Nn \1_0@_y_initial_dim { (\1_tmpa_dim + \pgf@y) / 2 }
4563 \dim_set_eq:NN \1_Q@_y_final_dim \1_Q@_y_initial_dim

4564 }

4565 {

4566 \bool_if:NT \1_@@_initial_open_bool

4567 { \dim_set_eq:NN \1_@@_y_initial_dim \1_@@_y_final_dim }

4568 \bool_if:NT \1_0@_final_open_bool

4569 { \dim_set_eq:NN \1_@@_y_final_dim \1_@@_y_initial_dim }

4570 }

4571 \@@_draw_line:

4572 }

5573 \cs_new_protected:Npn \@@_open_y_initial_dim:

4574 {

4575 \dim_set:Nn \1_@@_y_initial_dim { - \c_max_dim }

4576 \int_step_inline:nnn { \1_@@_first_col_int } { \g_0@_col_total_int }
4577 {

4578 \cs_if_exist:cT

4579 { pgf @ sh @ ns @ \@@_env: - \int_use:N \1_Q@_initial_i_int - ##1 }
4580 {

4581 \pgfpointanchor

4582 { \@@_env: - \int_use:N \1_@@_initial_i_int - ##1 }

4583 { north }

4584 \dim_compare:nNnT { \pgf@y } > { \1_0@_y_initial_dim }

4585 { \dim_set_eq:NN \1_@@_y_initial_dim \pgf@y }

4586 }

4587 }

117

4588 \dim_compare:nNnT { \1_@@_y_initial_dim } = { - \c_max_dim }

4589 {

4500 \@@_gpoint:n { row - \int_use:N \1_@@_initial_i_int - base }
4501 \dim_set:Nn \1_0@_y_initial_dim

4592 {

4503 \fp_to_dim:n

4594 {

4505 \p gfQy

4596 + (\box_ht:N \strutbox + \extrarowheight) * \arraystretch
4597 }

4598 ¥

4599 }

4600 }

w01 \cs_new_protected:Npn \@@_open_y_final_dim:

4602 {

4603 \dim_set_eq:NN \1_@@_y_final_dim \c_max_dim

4604 \int_step_inline:nnn { \1_0@_first_col_int } { \g_0@@_col_total_int }
4605 {

4606 \cs_if_exist:cT

4607 { pgf @ sh @ ns @ \@@_env: - \int_use:N \1_00@_final_i_int - ##1 }
4608 {

4600 \pgfpointanchor

4610 { \@@_env: - \int_use:N \1_@@_final_ i_int - ##1 }

4611 { south }

4612 \dim_compare:nNnT { \pgf@y } < { \1_@@_y_final_dim }

4613 { \dim_set_eq:NN \1_@@_y_final_dim \pgf@y }

4614 }

4615 }

4616 \dim_compare:nNnT { \1_Q@_y_final_dim } = { \c_max_dim }

4617 {

4618 \@@_gpoint:n { row - \int_use:N \1_Q@_final_i_int - base }

4619 \dim_set:Nn \1_0@_y_final_dim

4620 { \fp_to_dim:n { \pgf@y - (\box_dp:N \strutbox) * \arraystretch } }
4621 }

4622 ¥

The first and the second arguments are the coordinates of the cell where the command has been
issued. The third argument is the list of the options.

2623 \cs_new_protected:Npn \@@_draw_Vdots:nnn #1 #2 #3

4624 {

4625 \@@_adjust_to_submatrix:nn { #1 } { #2 }

4626 \cs_if_free:cT { @@ _ dotted _ #1 - #2 }

4627 {

4628 \@@_find_extremities:nnnn { #1 } { #2 } {1} { 0 }

The previous command may have changed the current environment by marking some cells as “dotted”,
but, fortunately, it is outside the group for the options of the line.

4629 \bool_if:NT \g_0@_aux_found_bool

4630 {

4631 \group_begin:

4632 \@@_open_shorten:

4633 \int_if_zero:nTF { #2 }

4634 { \color { nicematrix-first-col } }

4635 {

4636 \int_compare:nNnT { #2 } = { \1_@@_last_col_int }
4637 { \color { nicematrix-last-col } }
4638 }

4639 \keys_set:nn { nicematrix / xdots } { #3 }
4640 \@@_color:o \1_0@_xdots_color_tl

4641 \bool_if:NTF \1_@@_Vbrace_bool

4642 { \@@_actually_draw_Vbrace: }

4643 { \@@_actually_draw_Vdots: }

4644 \group_end:

4645 ¥

118

4646 }

4647 }

The following function is used by regular calls of \Vdots or \Vdotsfor but not by \Vbrace.
The command \@@_actually_draw_Vdots: has the following implicit arguments:

e \1_Q0_initial_i_int

e \1_00@_initial_j_int

e \1_0@_initial_open_bool
e \1_Q0@_final_ i_int

e \1_@0_final_j_int

e \1_00_final_open_bool.

w45 \cs_new_protected:Npn \@Q_actually_draw_Vdots:

4649 {

4650 \bool_lazy_and:nnTF { \1_@@_initial_open_bool } { \1_@@_final_open_bool }
4651 { \@@_actually_draw_Vdots_i: }

4652 { \@@_actually_draw_Vdots_ii: }

4653 \dim_set_eq:NN \1_@@_x_final_dim \1_0@_x_initial_dim

4654 \@@_draw_line:

4655 }

First, the case of a dotted line open on both sides.
w656 \cs_new_protected:Npn \@@_actually_draw_Vdots_i:

4657 {
4658 \@@_open_y_initial_dim:
4659 \@@_open_y_final_dim:
4660 \int_if_zero:nTF { \1_@@_initial_j_int }
We have a dotted line open on both sides in the “first column”.
4661 {
4662 \@@_gpoint:n { col - 1 }
4663 \dim_set_eq:NN \1_@@_x_initial_dim \pgf@x
4664 \dim_sub:Nn \1_@@_x_initial_dim
4665 { \@@_colsep: + \1_0@_left_margin_dim + \1_0@_extra_left_margin_dim }
4666 }
4667 {
4668 \bool_lazy_and:nnTF
4669 { \int_compare_p:nNn { \1_@@_last_col_int } > { -2 } }
4670 {
4671 \int_compare_p:nNn
4672 { \1_@@_initial_j_int } = { \g_0@_col_total_int }
4673 }
We have a dotted line open on both sides and which is in the “last column”.
4674 {
4675 \@@_gpoint:n { col - \int_use:N \1_@@_initial_j_int }
4676 \dim_set_eq:NN \1_@@_x_initial_dim \pgf@x
4677 \dim_add:Nn \1_@@_x_initial_dim
4678 { \@@_colsep: + \1_@@_right_margin_dim + \1_0@_extra_right_margin_dim }
4679 }
We have a dotted line open on both sides which is not in an exterior column.
4680 {
4681 \@@_gpoint:n { col - \int_use:N \1_@@_initial_j_int }
4682 \dim_set_eq:NN \1_tmpa_dim \pgf@x
4683 \@@_gpoint:n { col - \int_eval:n { \1_@@_initial_j_int + 1 } }
4684 \dim_set:Nn \1_Q@_x_initial_dim { (\pgf@x + \1l_tmpa_dim) / 2 }
1685 }
4686 }
4687 ¥

119

The command \@@_draw_line: is in \@@_actually_draw_Vdots:

Now, the dotted line is not open on both sides (maybe open on only one side).
The main task is to determine the x-value of the dotted line to draw.
The boolean \1_tmpa_bool will indicate whether the column is of type 1 or may be considered as if.

w8 \cs_new_protected:Npn \@@_actually_draw_Vdots_ii:

4689 {

4690 \bool_set_false:N \1_tmpa_bool

4601 \bool_if:NF \1_Q@_initial_open_bool

4692 {

4693 \bool_if:NF \1_0@_final_open_bool

4694 {

4695 \@@_set_initial_coords_from_anchor:n { south~west }
4696 \@@_set_final_coords_from_anchor:n { north~west }
4697 \bool_set:Nn \1_tmpa_bool

4698 {

4699 \dim_compare_p:nNn

4700 { \1_0@_x_initial_dim } = { \1_@@_x_final_dim }
4701 }

4702 i

4703 ¥

Now, we try to determine whether the column is of type ¢ or may be considered as if.
4704 \bool_if:NTF \1_Q@_initial_open_bool

4705 {

4706 \@@_open_y_initial_dim:

4707 \@@_set_final_coords_from_anchor:n { north }

4708 \dim_set_eq:NN \1_0@_x_initial_dim \1_0@_x_final_dim
4709 }

4710 {

4711 \@@_set_initial_coords_from_anchor:n { south }

4712 \bool_if:NTF \1_@@_final_open_bool

4713 { \@@_open_y_final_dim: }

Now the case where both extremities are closed. The first conditional tests whether the column is of
type c or may be considered as if.

4714 {

4715 \@@_set_final_coords_from_anchor:n { north }

4716 \dim_compare:nNnF { \1_0@_x_initial_dim } = { \1_@@_x_final_dim }
4717 {

4718 \dim_set:Nn \1_@@_x_initial_dim

4719 {

4720 \bool_if:NTF \1_tmpa_bool { \dim_min:nn } { \dim_max:nn }
- \1_@@_x_initial dim \1_@@_x_final dim

4722 }

4723 }

4724 }

4725 }

4726 }

The following function is used by \Vbrace but not by regular uses of \Vdots or \Vdotsfor.
The command \@@_actually_draw_Vbrace: has the following implicit arguments:

e \1_@@_initial_i_int

e \1_@@_initial_j_int

e \1_0@@_initial_open_bool
e \1_@0_final_i_int

e \1_0@_final_j_int

e \1_@@_final_open_bool.

120

«27 \cs_new_protected:Npn \@@_actually_draw_Vbrace:

4728 {

4729 \bool_if:NTF \1_Q@_initial_open_bool

4730 { \@@_open_y_initial_dim: }

4731 { \@@_set_initial_coords_from_anchor:n { south } }
4732 \bool_if:NTF \1_@@_final_open_bool

4733 { \@@_open_y_final_dim: }

4734 { \@@_set_final_coords_from_anchor:n { north } }

Now, we have the correct values for the y-values of both extremities of the brace. We have to compute
the z-value (there is only one z-value since, of course, the brace is vertical).

If we are in the first (exterior) column, the brace must be drawn right flush.

4735 \int_if_zero:nTF { \1_@@_initial_j_int }
4736 {
4737 \@@_gpoint:n { col - 1 }
4738 \dim_set_eq:NN \1_0@_x_initial_dim \pgf@x
4739 \dim_sub:Nn \1_@@_x_initial_dim
4740 { \@@_colsep: + \1_00_left_margin_dim + \1_Q@_extra_left_margin_dim }
4741 }
Elsewhere, the brace must be drawn left flush.
4742 {
4743 \@@_gpoint:n { col - \int_use:N \1_0@_initial_j_int }
4744 \dim_set_eq:NN \1_@@_x_initial_dim \pgf@x
4745 \dim_add:Nn \1_@@_x_initial_dim
4746 { \@@_colsep: + \1_@@_right_margin_dim + \1_0@_extra_right_margin_dim }
4747 }
We draw a vertical rule and that’s why, of course, both z-values are equal.
4748 \dim_set_eq:NN \1_0@_x_final_dim \1_0@_x_initial_dim
4749 \@@_draw_line:
4750 }

4751 \cs_new:Npn \@@_colsep:
w52 { \bool_if:NTF \1_@@_tabular_bool { \tabcolsep } { \arraycolsep } }

For the diagonal lines, the situation is a bit more complicated because, by default, we parallelize
the diagonals lines. The first diagonal line is drawn and then, all the other diagonal lines are drawn
parallel to the first one.

The first and the second arguments are the coordinates of the cell where the command has been
issued. The third argument is the list of the options.

4753 \cs_new_protected:Npn \@@_draw_Ddots:nnn #1 #2 #3

4754 {

4755 \@@_adjust_to_submatrix:nn { #1 } { #2 }

4756 \cs_if_free:cT { @@ _ dotted _ #1 - #2 }

4757 {

4758 \@@_find_extremities:nnnn { #1 } { #2 } {1} {1}

The previous command may have changed the current environment by marking some cells as “dotted”,
but, fortunately, it is outside the group for the options of the line.

4759 \bool_if:NT \g_0@_aux_found_bool

4760 {

4761 \group_begin:

4762 \@@_open_shorten:

4763 \keys_set:nn { nicematrix / xdots } { #3 }
4764 \@@_color:o \1_@@_xdots_color_tl
4765 \@@_actually_draw_Ddots:

4766 \group_end:

4767 }

4768 3

4769 }

121

The command \@@_actually_draw_Ddots: has the following implicit arguments:
e \1_Q0_initial_i_int
e \1_@@_initial_j_int
e \1_@@_initial_open_bool
e \1_Q0@_final i_int
e \1_0@_final_j_int
e \1_00_final_open_bool.

a0 \cs_new_protected:Npn \@@_actually_draw_Ddots:

4771 {

4772 \bool_if:NTF \1_0Q@_initial_open_bool

4773 {

4774 \@@_open_y_initial_dim:

4775 \@@_open_x_initial_dim:

4776 }

4777 { \@@_set_initial_coords_from_anchor:n { south~east } }
4778 \bool_if:NTF \1_@@_final_open_bool

4779 {

4780 \@@_open_x_final_dim:

4781 \dim_set_eq:NN \1_@@_x_final_dim \pgf@x

4782 }

4783 { \@@_set_final_coords_from_anchor:n { north~west } }

We have retrieved the coordinates in the usual way (they are stored in \1_@@_x_initial_dim, etc.).
If the parallelization of the diagonals is set, we will have (maybe) to adjust the fourth coordinate.

4784 \bool_if:NT \1_@@_parallelize_diags_bool
4785 {
4786 \int_gincr:N \g_0@_ddots_int

We test if the diagonal line is the first one (the counter \g_@@_ddots_int is created for this usage).
4787 \int_compare:nNnTF { \g_0@@_ddots_int } = { \c_one_int }
If the diagonal line is the first one, we have no adjustment of the line to do but we store the A, and

the Ay of the line because these values will be used to draw the others diagonal lines parallels to the
first one.

4788 {

4789 \dim_gset:Nn \g_0@_delta_x_one_dim

4100 { \1_@e_x_final dim - \1_@@_x_initial dim }
4701 \dim_gset:Nn \g_0@_delta_y_one_dim

4792 { \1_0@_y_final_dim - \1_@@_y_initial_dim }
4793 }

If the diagonal line is not the first one, we have to adjust the second extremity of the line by modifying
the coordinate \1_@@_x_initial_dim.

4794 {

4795 \dim_compare:nNnF { \g_0@_delta_x_one_dim } = { \c_zero_dim }
4796 {

4797 \dim_set:Nn \1_Q@_y_final_dim

4798 {

4799 \1_@@_y_initial_dim +

4800 (\1_@@_x_final dim - \1_@@_x_initial_dim) *

4801 \dim_ratio:nn \g_@@_delta_y_one_dim \g_0@_delta_x_one_dim
4802 T

4803 }

4804 }

4805 }

4806 \@@_draw_line:

4807 }

122

We draw the \Iddots diagonals in the same way.
The first and the second arguments are the coordinates of the cell where the command has been
issued. The third argument is the list of the options.

2508 \cs_new_protected:Npn \@@_draw_Iddots:nnn #1 #2 #3

4809 {

4810 \@@_adjust_to_submatrix:nn { #1 } { #2 }

4811 \cs_if_free:cT { @@ _ dotted _ #1 - #2 }

4812 {

4813 \@@_find_extremities:nnnn { #1 } { #2 } { 1} { -1 }

The previous command may have changed the current environment by marking some cells as “dotted”,
but, fortunately, it is outside the group for the options of the line.

4814 \bool_if:NT \g_0@_aux_found_bool

4815 {

4816 \group_begin:

4817 \@@_open_shorten:

4818 \keys_set:nn { nicematrix / xdots } { #3 }
4819 \@@_color:o \1_@@_xdots_color_tl
4820 \@@_actually_draw_Iddots:

4821 \group_end:

4822 }

4823 }

1824 }

The command \@@_actually_draw_Iddots: has the following implicit arguments:
e \1_@0_initial_i_int
e \1_00_initial_j_int
e \1_0@_initial_open_bool
e \1_0@0_final i_int
e \1_00_final_j_int
e \1_00_final_open_bool.

2225 \cs_new_protected:Npn \@@_actually_draw_Iddots:

4826 {

4827 \bool_if:NTF \1_0@_initial_open_bool

4828 {

4829 \@Q@_open_y_initial_dim:

4830 \@@_open_x_initial_dim:

4831 }

4832 { \@@_set_initial_coords_from_anchor:n { south~west } }
4833 \bool_if:NTF \1_0@_final_open_bool

4834 {

4835 \@@_open_y_final_dim:

4836 \@@_open_x_final_dim:

4837 }

4838 { \@@_set_final_coords_from_anchor:n { north~east } }
4839 \bool_if:NT \1_Q@_parallelize_diags_bool

4840 {

4841 \int_gincr:N \g_0@_iddots_int

4842 \int_compare:nNnTF { \g_0@@_iddots_int } = { \c_one_int }
4843 {

4844 \dim_gset:Nn \g_0@_delta_x_two_dim

4845 { \1_@@_x_final_dim - \1_@@_x_initial_dim }

4846 \dim_gset:Nn \g_0@_delta_y_two_dim

o { \1_0@_y_final_dim - \1_@Q_y_initial_dim }

4848 ¥

4849 {

4850 \dim_compare:nNnF { \g_00@_delta_x_two_dim } = { \c_zero_dim }
4851 {

123

4858
4859
4860
4861

4862

17

The

4866
4867
4868
4869
4870
4871

4872

}

\dim_set:Nn \1_0@_y_final_dim
{
\1_@@_y_initial_dim +
(\1_@@_x_final dim - \1_@@_x_initial_dim) *
\dim_ratio:nn \g_00@_delta_y_two_dim \g_0@_delta_x_two_dim
}

}
\@@_draw_line:

The actual instructions for drawing the dotted lines with
TikZ

command \@@_draw_line: should be used in a {pgfpicture}. It has six implicit arguments:

\1_
\1_
\1_
\1_
\1_
\1_

363 \CS_

{

}

@Q_x_initial_dim
@0_y_initial_dim
@0_x_final dim
@0_y_final_dim
@0_initial_open_bool
0@_final_open_bool

new_protected:Npn \@@_draw_line:

\pgfrememberpicturepositiononpagetrue
\pgf@relevantforpicturesizefalse
\bool_lazy_or:nnTF
{ \tl_if_eq_p:NN \1_@@_xdots_line_style_tl \c_0@_standard_tl }
{ \1_0@@_dotted_bool }
{ \@@_draw_standard_dotted_line: }
{ \@@_draw_unstandard_dotted_line: }

We have to do a special construction with \exp_args:No to be able to put in the list of options in
the correct place in the TikZ instruction.

4873

\cs_

{

}

new_protected:Npn \@0_draw_unstandard_dotted_line:

\begin { scope }
\@@_draw_unstandard_dotted_line:o
{ \1_0@_xdots_line_style_tl , \1_@@_xdots_color_tl }

We have used the fact that, in PGF, un color name can be put directly in a list of options (that’s why
we have put diredtly \1_@@_xdots_color_t1).

The argument of \@@_draw_unstandard_dotted_line:n is, in fact, the list of options

2670 \cs_new_protected:Npn \@@_draw_unstandard_dotted_line:n #1

4880

4881

4882

4883

4884

4885

4886

{

}

\@@_draw_unstandard_dotted_line:nooo
{#1}
\1_@@_xdots_up_tl
\1_@@_xdots_down_tl
\1_@@_xdots_middle_t1l

w57 \cs_generate_variant:Nn \@Q@_draw_unstandard_dotted_line:n { o }

124

The following TikZ styles are for the three labels (set by the symbols _, ~ and =) of a continuous line
with a non-standard style.

4888

4889

4890

4892

4893

4894

4895

4896

4897

4898

4899

4900

4901

4902

4903

4904

4905

\hook_gput_code:nnn { begindocument } { . }

{
\IfPackageLoadedT { tikz }
{
\tikzset
{
@0@_node_above / .style = { sloped , above } ,
@0@_node_below / .style = { sloped , below } ,
@@_node_middle / .style =
{
sloped ,
inner~sep = \c_0@_innersep_middle_dim
}
}
}
}

\cs_new_protected:Npn \Q@_draw_unstandard_dotted_line:nnnn #1 #2 #3 #4
{

We take into account the parameters xdots/shorten-start and xdots/shorten-end “by hand”
because, when we use the key shorten > and shorten < of TikZ in the command \draw, we don’t
have the expected output with {decorate,decoration=brace} is used.

The dimension \1_@@_1_dim is the length ¢ of the line to draw. We use the floating point reals of
the L3 programming layer to compute this length.

4906

4907

4908

4909

4910

4911

4912

4913

4914

4915

4916

4917

4918

\dim_zero_new:N \1_@@_1_dim
\dim_set:Nn \1_@@_1_dim

{
\fp_to_dim:n
{
sqrt
(
(\1_@@_x_final_dim - \1_@@_x_initial_dim) ~ 2
*
(\1_@@_y_final_dim - \1_@@_y_initial_dim) ~ 2
)
}
}

It seems that, during the first compilations, the value of \1_@@_1_dim may be erroneous (equal to zero
or very large). We must detect these cases because they would cause errors during the drawing of the
dotted line. Maybe we should also write something in the aux file to say that one more compilation
should be done.

4919

4920

4921

4922

4923

\dim_compare:nNnT { \1_00@_1_dim } < { \c_0@_max_1_dim }
{
\dim_compare:nNnT { \1_@@_1 _dim } > { 1 pt }
\@@_draw_unstandard_dotted_line_i:

}

If the key xdots/horizontal-labels has been used.

4924

4925

4926

4927

4928

4929

4930

4931

4932

4933

4934

\bool_if:NT \1_@@_xdots_h_labels_bool

{
\tikzset
{
@@_node_above / .style = { auto = left } ,
@0_node_below / .style = { auto = right } ,
@@_node_middle / .style = { inner~sep = \c_QQ@_innersep_middle_dim }
}
}

\tl_if_empty:nF { #4 }
{ \tikzset { ©@@_node_middle / .append~style

{ fill = white } } }

125

4935 \dim_zero:N \1_tmpa_dim

4936 \dim_zero:N \1_tmpb_dim
4937 \tl_if_eq:NNTF \1_@@_xdots_line_style_tl \c_0@_brace_tl
4938 {
We test whether the brace is vertical or horizontal.
4939 \dim_compare:nNnTF \1_Q@_x_final_dim = \1_Q@@_x_initial_dim
4940 { \dim_set_eq:NN \1_tmpa_dim \1_@@_brace_shift_dim }
4941 { \dim_set_eq:NN \1_tmpb_dim \1_@@_brace_shift_dim }
4942 }
4943 {
4944 \tl_if_eq:NNT \1_@@_xdots_line_style_tl \c_0@_mirrored_brace_tl
4945 {
4946 \dim_compare:nNnTF \1_@@_x_final_dim = \1_@@_x_initial_dim
4947 { \dim_set:Nn \1_tmpa_dim { - \1_0@_brace_shift_dim } }
4948 { \dim_set:Nn \1_tmpb_dim { - \1_@@_brace_shift_dim } }
4949 }
4950 }
4951 \use:e
4952 {
4953 \exp_not:N \begin { scope }
4954 [shift = {(\dim_use:N \1_tmpa_dim,\dim_use:N \1_tmpb_dim)}]
4955 }
4956 \draw
4957 [#1 1]
4958 (\1_@@_x_initial_dim , \1_@@_y_initial_dim)
4959 -- node [@@_node_middle] { $ \scriptstyle #4 $ }
4960 node [@@_node_below] { $ \scriptstyle #3 $ }
4961 node [@@_node_above] { $ \scriptstyle #2 $ }
4962 (\1_00_x_final_dim , \1_Q@_y_final_dim) ;
4963 \end { scope }
4964 \end { scope }
4965 }

2066 \CS_generate_variant:Nn \@@_draw_unstandard_dotted_line:nnnn { n o o o }

267 \cs_new_protected:Npn \@@_draw_unstandard_dotted_line_i:

4968 {

4969 \dim_set:Nn \1_tmpa_dim

4970 {

4971 \1_@@_x_initial_dim

4972 + (\1_@@_x_final dim - \1_@@_x_initial_dim)

4973 * \dim_ratio:nn \1_@@_xdots_shorten_start_dim \1_@@_1_dim
4974 }

4975 \dim_set:Nn \1_tmpb_dim

4976 {

4977 \1_00_y_initial_dim

4978 + (\1_@@_y_final_dim - \1_Q@_y_initial_dim)

4979 * \dim_ratio:nn \1_@@_xdots_shorten_start_dim \1_@@_1_dim
4980 }

4981 \dim_set:Nn \1_Q@_tmpc_dim

4982 {

4983 \1_00@_x_final_dim

4984 - (\1_e@_x_final _dim - \1_@@_x_initial_dim)

4985 * \dim_ratio:nn \1_@@_xdots_shorten_end_dim \1_@@_1_dim
4986 }

4987 \dim_set:Nn \1_Q@_tmpd_dim

4988 {

4989 \1_@@_y_final_dim

4990 - (\1_@0@_y_final_dim - \1_@@_y_initial_dim)

4901 * \dim_ratio:nn \1_@@_xdots_shorten_end_dim \1_@@_1_dim
4992 }

4903 \dim_set_eq:NN \1_@@_x_initial_dim \1_tmpa_dim

4994 \dim_set_eq:NN \1_0@_y_initial_dim \1_tmpb_dim

4995 \dim_set_eq:NN \1_@@_x_final_dim \1_Q@_tmpc_dim

126

4996 \dim_set_eq:NN \1_0@_y_final_dim \1_0@_tmpd_dim

4997 }

The command \@@_draw_standard_dotted_line: draws the line with our system of dots (which
gives a dotted line with real rounded dots).

2003 \cs_new_protected:Npn \@@_draw_standard_dotted_line:
4999 {

5000 \group_begin:

The dimension \1_0@_1_dim is the length ¢ of the line to draw. We use the floating point reals of
the L3 programming layer to compute this length.

5001 \dim_zero_new:N \1_@@_1_dim

5002 \dim_set:Nn \1_@@_1_dim

5003 {

5004 \fp_to_dim:n

5005 {

5006 sqrt

5007 (

5008 (\1_@@_x_final dim - \1_@@_x_initial_dim) ~ 2

5009 +

5010 (\1_@@_y_final_dim - \1_@@_y_initial_dim) ~ 2

5011)

5012 }

5013 }

It seems that, during the first compilations, the value of \1_0@_1_dim may be erroneous (equal to zero
or very large). We must detect these cases because they would cause errors during the drawing of the

dotted line. Maybe we should also write something in the aux file to say that one more compilation
should be done.

5014 \dim_compare:nNnT { \1_0@_1_dim } < { \c_0@_max_1_dim }
5015 {

5016 \dim_compare:nNnT { \1_@@_1 _dim } > { 1 pt }
5017 { \@@_draw_standard_dotted_line_i: }

5018 }

5019 \group_end:

5020 \bool_lazy_all:nF

5021 {

5022 { \tl_if_empty_p:N \1_@@_xdots_up_tl }

5023 { \tl_if_empty_p:N \1_0@_xdots_down_tl }

5024 { \tl_if_empty_p:N \1_@@_xdots_middle_t1l }
5025 }

5026 { \@@_labels_standard_dotted_line: }

5027 }

s008 \dim_const:Nn \c_@@_max_1_dim { 50 cm }

520 \cs_new_protected:Npn \Q@0_draw_standard_dotted_line_i:

5030 {
The number of dots will be \1_tmpa_int + 1.

5031 \int_set:Nn \1_tmpa_int

5032 {

5033 \dim_ratio:nn

5034 {

5035 \1_@@_1_dim

5036 - \1_0@@_xdots_shorten_start_dim
5037 - \1_00_xdots_shorten_end_dim
5038 }

5039 { \1_@@_xdots_inter_dim }

5040 }

The dimensions \1_tmpa_dim and \1_tmpb_dim are the coordinates of the vector between two dots
in the dotted line.

5041 \dim_set:Nn \1_tmpa_dim

127

5042 {

5043 (\1_ee_x_final dim - \1_@@_x_initial_dim) *
5044 \dim_ratio:nn \1_@@_xdots_inter_dim \1_@@_1_dim
5045 }

5046 \dim_set:Nn \1_tmpb_dim

5047 {

5048 (\1_00_y_final_dim - \1_@@_y_initial_dim) *
5049 \dim_ratio:nn \1_Q@_xdots_inter_dim \1_@@_1_dim
5050 }

In the loop over the dots, the dimensions \1_Q@_x_initial_dim and \1_@@_y_initial_dim will be
used for the coordinates of the dots. But, before the loop, we must move until the first dot.

5051 \dim_gadd:Nn \1_0@_x_initial_dim

5052 {

5053 (\1_@@_x_final dim - \1_@@_x_initial dim) *

5054 \dim_ratio:nn

5055 {

5056 \1_00@_1_dim - \1_@@_xdots_inter_dim * \1l_tmpa_int
5057 + \1_@@_xdots_shorten_start_dim - \1_@@_xdots_shorten_end_dim
5058 }

505 {2\l _ee_1 dim }

5060 }

5061 \dim_gadd:Nn \1_@@_y_initial_dim

5062 {

5063 (\1_00_y_final_dim - \1_Q@_y_initial_dim) *

5064 \dim_ratio:nn

5065 {

5066 \1_00@_1_dim - \1_@@_xdots_inter_dim * \1l_tmpa_int
5067 + \1_0@_xdots_shorten_start_dim - \1_@@_xdots_shorten_end_dim
5068 }

5069 {2 \1_@@_1_dim }

5070 }

5071 \pgf@relevantforpicturesizefalse

5072 \int_step_inline:nnn { \c_zero_int } { \l_tmpa_int }

5073 {

5074 \pgfpathcircle

5075 { \pgfpoint \1_0@_x_initial_dim \1_@@_y_initial_dim }
5076 { \1_0@@_xdots_radius_dim }

5077 \dim_add:Nn \1_0@_x_initial_dim \1_tmpa_dim

5078 \dim_add:Nn \1_0@_y_initial_dim \1_tmpb_dim

5079 }

5080 \pgfusepathqfill

5081 3

s02 \cs_new_protected:Npn \@@_labels_standard_dotted_line:

5083 {

5084 \pgfscope

5085 \pgftransformshift

5086 {

5087 \pgfpointlineattime { 0.5 }

5088 { \pgfpoint \1_0@_x_initial_dim \1_@@_y_initial_dim }
5089 { \pgfpoint \1_00@_x_final_dim \1_@@_y_final_dim }

5090 }

5001 \fp_set:Nn \1_tmpa_fp

5092 {

5003 atand

5094 (

5005 \1_0@_y_final_dim - \1_Q@_y_initial_dim ,

5096 \1_@@_x_final_dim - \1_@@_x_initial_dim

5097)

5098 }

5099 \pgftransformrotate { \fp_use:N \1_tmpa_fp }

5100 \bool_if:NF \1_0@_xdots_h_labels_bool { \fp_zero:N \1_tmpa_fp }

128

5101 \tl_if_empty:NF \1_@@_xdots_middle_tl

5102 {

5103 \begin { pgfscope }

5104 \pgfset { inner~sep = \c_0Q@_innersep_middle_dim }
5105 \pgfnode

5106 { rectangle }

5107 { center }

5108 {

5100 \rotatebox { \fp_eval:n { - \1l_tmpa_fp } }
5110 {

5111 $ % $

5112 \scriptstyle \1_0@_xdots_middle_t1
5113 $ %8

5114 }

5115 }

5116 {1}

5117 {

5118 \pgfsetfillcolor { white }

5119 \pgfusepath { £ill }

5120 3

5121 \end { pgfscope }

5122 }

5123 \tl_if_empty:NF \1_0@_xdots_up_tl

5124 {

5125 \pgfnode

5126 { rectangle }

5127 { south }

5128 {

5120 \rotatebox { \fp_eval:n { - \1_tmpa_fp } }
5130 {

5131 $ %8

5132 \scriptstyle \1_@@_xdots_up_tl
5133 $ %%

5134 }

5135 }

5136 {3}

5137 { \pgfusepath { } }

5138 }

5139 \tl_if_empty:NF \1_@@_xdots_down_tl

5140 {

5141 \pgfnode

5142 { rectangle }

5143 { north }

5144 {

5145 \rotatebox { \fp_eval:n { - \1_tmpa_fp } }
5146 {

5147 $%$

5148 \scriptstyle \1_@@_xdots_down_tl
5149 $%$

5150 }

5151 }

5152 {3}

5153 { \pgfusepath { } }

5154 }

5155 \endpgfscope

5156 }

129

18 User commands available in the new environments

The commands \@@_Ldots:, \@@_Cdots:, \@@_Vdots:, \@@_Ddots: and \@@_Iddots: will be linked
to \Ldots, \Cdots, \Vdots, \Ddots and \Iddots in the environments {NiceArray} (the other envi-
ronments of nicematrix rely upon {NiceArray}).

The syntax of these commands uses the character _ as embellishment and that’s why we have
to insert a character _ in the arg spec of these commands. However, we don’t know the future
catcode of _ in the main document (maybe the user will use underscore, and, in that case, the
catcode is 13 because underscore activates _). That’s why these commands will be defined in a
\hook_gput_code:nnn { begindocument } { . } and the arg spec will be rescanned.

5157 \hook_gput_code:nnn { begindocument } { . }
5158 {

We rescan the argspec in order the correct catcode of _ in the main document (and that’s why we
are in a \AtBeginDocument).

5150 \tl_set_rescan:Nnn \1_@@ argspec_t1 { } {m E{ _~ :}{{}F{X{}2}72}
5160 \cs_new_protected:Npn \Q@@_Ldots:

5161 { \@@_collect_options:n { \@@_Ldots_i } }

5162 \exp_args:NNo \NewDocumentCommand \@@_Ldots_i \1_Q@_argspec_tl
5163 {

5164 \int_if_zero:nTF { \c@jCol }

5165 { \@@_error:nn { in~first~col } { \Ldots } }

5166 {

5167 \int_compare:nNnTF { \c@jCol } = { \1_@@_last_col_int }
5168 { \@@_error:nn { in~last~col } { \Ldots } }

5169 {

5170 \@@_instruction_of_type:nnn { \c_false_bool } { Ldots }
5171 {#1 , down = #2 , up = #3 , middle = #4 }

5172 }

5173 }

5174 \bool_if:NF \1_@@_nullify_dots_bool

5175 { \phantom { \ensuremath { \@@_old_ldots: } } }

5176 \bool_gset_true:N \g_0@_empty_cell_bool

5177 }

5178 \cs_new_protected:Npn \Q@@_Cdots:

5179 { \@@_collect_options:n { \@@_Cdots_i } }

5180 \exp_args:NNo \NewDocumentCommand \@@_Cdots_i \1_Q@_argspec_tl
5181 {

5182 \int_if_zero:nTF { \c@jCol }

5183 { \@@_error:nn { in~first~col } { \Cdots } }

5184 {

5185 \int_compare:nNnTF { \c@jCol } = { \1_@@_last_col_int }
5186 { \@@_error:nn { in~last~col } { \Cdots } }

5187 {

5188 \@@_instruction_of_type:nnn { \c_false_bool } { Cdots }
5189 {#1 , down = #2 , up = #3 , middle = #4 }

5190 }

5191 }

5102 \bool_if:NF \1_@@_nullify_dots_bool

5103 { \phantom { \ensuremath { \@@_old_cdots: } } }

5194 \bool_gset_true:N \g_0@_empty_cell_bool

5195 }

5106 \cs_new_protected:Npn \@@_Vdots:

5197 { \@@_collect_options:n { \@@_Vdots_i } }

5108 \exp_args:NNo \NewDocumentCommand \@@_Vdots_i \1_Q@_argspec_tl
5199 {

5200 \int_if_zero:nTF { \c@iRow }

130

5201

5202

5203

5204

5205

5206

5207

5208

5209

5210

5240

5241

5242

5243

5244

5245

5246

5248

5249

5250

5251

{ \@@_error:nn { in~first~row } { \Vdots } }
{
\int_compare:nNnTF { \c@iRow } = { \1_@@_last_row_int }
{ \@@_error:nn { in~last~row } { \Vdots } }
{
\@@_instruction_of_type:nnn { \c_false_bool } { Vdots }
{#1 , down = #2 , up = #3 , middle = #4 }
}
}
\bool_if:NF \1_@@_nullify_dots_bool
{ \phantom { \ensuremath { \@@_old_vdots: } } }
\bool_gset_true:N \g_0@_empty_cell_bool
}

\cs_new_protected:Npn \@@_Ddots:
{ \@@_collect_options:n { \@@_Ddots_i } }

\exp_args:NNo \NewDocumentCommand \@@_Ddots_i \1_0@_argspec_tl
{

\int_case:nnF \c@iRow

{
0 { \e@_error:nn { in~first~row } { \Ddots } }
\1_@@_last_row_int { \@@_error:nn { in~last~row } { \Ddots } }
}
{
\int_case:nnF \c@jCol
{
0 { \@@_error:nn { in~first~col } { \Ddots } }
\1_0@_last_col_int { \@@_error:nn { in~last~col } { \Ddots } }
}
{
\keys_set_known:nn { nicematrix / Ddots } { #1 }
\@@_instruction_of_type:nnn \1_@@_draw_first_bool { Ddots }
{ #1 , down = #2 , up = #3 , middle = #4 }
¥
}

\bool_if:NF \1_@@_nullify_dots_bool
{ \phantom { \ensuremath { \@@_old_ddots: } } }
\bool_gset_true:N \g_0@_empty_cell_bool
¥

\cs_new_protected:Npn \@@_Iddots:
{ \@@_collect_options:n { \@@_Iddots_i } }

\exp_args:NNo \NewDocumentCommand \@@_Iddots_i \1_Q@_argspec_tl
{

\int_case:nnF \c@iRow

{
0 { \@@_error:nn { in~first~row } { \Iddots } }
\1_@@_last_row_int { \@@_error:nn { in~last~row } { \Iddots } }
}
{
\int_case:nnF \c@jCol
{
0 { \@@_error:nn { in~first~col } { \Iddots } }
\1_0@_last_col_int { \@@_error:nn { in~last~col } { \Iddots } }
}
{
\keys_set_known:nn { nicematrix / Ddots } { #1 }
\@@_instruction_of_type:nnn { \1_00@_draw_first_bool } { Iddots }
{ #1 , down = #2 , up = #3 , middle = #4 }
}
}

131

5261 \bool_if:NF \1_@@_nullify_dots_bool

5262 { \phantom { \ensuremath { \@@_old_iddots: } } }
5263 \bool_gset_true:N \g_0@_empty_cell_bool

5264 }

5265 3

End of the \AddToHook.

Despite its name, the following set of keys will be used for \Ddots but also for \Iddots.

s206 \keys_define:nn { nicematrix / Ddots }

5267 {

5268 draw-first .bool_set:N = \1_@@_draw_first_bool ,
5269 draw-first .default:n = true ,

5270 draw-first .value_forbidden:n = true

5271 }

The command \@@_Hspace: will be linked to \hspace in {NiceArray}.

5272 \cs_new_protected:Npn \@@_Hspace:

5273 {

5274 \bool_gset_true:N \g_0@_empty_cell_bool
5275 \hspace

5276 }

In the environments of nicematrix, the command \multicolumn is redefined. We will patch the
environment {tabular} to go back to the previous value of \multicolumn.

5077 \cs_new_eq:NN \@0_old_multicolumn: \multicolumn
The command \@@_Hdotsfor will be linked to \Hdotsfor in {NiceArrayWithDelims}. TikZ nodes
are created also in the implicit cells of the \Hdotsfor (maybe we should modify that point).

This command must not be protected since it begins with \multicolumn.

5275 \cs_new:Npn \Q@_Hdotsfor:

5279 {

5280 \bool_lazy_and:nnTF

5281 { \int_if_zero_p:n { \c@jCol } }

5282 { \int_if_zero_p:n { \1_@@_first_col_int } }
5283 {

5284 \bool_if:NTF \g_@@_after_col_zero_bool
5285 {

5286 \multicolumn { 1 } { ¢ } { }

5287 \@@_Hdotsfor_i:

5288 }

5289 { \@@_fatal:n { Hdotsfor~in~col~0 } }
5290 }

5201 {

5202 \multicolumn { 1 } { ¢ } { }

5203 \@@_Hdotsfor_i:

5204 }

5205 T

The command \@@_Hdotsfor_i: is defined with \NewDocumentCommand because it has an optional
argument. Note that such a command defined by \NewDocumentCommand is protected and that’s why
we have put the \multicolumn before (in the definition of \@@_Hdotsfor:).

5206 \hook_gput_code:nnn { begindocument } { . }

5297 {
We don’t put ! before the last optional argument for homogeneity with \Cdots, etc. which have only
one optional argument.

5208 \cs_new_protected:Npn \Q@@_Hdotsfor_i:
5299 { \@@_collect_options:n { \@@_Hdotsfor_ii } }

132

We rescan the argspec in order the correct catcode of _ in the main document (and that’s why we
are in a \AtBeginDocument).

5300 \tl_set_rescan:Nnn \1_tmpa t1 { } {mmO{}E{_ "~ : 3} {{3{3{}}1?}
5301 \exp_args:NNo \NewDocumentCommand \@@_Hdotsfor_ii \1_tmpa_tl
5302 {

5303 \tl_gput_right:Ne \g_0@_HVdotsfor_lines_tl
5304 {

5305 \@@_Hdotsfor:nnnn

5306 { \int_use:N \c@iRow }

5307 { \int_use:N \c@jCol }

5308 { #2 }

5309 {

5310 #1 , #3 ,

5311 down = \exp_not:n { #4 } ,

5312 up = \exp_not:n { #5 } ,

5313 middle = \exp_not:n { #6 }

5314 }

5315 }

5316 \prg_replicate:nn { #2 - 1 }

5317 {

5318 &

5319 \multicolumn { 1 } { ¢ } { }

5320 \cs_set_eq:NN \CodeAfter \QQ@_CodeAfter_i:
5321 }

5322 }

5323 3

s34 \cs_new_protected:Npn \Q@@_Hdotsfor:nnnn #1 #2 #3 #4
5325 {

5326 \bool_set_false:N \1_0@_initial_open_bool

5327 \bool_set_false:N \1_0@_final_open_bool

For the row, it’s easy.

5328 \int_set:Nn \1_@@_initial_i_int { #1 }

530 \int_set_eq:NN \1_@@_final_ i_int \1_@@_initial_i_int
For the column, it’s a bit more complicated.

5330 \int_compare:nNnTF { #2 } = { \c_one_int }

5331 {

5332 \int_set_eq:NN \1_0@_initial_j_int \c_one_int

5333 \bool_set_true:N \1_@@_initial_open_bool

5334 }

5335 {

5336 \cs_if_exist:cTF

5337 {

5338 pgf @ sh @ ns @ \QQ@_env:

5339 - \int_use:N \1_@@_initial_i_int

5340 - \int_eval:n { #2 - 1 }

5341 }

5342 { \int_set:Nn \1_@@_initial_j_int { #2 - 1 } }

5343 {

5344 \int_set:Nn \1_@@_initial_j_int { #2 }

5345 \bool_set_true:N \1_@@_initial_open_bool

5346 }

5347 }

5348 \int_compare:nNnTF { #2 + #3 -1 } = { \c@jCol }

5349 {

5350 \int_set:Nn \1_0@_final_j_int { #2 + #3 - 1 }

5351 \bool_set_true:N \1_@@_final_open_bool

5352 }

5353 {

5354 \cs_if_exist:cTF

5355 {

5356 pgf @ sh @ ns @ \QQ@_env:

133

5357 - \int_use:N \1_@@_final_i_int

5358 - \int_eval:n { #2 + #3 }

5359 }

5360 { \int_set:Nn \1_@@_final_j_int { #2 + #3 } }
5361 {

5362 \int_set:Nn \1_Q@_final_j_int { #2 + #3 - 1 }
5363 \bool_set_true:N \1_Q0@_final_open_bool

5364 }

5365 }

5366 \bool_if:NT \g_@@_aux_found_bool

5367 {

5368 \group_begin:

5369 \@@_open_shorten:

5370 \int_if_ zero:nTF { #1 }

5371 { \color { nicematrix-first-row } }

5372 {

5373 \int_compare:nNnT { #1 } = { \g_Q@@_row_total_int }
5374 { \color { nicematrix-last-row } }

5375 3

5376 \keys_set:nn { nicematrix / xdots } { #4 }

5377 \@@_color:o \1_0@_xdots_color_tl

5378 \@@_actually_draw_Ldots:

5379 \group_end:

5380 }

We declare all the cells concerned by the \Hdotsfor as “dotted” (for the dotted lines created by
\Cdots, \Ldots, etc., this job is done by \@@_find_extremities:nnnn). This declaration is done by
defining a special control sequence (to nil).

5381 \int_step_inline:nnn { #2 } { #2 + #3 - 1 }

5382 { \cs_set_nopar:cpn { @@ _ dotted _ #1 - ##1 } { } }

s34 \hook_gput_code:nnn { begindocument } { . }

5385 {

5386 \cs_new_protected:Npn \@@_Vdotsfor:

5387 { \@@_collect_options:n { \@@_Vdotsfor_i } }

We rescan the argspec in order the correct catcode of _ in the main document (and that’s why we
are in a \AtBeginDocument).

5388 \tl_set_rescan:Nnn \l tmpa_ t1 { } {mm O{}E{_ "~ :}Y{{X}Y{3}{2X1}}
5389 \exp_args:NNo \NewDocumentCommand \@@_Vdotsfor_i \1_tmpa_tl
5390 {

5301 \bool_gset_true:N \g_0@_empty_cell_bool

5302 \tl_gput_right:Ne \g_0@_HVdotsfor_lines_tl

5393 {

5394 \@@_Vdotsfor:nnnn

5305 { \int_use:N \c@iRow }

5396 { \int_use:N \c@jCol }

5397 { #2 }

5398 {

5399 #1 , #3 ,

5400 down = \exp_not:n { #4 } ,

5401 up = \exp_not:n { #5 } ,

5402 middle = \exp_not:n { #6 }

5403 }

5404 }

5405 }

5406 3

#1 is the number of row;
#2 is the number of column;

134

#3 is the numbers of rows which are involved;

si07 \cs_new_protected:Npn \@@_Vdotsfor:nnnn #1 #2 #3 #4
5408 {

5400 \bool_set_false:N \1_Q@_initial_open_bool
5410 \bool_set_false:N \1_0@_final_open_bool
For the column, it’s easy.
sa11 \int_set:Nn \1_QQ_initial_j_int { #2 }
5412 \int_set_eq:NN \1_0@_final_j_int \1_0@_initial_j_int
For the row, it’s a bit more complicated.
5413 \int_compare:nNnTF { #1 } = { \c_one_int }
5414 {
5415 \int_set_eq:NN \1_@@_initial_i_int \c_one_int
5416 \bool_set_true:N \1_0@_initial_open_bool
5417 }
5418 {
5419 \cs_if_exist:cTF
5420 {
5421 pgf @ sh @ ns @ \Q@Q_env:
5422 - \int_eval:n { #1 - 1 }
5423 - \int_use:N \1_@@_initial_j_int
5424 }
5425 { \int_set:Nn \1_@@_initial_i_int { #1 - 1 } }
5426 {
5427 \int_set:Nn \1_@@_initial_i_int { #1 }
5428 \bool_set_true:N \1_Q@_initial_open_bool
5429 }
5430 }
5431 \int_compare:nNnTF { #1 + #3 - 1 } = { \c@iRow }
5432 {
. \int_set:Nn \1_@@ final i_int { #1 + #3 - 1 }
5434 \bool_set_true:N \1_0@_final_open_bool
5435 }
5436 {
5437 \cs_if_exist:cTF
5438 {
5439 pgf @ sh @ ns @ \@@_env:
5440 - \int_eval:n { #1 + #3 }
5441 - \int_use:N \1_@@_final_j_int
5442 }
5443 { \int_set:Nn \1_@@_final _i_int { #1 + #3 } }
5444 {
sass \int_set:Nn \1_@@_final i_int { #1 + #3 - 1 }
5446 \bool_set_true:N \1_Q0@_final_open_bool
5447 }
5448 }
5449 \bool_if:NT \g_0@_aux_found_bool
5450 {
5451 \group_begin:
5452 \@@_open_shorten:
5453 \int_if_zero:nTF { #2 }
5454 { \color { nicematrix-first-col } }
5455 {
5456 \int_compare:nNnT { #2 } = { \g_0@_col_total_int }
5457 { \color { nicematrix-last-col } }
5458 }
5459 \keys_set:nn { nicematrix / xdots } { #4 }
5460 \@@_color:o \1_@@_xdots_color_tl
5461 \bool_if:NTF \1_@@_Vbrace_bool
5462 { \@@_actually_draw_Vbrace: }
5463 { \@@_actually_draw_Vdots: }
5464 \group_end:
5465 }

135

We declare all the cells concerned by the \Vdotsfor as “dotted” (for the dotted lines created by
\Cdots, \Ldots, etc., this job is done by \@@_find_extremities:nnnn). This declaration is done by
defining a special control sequence (to nil).

5466 \int_step_inline:nnn { #1 } { #1 + #3 - 1 }
5467 { \cs_set_nopar:cpn { @@ _ dotted _ ##1 - #2 } { } }

The command \@@_rotate: will be linked to \rotate in {NiceArrayWithDelims}.
si0 \NewDocumentCommand \@@_rotate: { 0 { } }

5470 {

5471 \bool_gset_true:N \g_0@_rotate_bool

5472 \keys_set:nn { nicematrix / rotate } { #1 }
5473 \ignorespaces

5474 ¥

The command \@@_rotate_p_col: will be linked to \rotate in the the cells of the columns of type
p and al.
sa75 \cs_new_protected:Npn \Q@@_rotate_p_col: { \@0_error:n { rotate~in~p~col } }

5076 \keys_define:nn { nicematrix / rotate }

5477 {

5478 c .code:n = \bool_gset_true:N \g_0@_rotate_c_bool ,

5479 c .value_forbidden:n = true ,

5480 unknown .code:n = \@@_error:n { Unknown~key~for-~rotate }
5481 }

19 The command \line accessible in code-after

In the \CodeAfter, the command \@@_line:nn will be linked to \1ine. This command takes two
arguments which are the specifications of two cells in the array (in the format é-j) and draws a dotted
line between these cells. In fact, if also works with names of blocks.

First, we write a command with the following behaviour:
o If the argument is of the format i-j, our command applies the command \int_eval:n to ¢ and j
)
o If not (that is to say, when it’s a name of a \Block), the argument is left unchanged.

This must not be protected (and is, of course fully expandable).'*

ss2 \cs_new:Npn \@@_double_int_eval:n #1-#2 \q_stop

5483 {

5484 \tl_if_empty:nTF { #2 }

5485 { #1 }

5486 { \@@_double_int_eval_i:n #1-#2 \g_stop }
5487 }

siss \cs_new:Npn \Q@@_double_int_eval_i:n #1-#2- \g_stop
sas0 { \int_eval:n { #1 } - \int_eval:n { #2 } }

Tndeed, we want that the user may use the command \line in \CodeAfter with LaTeX counters in the arguments
— with the command \value.

136

With the following construction, the command \@@_double_int_eval:n is applied to both argu-
ments before the application of \@@_line_i:nn (the construction uses the fact the \@@_line_i:nn
is protected and that \@@_double_int_eval:n is fully expandable).

sai00 \hook_gput_code:nnn { begindocument } { . }

5491 {
We rescan the argspec in order the correct catcode of _ in the main document (and that’s why we
are in a \AtBeginDocument).

5400 \tl_set_rescan:Nnn \1_tmpa_tl { }

5493 {0{}mm!'O0{E{_ " :3{{3{3r{}2}}

5494 \exp_args:NNo \NewDocumentCommand \@@_line \1l_tmpa_tl
5495 {

5496 \group_begin:

5497 \keys_set:nn { nicematrix / xdots } { #1 , #4 , down = #5 , up = #6 }
5498 \@@_color:o \1_@@_xdots_color_tl

5490 \use:e

5500 {

5501 \@@_line_i:nn

5502 { \@@_double_int_eval:n #2 - \g_stop }

5503 { \@@_double_int_eval:n #3 - \g_stop }

5504 }

5505 \group_end:

5506 }

5507 }

5508 \cS_new_protected:Npn \Q@_line_i:nn #1 #2

5509 {

5510 \bool_set_false:N \1_Q@_initial_open_bool

5511 \bool_set_false:N \1_0@_final_open_bool

5512 \bool_lazy_or:nnTF

5513 { \cs_if_free_p:c { pgf @ sh @ ns @ \@@_env: - #1 } }
5514 { \cs_if_free_p:c { pgf @ sh @ ns @ \@@_env: - #2 } }
5515 { \@@_error:nnn { unknown~cell~for~line~in~CodeAfter } { #1 } { #2 } }

The test of measuring@ is a security (cf. question 686649 on TeX StackExchange).

5516 { \legacy_if:nF { measuring@ } { \@@_draw_line ii:nn { #1 } { #2 } } }
5517 ¥

5515 \hook_gput_code:nnn { begindocument } { . }

5519 {

5520 \cs_new_protected:Npe \QQ_draw_line_ii:nn #1 #2

5521 {

We recall that, when externalization is used, \tikzpicture and \endtikzpicture (or \pgfpicture
and \endpgfpicture) must be directly “visible” and that why we do this static construction of the
command \@@_draw_line_ii:.

5522 \c_00_pgfortikzpicture_tl

5523 \@@_draw_line_iii:nn { #1 } { #2 }
5524 \c_00_endpgfortikzpicture_tl

5525 ¥

5526 }

The following command must be protected (it’s used in the construction of \@@_draw_line_ii:nn).

5527 \cs_new_protected:Npn \Q@@_draw_line_iii:nn #1 #2

5528 {

5529 \pgfrememberpicturepositiononpagetrue

5530 \pgfpointshapeborder { \@@_env: - #1 } { \@@_gpoint:n { #2 } }
5531 \dim_set_eq:NN \1_0@_x_initial_dim \pgf@x

5532 \dim_set_eq:NN \1_0@_y_initial_dim \pgf@y

5533 \pgfpointshapeborder { \@@_env: - #2 } { \@@_gpoint:n { #1 } }
5534 \dim_set_eq:NN \1_@@_x_final_dim \pgf@x

5535 \dim_set_eq:NN \1_@@_y_final_dim \pgf@y

5536 \@@_draw_line:

553 }

137

The commands \Ldots, \Cdots, \Vdots, \Ddots, and \Iddots don’t use this command because they
have to do other settings (for example, the diagonal lines must be parallelized).

20 The command \RowStyle

\g_0@_row_style_t1l may contain several instructions of the form:
\@@_if_row_less_than:nn { number } { instructions }

Then, \g_00_row_style_t1 will be inserted in all the cells of the array (and also in both components
of a \diagbox in a cell of in a mono-row block).
The test \@@_if_row_less_then:nn ensures that the instructions are inserted only if you are in a
row which is (still) in the scope of that instructions (which depends on the value of the key nb-rows
of \RowStyle).
That test will be active even in an expandable context because \@@_if_row_less_then:nn is not
protected.
#1 is the first row after the scope of the instructions in #2
However, both arguments are implicit because they are taken by curryfication.

5533 \cs_new:Npn \@@_if_row_less_than:nn { \int_compare:nNnT { \c@iRow } < }

5539 \cs_new:Npn \Q@@_if_col_greater_than:nn { \int_compare:nNnF { \c@jCol } < }

\@@_put_in_row_style will be used several times in \RowStyle.

5520 \cs_set_protected:Npn \@@_put_in_row_style:n #1

5541 {

5542 \tl_gput_right:Ne \g_00@_row_style_tl

5543 {
Be careful, \exp_not:N \@@_if_row_less_than:nn can’t be replaced by a protected version of
\@@_if_row_less_than:nn.

5544 \exp_not :N

5545 \@@_if_row_less_than:nn

5546 { \int_eval:n { \c@iRow + \1_@@_key_nb_rows_int } }
The \scan_stop: is mandatory (for ex. for the case where \rotate is used in the argument of
\RowStyle).

5547 {

5548 \exp_not:N

5549 \@@_if_col_greater_than:nn

5550 { \int_eval:n { \C@jCOl T}

5551 { \exp_not:n { #1 } \scan_stop: }

5552 T

5553 }

5554 }

s555 \CS_generate_variant:Nn \@@_put_in_row_style:n { e }

ss56 \keys_define:nn { nicematrix / RowStyle }

5557 {

5558 cell-space-top-limit .dim_set:N = \1_tmpa_dim ,

5550 cell-space-top-limit .value_required:n = true ,

5560 cell-space-top-limit+ .code:n =

5561 \dim_set:Nn \1_tmpa_dim { \1_0@_cell_space_top_limit_dim + #1 } ,
5562 cell-space-top-limit+ .value_required:n = true ,

5563 cell-space-top-limit~+ .meta:n = { cell-space-top-limit+ = #1 } ,

5564 cell-space-bottom-1limit .dim_set:N = \1_tmpb_dim ,

5565 cell-space-bottom-limit .value_required:n = true ,

5566 cell-space-bottom-limit+ .code:n =

5567 \dim_set:Nn \1_tmpb_dim { \1_0@_cell_space_bottom_limit_dim + #1 } ,
5568 cell-space-bottom-limit+ .value_required:n = true ,

5569 cell-space-bottom-limit~+ .meta:n = { cell-space-bottom-limit+ = #1 } ,
5570 cell-space-limits .meta:n =

138

5572 cell-space-top-limit = #1 ,

5573 cell-space-bottom-limit = #1 ,

5574 } N

5575 cell-space-limits+ .meta:n =

5576 {

5577 cell-space-top-limit += #1 ,

5578 cell-space-bottom-limit += #1 ,

5579 } N

5580 cell-space-limits~+ .meta:n = { cell-space-limits+ = #1 } ,
5581 color .tl_set:N = \1_@@_color_tl ,

5582 color .value_required:n = true ,

5583 bold .bool_set:N = \1_0@_bold_row_style_bool ,

5584 bold .default:n = true ,

5585 nb-rows .code:n =

5586 \str_if_eq:eeTF { #1 } { * }

5587 { \int_set:Nn \1_0@_key_nb_rows_int { 500 } }
5588 { \int_set:Nn \1_0@_key_nb_rows_int { #1 } } ,
5589 nb-rows .value_required:n = true ,

5500 fill .tl_set:N = \1_e@_fill tl1 ,

5501 fill .value_required:n = true ,

In fine, the opacity will be applied by \pgfsetfillopacity.

5502 opacity .tl_set:N = \1_0@_opacity_tl ,
5503 opacity .value_required:n = true ,

5504 rowcolor .tl_set:N = \1_@@_fill_t1 ,
5505 rowcolor .value_required:n = true ,
5506 rounded-corners .dim_set:N = \1_Q@_rounded_corners_dim ,
5507 rounded-corners .default:n = 4 pt ,
5508 unknown .code:n =

5509 \@@_unknown_key:nn

5600 { nicematrix / RowStyle }

5601 { Unknown~key~for~RowStyle }

5602 }

5603 \NewDocumentCommand \Q@@_RowStyle:n { 0 { } m }

5604 {

5605 \group_begin:

5606 \tl_clear:N \1_@@_fill_t1

5607 \tl_clear:N \1_Q@_opacity_tl

5608 \tl_clear:N \1_@@_color_tl

5600 \int_set_eq:NN \1_0@_key_nb_rows_int \c_one_int
5610 \dim_zero:N \1_@@_rounded_corners_dim

5611 \dim_zero:N \1_tmpa_dim

5612 \dim_zero:N \1_tmpb_dim

5613 \keys_set:nn { nicematrix / RowStyle } { #1 }

If the key £i11 (or its alias rowcolor) has been used.

s614 \tl_if_empty:NF \1_0@_fill_tl
5615 {
5616 \@@_add_opacity_to_£fill:
5617 \tl_gput_right:Ne \g_@@_pre_code_before_tl
5618 {
The command \@@_exp_color_arg:No is fully expandable.
5619 \@@_exp_color_arg:No \@@_roundedrectanglecolor \1_@@_fill_tl
5620 { \int_use:N \c@iRow - \int_use:N \c@jCol }
5621 {
5622 \int_eval:n { \c@iRow + \1_@@_key_nb_rows_int - 1 }
5623 - %
5624 }
5625 { \dim_use:N \1_@@_rounded_corners_dim }
5626 }
5627 }

139

5628 \@@_put_in_row_style:n { \exp_not:n { #2 } }
\1_tmpa_dim is the value of the key cell-space-top-limit of \RowStyle.

5629 \dim_compare:nNnT { \1_tmpa_dim } > { \c_zero_dim }

5630 {

5631 \@@_put_in_row_style:e

5632 {

5633 \tl_gput_right:Nn \exp_not:N \g_0@_cell_after_hook_tl
5634 {

It’s not possible to change the following code by using \dim_set_eq:NN (because of expansion).
5635 \dim_set:Nn \1_0@_cell_space_top_limit_dim
5636 { \dim_use:N \1_tmpa_dim }

5637 }
5638 }
5639 }

\1_tmpb_dim is the value of the key cell-space-bottom-1limit of \RowStyle.
5640 \dim_compare:nNnT { \1_tmpb_dim } > { \c_zero_dim }

5641 {

5642 \@@_put_in_row_style:e

5643 {

5644 \tl_gput_right:Nn \exp_not:N \g_0@_cell_after_hook_tl
5645 {

5646 \dim_set:Nn \1_0@_cell_space_bottom_limit_dim

5647 { \dim_use:N \1_tmpb_dim }

5648 }

5649 3

5650 }

\1_0@_color_t1 is the value of the key color of \RowStyle.
5651 \tl_if_empty:NF \1_0@_color_tl
5652 {

5653 \@@_put_in_row_style:e

5654 {

5655 \mode_leave_vertical:

5656 \@@_color:n { \1_@@_color_tl1 }
5657 }

5658 }

\1_@@_bold_row_style_bool is the value of the key bold.
5659 \bool_if:NT \1_@@_bold_row_style_bool
5660 {

5661 \@@_put_in_row_style:n

5662 {

5663 \exp_not:n

5664 {

5665 \if _mode_math:

5666 $ % $

5667 \bfseries \boldmath
5668 $ % $

5660 \else:

5670 \bfseries \boldmath
5671 \fi:

5672 }

5673 }

5674 }

5675 \group_end:

5676 \g_00_row_style_tl

5677 \ignorespaces

5678 }

The following commande must not be protected.

s \cs_new:Npn \Q@@_rounded_from_row:n #1
5680 {
5681 \@@_exp_color_arg:No \@@_roundedrectanglecolor \1_Q@_fill_tl

140

In the following code, the “~ 1” is not a subtraction.

5682 { \int_eval:n { #1 } - 1 }

5683 {

5684 \int_eval:n { \c@iRow + \1_0@_key_nb_rows_int - 1 }
5685 - \exp_not:n { \int_use:N \c@jCol }

5686 }

5687 { \dim_use:N \1_@@_rounded_corners_dim }

5688 }

21 Colors of cells, rows and columns

We want to avoid the thin white lines that are shown in some PDF viewers (eg: with the engine
MuPDF used by SumatraPDF). That’s why we try to draw rectangles of the same color in the same
instruction \pgfusepath { £ill } (and they will be in the same instruction fill—coded f—in the
resulting PDF).

The commands \@@_rowcolor, \@@_columncolor, \@@_rectanglecolor and \@@_rowlistcolors
don’t directly draw the corresponding rectangles. Instead, they store their instructions color by
color:

e A sequence \g_00_colors_seq will be built containing all the colors used by at least one of
these instructions. Each color may be prefixed by its color model (eg: [grayl{0.53}).

o For the color whose index in \g_@@_colors_seq is equal to i, a list of instructions which use that
color will be constructed in the token list \g_0@_color_:_t1. In that token list, the instructions
will be written using \@@_cartesian_color:nn and \@@_rectanglecolor:nn.

#1 is the color and #2 is an instruction using that color. Despite its name, the command
\@@_add_to_colors_seq:nn doesn’t only add a color to \g_0@_colors_seq: it also updates the
corresponding token list \g_@@_color_i_tl. We add in a global way because the final user may use
the instructions such as \cellcolor in a loop of pgffor in the \CodeBefore (and we recall that a loop
of pgffor is encapsulated in a group).

ses0 \cs_new_protected:Npn \@@_add_to_colors_seq:nn #1 #2

5690 {
First, we look for the number of the color and, if it’s found, we store it in \1_tmpa_int. If the color
is not present in \1_0@_colors_seq, \1_tmpa_int will remain equal to 0.

5601 \int_zero:N \1_tmpa_int
We don’t take into account the colors like myserie! !+ because those colors are special color from a
\definecolorseries of xcolor. \str_if_in:nnF is mandatory: don’t use \t1_if_in:nnF.

5692 \str_if_in:nnF { #1 } { !! }
5693 {
5604 \seq_map_indexed_inline:Nn \g_@@_colors_seq
We use \str_if_eq:eeTF which is slightly faster than \t1_if_eq:nnTF.
5605 { \str_if_eq:eeT { #1 } { ##2 } { \int_set:Nn \1_tmpa_int { ##1 } } }
5696 }
5607 \int_if_zero:nTF { \1_tmpa_int }
First, the case where the color is a new color (not in the sequence).
5698 {
5699 \seq_gput_right:Nn \g_@@_colors_seq { #1 }
5700 \tl_gset:ce { g_0@_color _ \seq_count:N \g_Q@_colors_seq _ tl } { #2 }
5701 ¥

141

Now, the case where the color is not a new color (the color is in the sequence at the position
\1_tmpa_int).

5702 { \tl_gput_right:ce { g_0@@_color _ \int_use:N \1_tmpa_int _t1 } { #2 } }

5703 3

s70 \cs_generate_variant:Nn \@@_add_to_colors_seq:nn { e }

5705 \CcS_generate_variant:Nn \@Q_add_to_colors_seq:nn { e e }

The following command must be used within a \pgfpicture.

5706 \cs_new_protected:Npn \@@_clip_with_rounded_corners:

5707 {
5708 \dim_compare:nNnT { \1_0@_tab_rounded_corners_dim } > { \c_zero_dim }
5709 {
The TeX group is for \pgfsetcornersarced (whose scope is the TeX scope).
5710 \group_begin:
5711 \pgfsetcornersarced
5712 {
5713 \pgfpoint
5714 { \1_0@@_tab_rounded_corners_dim }
5715 { \1_@@_tab_rounded_corners_dim }
5716 }

Because we want nicematrix compatible with arrays constructed by array, the nodes for the rows and
columns (that is to say the nodes row-i and col-j) have not always the expected position, that is
to say, there is sometimes a slight shifting of something such as \arrayrulewidth. Now, for the
clipping, we have to change slightly the position of that clipping whether a rounded rectangle around
the array is required. That’s the point which is tested in the following line.

5717 \bool_if:NTF \1_@@_hvlines_bool
5718 {
5719 \pgfpathrectanglecorners
5720 {
5721 \pgfpointadd
5722 { \e@_gpoint:n { row-1 } }
5723 { \pgfpoint { 0.5 \arrayrulewidth } { \c_zero_dim } }
5724 }
5725 {
5726 \pgfpointadd
5727 {
5728 \@@_gpoint:n
5729 { \int_eval:n { \int_max:nn { \c@iRow } { \c@jCol } + 1 } }
5730 }
5731 { \pgfpoint \c_zero_dim { 0.5 \arrayrulewidth } }
5732 }
5733 3
5734 {
5735 \pgfpathrectanglecorners
5736 { \e@@_gpoint:n { row-1 } }
5737 {
5738 \pgfpointadd
5739 {
5740 \@@_gpoint:n
5741 { \int_eval:n { \int_max:nn { \c@iRow } { \c@jCol } + 1 } }
5742 3
5743 { \pgfpoint \c_zero_dim \arrayrulewidth }
5744 }
5745 }
5746 \pgfusepath { clip }
5747 \group_end:
The TeX group was for \pgfsetcornersarced.
5748 }
5749 }

142

The macro \@@_actually_color: will actually fill all the rectangles, color by color (using the se-
quence \1_0@_colors_seq and all the token lists of the form \1_@@_color_i_t1).

s50 \cs_new_protected:Npn \Q@@_actually_color:

5751 {
5752 \pgfpicture
5753 \pgf@relevantforpicturesizefalse

If the final user has used the key rounded-corners for the environment {NiceTabular}, we will clip
to a rectangle with rounded corners before filling the rectangles.

5754 \@@_clip_with_rounded_corners:

5755 \seq_map_indexed_inline:Nn \g_Q@_colors_seq

5756 {

5757 \int_compare:nNnTF { ##1 } = { \c_one_int }

5758 {

5759 \cs_set_eq:NN \@@_cartesian_path:n \@@_cartesian_path_nocolor:n
5760 \use:c { g_0@_color _ 1 _t1 }

5761 \cs_set_eq:NN \Q@Q@_cartesian_path:n \QQ@_cartesian_path_normal:n
5762 }

5763 {

5764 \begin { pgfscope }

5765 \@@_color_opacity: ##2

5766 \use:c { g_00@_color _ ##1 _tl }

5767 \tl_gclear:c { g_0@@_color _ ##1 _tl1 }

5768 \pgfusepath { fill }

5760 \end { pgfscope }

5770 }

5771 }

5772 \endpgfpicture

5773 3

The following command will extract the potential key opacity in its optional argument (between
square brackets) and (of course) then apply the command \color.

5774 \cs_new_protected:Npn \@@_color_opacity:

5775 {

5776 \peek_meaning:NTF [

5777 { \@@_color_opacity:w }

5778 { \@@_color_opacity:w [] }
5779 }

The command \@@_color_opacity:w takes in as argument only the optional argument. One may
consider that the second argument (the actual definition of the color) is provided by curryfication.

s50 \cs_new_protected:Npn \@@_color_opacity:w [#1]

5781 {
5782 \tl_clear:N \1_tmpa_tl
5783 \keys_set_known:nnN { nicematrix / color-opacity } { #1 } \1_tmpb_tl

\1_tmpa_t1 (if not empty) is now the opacity and \1_tmpb_t1 (if not empty) is now the colorimetric
space.

5784 \tl_if_empty:NF \1_tmpa_tl { \exp_args:No \pgfsetfillopacity \1l_tmpa_tl }
5785 \tl_if_empty:NTF \1_tmpb_tl

5786 { \@declaredcolor }

5787 { \use:e { \exp_not:N \Qundeclaredcolor [\l_tmpb_tl] } }

5788 }

The following set of keys is used by the command \@@_color_opacity:w.

s720 \keys_define:nn { nicematrix / color-opacity }

5790 {

5791 opacity .tl_set:N = \1_tmpa_tl ,
5792 opacity .value_required:n = true

5793 3

143

Here, we use \def instead of \t1_set:Nn for efficiency only.

5794 \cs_new_protected:Npn \@Q_cartesian_color:nn #1 #2

5795 {

5705 \def \1_@@_rows t1 { #1 }
5797 \def \1_@@_cols_tl { #2 }
5798 \@@_cartesian_path:

5799 }

Here is an example : \@@_rowcolor {red!15} {1,3,5-7,10-}

ss00 \NewDocumentCommand \@@_rowcolor { 0 { } mm }

5801 {

5802 \tl_if_blank:nF { #2 }

5803 {

5804 \@@_add_to_colors_seq:en

5805 { \tl_if blank:nF { #1 >} { [#1 1 } {#2 1} }
5806 { \@@_cartesian_color:nn { #3 } { - } }

5807 }

5808 }

Here an example: \@@_columncolor:nn {red!15} {1,3,5-7,10-}

ss00 \NewDocumentCommand \@@_columncolor { 0 { } mm }

5810 {

5811 \tl_if_blank:nF { #2 }

5812 {

5813 \@@_add_to_colors_seq:en

5814 { \tl_if blank:nF { #1 > { [#1 1 } { #2 } }
5815 { \@@_cartesian_color:nn { - } { #3 } }

5816 }

5817 3

Here is an example: \@@_rectanglecolor{red!15}{2-3}{5-6}

ss15 \NewDocumentCommand \@@_rectanglecolor { 0 { } mm m }

5819 {

5820 \tl_if_blank:nF { #2 }

5821 {

5822 \@@_add_to_colors_seq:en

5623 { \tl_if blank:nF { #1 > { [#1 1 } { #2 } }

5824 { \@@_rectanglecolor:nnn { #3 } { #4 } { \c_zero_dim } }
5825 }

5826 }

The last argument is the radius of the corners of the rectangle.

5227 \NewDocumentCommand \@@_roundedrectanglecolor { 0 { } mmmm }

5828 {

582 \tl_if_blank:nF { #2 }

5830 {

5831 \@@_add_to_colors_seq:en

5832 { \tl_if blank:nF { #1 } { [#1 1 Y {#2}}
5833 { \@@_rectanglecolor:nnn { #3 } { #4 } { #5 } }
5834 }

5835 }

The last argument is the radius of the corners of the rectangle.

se3 \cs_new_protected:Npn \@Q@_rectanglecolor:nnn #1 #2 #3
5837 {

5838 \@@_cut_on_hyphen:w #1 \qg_stop

5839 \tl_set_eq:NN \1_@@_tmpc_tl \1_tmpa_tl

5840 \tl_set_eq:NN \1_@@_tmpd_t1l \1_tmpb_tl

5841 \@@_cut_on_hyphen:w #2 \qg_stop

5842 \tl_set:Ne \1_@@_rows_tl { \1_@@_tmpc_tl - \1l_tmpa_tl }
5843 \tl_set:Ne \1_@@_cols_tl { \1_@@_tmpd_tl - \1l_tmpb_t1l }

144

The command \@@_cartesian_path:n takes in two implicit arguments: \1_0@_cols_tl and
\1_@@_rows_t1.

5844 \@@_cartesian_path:n { #3 }
5845 3

Here is an example: \@@_cellcolor[rgb]{0.5,0.5,0}{2-3,3-4,4-5,5-6}
sss6 \NewDocumentCommand \@@_cellcolor { 0 { } mm }

5847 {

5848 \clist_map_inline:nn { #3 }

5849 { \@@_rectanglecolor [#1 1 { #2 } { ##1 } { ##1 } }
5850 }

5351 \NewDocumentCommand \@@_chessboardcolors { 0 { } mm }

5852 {

5853 \int_step_inline:nn { \c@iRow }

5854 {

5855 \int_step_inline:nn { \c@jCol }

5856 {

5857 \int_if_even:nTF { ####1 + ##1 }
5858 { \@@_cellcolor [#1 1 { #2 } }
5850 { \@@_cellcolor [#1 1 { #3 } }
5860 { ##1 - #H#1)

5861 }

5862 }

5863 }

The command \@@_arraycolor (linked to \arraycolor at the beginning of the \CodeBefore) will
color the whole tabular (excepted the potential exterior rows and columns) and the cells in the
“corners”.

s34 \NewDocumentCommand \@@_arraycolor { 0 { } m }

5865 {

5866 \@@_rectanglecolor [#1] { #2 }

5867 {1-11%

5868 { \int_use:N \c@iRow - \int_use:N \c@jCol }
5869 }

ss70 \keys_define:nn { nicematrix / rowcolors }

5871 {

5872 respect-blocks .bool_set:N = \1_0@_respect_blocks_bool ,
5873 respect-blocks .default:n = true ,

5874 cols .tl_set:N = \1_@@_cols_tl ,

5875 restart .bool_set:N = \1_Q@_rowcolors_restart_bool ,

5876 restart .default:n = true ,

5877 unknown .code:n = \@0_error:n { Unknown~key~for~rowcolors }
5878 }

The command \rowcolors (accessible in the \CodeBefore) is inspired by the command \rowcolors
of the package xcolor (with the option table). However, the command \rowcolors of nicematrix has
not the optional argument of the command \rowcolors of xcolor.

Here is an example: \rowcolors{1}{blue!10}{} [respect-blocks].

In nicematrix, the command \@@_rowcolors appears as a special case of \@@_rowlistcolors.

#1 (optional) is the color space; #2 is a list of intervals of rows; #3 is the list of colors; #4 is for the
optional list of pairs key=value.

ss79 \NewDocumentCommand \@@_rowlistcolors { 0 { Y mm O { } }
5880 {

145

The group is for the options. \1_@@_colors_seq will be the list of colors.

5881 \group_begin:

5882 \seq_clear_new:N \1_Q@_colors_seq

5883 \seq_set_split:Nnn \1_@@_colors_seq { , } { #3 }
5884 \tl_clear_new:N \1_@@_cols_tl

5885 \tl_set:Nn \1_@@_cols_tl { - }

5886 \keys_set:nn { nicematrix / rowcolors } { #4 }

The counter \1_0@_color_int will be the rank of the current color in the list of colors (modulo the
length of the list).

5887 \int_zero_new:N \1_@@_color_int

5888 \int_set_eq:NN \1_@@_color_int \c_one_int
5889 \bool_if:NT \1_@@_respect_blocks_bool

5890 {

We don’t want to take into account a block which is completely in the “first column” (number 0) or in
the “last column” and that’s why we filter the sequence of the blocks (in the sequence \1_tmpa_seq).

5801 \seq_set_eq:NN \1_tmpb_seq \g_00@_pos_of_blocks_seq
5802 \seq_set_filter:NNn \1_tmpa_seq \1_tmpb_seq

5803 { \@@_not_in_exterior_p:nnnnn ##1 }

5894 }

5895 \pgfpicture

5896 \pgf@relevantforpicturesizefalse

#2 is the list of intervals of rows.

5807 \clist_map_inline:nn { #2 }

5898

5899

5900

5901

{
\tl_set:Nn \1_tmpa_tl { ##1 }
\tl_if_in:NnTF \1_tmpa_tl { - }
{ \@@_cut_on_hyphen:w ##1 \g_stop }

5902 { \tl_set:No \1_tmpb_t1l { \int_use:N \c@iRow } }

Now, 1_tmpa_tl and 1_tmpb_tl are the first row and the last row of the interval of rows that we
have to treat. The counter \1_tmpa_int will be the index of the loop over the rows.

5003 \int_set:Nn \1_tmpa_int \1_tmpa_tl
5004 \int_set:Nn \1_@@_color_int
5005 { \bool_if:NTF \1_0@_rowcolors_restart_bool { 1 } { \1l_tmpa_tl } }
5906 \int_set:Nn \1_0@_tmpc_int \1_tmpb_tl
5007 \int_do_until:nNnn \1_tmpa_int > \1_Q@_tmpc_int
5908 {
We will compute in \1_tmpb_int the last row of the “block™.
5009 \int_set_eq:NN \1_tmpb_int \1_tmpa_int
If the key respect-blocks is in force, we have to adjust that value (of course).
5910 \bool_if:NT \1_@@_respect_blocks_bool
5911 {
5012 \seq_set_filter:NNn \1_tmpb_seq \1_tmpa_seq
5013 { \@@_intersect_our_row_p:nnnnn ####1 }
5014 \seq_map_inline:Nn \1_tmpb_seq { \@Q@_rowcolors_i:nnnnn ####1 }
Now, the last row of the block is computed in \1_tmpb_int.
5915 }
5016 \tl_set:Ne \1_@@_rows_tl
5017 { \int_use:N \1_tmpa_int - \int_use:N \1_tmpb_int }

\1_0@_tmpc_tl will be the color that we will use.

5918 \tl_set:Ne \1_@@_color_tl

5919 {

5920 \@@_color_index:n

5021 {

5022 \int_mod:nn

5023 { \1_@@_color_int - 1 }

5924 { \seq_count:N \1_0@_colors_seq }
5925 + 1

5926 }

146

5927 }

5028 \tl_if_empty:NF \1_@@_color_tl

5929 {

5930 \@@_add_to_colors_seq:ee

5931 { \tl_if_blank:nF { #1 } { [#1 1 } { \1_@@_color_tl } }
5032 { \@@_cartesian_color:nn { \1_0@_rows_tl } { \1_@@_cols_tl } }
5933 }

5034 \int_incr:N \1_@@_color_int

5035 \int_set:Nn \1_tmpa_int { \1l_tmpb_int + 1 }

5936 }

5037 }

5938 \endpgfpicture

5939 \group_end:

5940 3

The command \@@_color_index:n peeks in \1_@@_colors_seq the color at the index #1. However,
if that color is the symbol =, the previous one is poken. This macro is recursive.

501 \cs_new:Npn \@@_color_index:n #1

5942 {

Be careful: this command \@@_color_index:n must be “fully expandable”.
5043 \str_if_eq:eeTF { \seq_item:Nn \1_0@_colors_seq { #1 } } { =}
5944 { \@@_color_index:n { #1 - 1 } }

5945 { \seq_item:Nn \1_0@_colors_seq { #1 } }
5946 }

The command \rowcolors (available in the \CodeBefore) is a specialisation of the more general
command \rowlistcolors. The last argument, which is a optional argument between square brackets
is provided by curryfication.

s0a7 \NewDocumentCommand \@@_rowcolors { 0 { } mmm }
soas { \@@_rowlistcolors [#1 1 {#2 Y { {#3 2} , {# } } }

The braces around #3 and #4 are mandatory.

509 \cs_new_protected:Npn \@0_rowcolors_i:nnnnn #1 #2 #3 #4 #5

5950 {

5051 \int_compare:nNnT { #3 } > { \1_tmpb_int }
5952 { \int_set:Nn \1_tmpb_int { #3 } }

5953 3

5054 \prg_new_conditional:Nnn \@@_not_in_exterior:nnnnn { p }

5955 {

5956 \int_if_zero:nTF { #4 }

5957 { \prg_return_false: }

5958 {

5959 \int_compare:nNnTF { #2 } > { \c@jCol }
5960 { \prg_return_false: }

5961 { \prg_return_true: }

5962 }

5963 }

The following command return true when the block intersects the row \1_tmpa_int.

5004 \prg_new_conditional:Nnn \@@_intersect_our_row:nnnnn { p }

5965 {

5966 \int_compare:nNnTF { #1 } > { \1_tmpa_int }

5967 { \prg_return_false: }

5968 {

5960 \int_compare:nNnTF { \1_tmpa_int } > { #3 }
5970 { \prg_return_false: }

5071 { \prg_return_true: }

5972 }

5973 ¥

147

The following command uses two implicit arguments: \1_@@_rows_t1 and \1_0@_cols_t1l which are
specifications for a set of rows and a set of columns. It creates a path but does not fill it. It must
be filled by another command after. The argument is the radius of the corners. We define below a
command \@@_cartesian_path: which corresponds to a value 0 pt for the radius of the corners.
This command is, in particular, used in \@@_rectanglecolor:nnn (used in \@@_rectanglecolor,
itself used in \@@_cellcolor).

5074 \cs_new_protected:Npn \@Q_cartesian_path_normal:n #1

5975 {

5076 \dim_compare:nNnTF { #1 } = { \c_zero_dim }

5977 {

5978 \bool_if:NTF \1_@@_nocolor_used_bool

5979 { \@@_cartesian_path_normal_ii: }

5980 {

5981 \clist_if_empty:NTF \1_0@_corners_cells_clist
5082 { \@@_cartesian_path_normal_i:n { #1 } }
5983 { \@@_cartesian_path_normal_ii: }

5984 }

5985 }

5986 { \@@_cartesian_path_normal_i:n { #1 } }

5087 3

First, the situation where is a rectangular zone of cells will be colored as a whole (in the instructions
of the resulting PDF). The argument is the radius of the corners.

s0s5 \cs_new_protected:Npn \Q@@_cartesian_path_normal_i:n #1

5989 {
5990 \pgfsetcornersarced { \pgfpoint { #1 } { #1 } }
We begin the loop over the columns.
5991 \clist_map_inline:Nn \1_0@_cols_tl
5992 {
We use \def instead of \t1l_set:Nn for efficiency only.
5993 \def \l_tmpa_tl { ##1 }
5904 \tl_if_in:NnTF \1_tmpa_tl { - }
5995 { \@@_cut_on_hyphen:w ##1 \g_stop }
5996 { \def \l_tmpb_tl { ##1 } }
5997 \tl_if_empty:NTF \1_tmpa_tl
5998 { \def \1_tmpa_tl {1 } }
5999 {
6000 \str_if_eq:eeT { \1l_tmpa_tl } { * }
6001 { \def \1_tmpa_tl {1 } }
6002 }
6003 \int_compare:nNnT { \1_tmpa_tl } > { \g_0@_col_total_int }
6004 { \@@_error:n { Invalid~col~number } }
6005 \tl_if_empty:NTF \1_tmpb_tl
6006 { \tl_set:No \1_tmpb_tl { \int_use:N \c@jCol } }
6007 {
6008 \str_if_eq:eeT { \1_tmpb_tl } { * }
6009 { \tl_set:No \1_tmpb_tl { \int_use:N \c@jCol } }
6010 }
6011 \int_compare:nNnT { \1_tmpb_tl } > { \g_0@_col_total_int }
6012 { \tl_set:No \1_tmpb_tl { \int_use:N \g_@@_col_total_int } }
\1_@@_tmpc_t1l will contain the number of column.
6013 \tl_set_eq:NN \1_@@_tmpc_tl \1_tmpa_tl
6014 \@@_gpoint:n { col - \1_tmpa_tl }
6015 \int_compare:nNnTF { \1_@@_first_col_int } = { \1_tmpa_t1l }
6016 { \dim_set:Nn \1_0@_tmpc_dim { \pgf@x - 0.5 \arrayrulewidth } }
6017 { \dim_set:Nn \1_0@_tmpc_dim { \pgf@x + 0.5 \arrayrulewidth } }
6018 \@@_gpoint:n { col - \int_eval:n { \1_tmpb_tl + 1 } }
6019 \dim_set:Nn \1_tmpa_dim { \pgf@x + 0.5 \arrayrulewidth }

148

We begin the loop over the rows. We use \def instead of \t1_set:Nn for efficiency only.

6020 \clist_map_inline:Nn \1_@@_rows_tl

6021 {

6022 \def \l_tmpa_tl { ####1 }

6023 \tl_if_in:NnTF \1_tmpa_tl { - }

6024 { \@@_cut_on_hyphen:w ####1 \q_stop }

6025 { \@@_cut_on_hyphen:w ####1 - ####1 \q_stop }

6026 \tl_if_empty:NTF \1_tmpa_tl

6027 { \def \l_tmpa_tl {11%}1}

6028 {

502 \str_if_eq:eeT { \1l_tmpa_tl } { * }

6030 { \def \l_tmpa_tl {13}}%}

6031 }

6032 \tl_if_empty:NTF \1_tmpb_tl

6033 { \tl_set:No \1_tmpb_t1l { \int_use:N \c@iRow } }

6034 {

6035 \str_if_eq:eeT { \1_tmpb_tl } { * }

6036 { \tl_set:No \1_tmpb_t1l { \int_use:N \c@iRow } }

6037 }

6038 \int_compare:nNnT { \1_tmpa_tl } > { \g_@@_row_total_int }
6039 { \@@_error:n { Invalid~row~number } }

6040 \int_compare:nNnT { \1_tmpb_tl } > { \g_0@_row_total_int }
6041 { \tl_set:No \1_tmpb_tl { \int_use:N \g_@@_row_total_int } }

Now, the numbers of both rows are in \1_tmpa_t1 and \1_tmpb_t1.

6042 \cs_if_exist:cF

6043 { @@ _ nocolor _ \1l_tmpa_tl - \1_@@_tmpc_tl }

6044 {

6045 \@@_gpoint:n { row - \int_eval:n { \1_tmpb_tl + 1 } }
6046 \dim_set:Nn \1_tmpb_dim { \pgf@y + 0.5 \arrayrulewidth }
6047 \@@_gpoint:n { row - \1_tmpa_tl }

6048 \dim_set:Nn \1_@@_tmpd_dim { \pgf@y + 0.5 \arrayrulewidth }
6049 \pgfpathrectanglecorners

6050 { \pgfpoint \1_0@_tmpc_dim \1_Q@_tmpd_dim }

6051 { \pgfpoint \1_tmpa_dim \1_tmpb_dim }

6052 }

6053 3

6054 }

6055 }

Now, the case where the cells will be colored cell by cell (it’s mandatory for example if the key
corners is used).

6056 \CS_new_protected:Npn \@@_cartesian_path_normal_ii:
6057 {
6058 \@@_expand_clist:NN \1_@@_cols_t1l \c@jCol
6059 \@@_expand_clist:NN \1_@@_rows_tl \c@iRow
We begin the loop over the columns.

6060 \clist_map_inline:Nn \1_@@_cols_tl

6061 {

6062 \@@_gpoint:n { col - ##1 }

6063 \int_compare:nNnTF { \1_Q@@_first_col_int } = { ##1 }

6064 { \dim_set:Nn \1_0@_tmpc_dim { \pgf@x - 0.5 \arrayrulewidth } }
6065 { \dim_set:Nn \1_@@_tmpc_dim { \pgf@x + 0.5 \arrayrulewidth } }
6066 \@@_gpoint:n { col - \int_eval:n { ##1 + 1 } 1}

6067 \dim_set:Nn \1_tmpa_dim { \pgf@x + 0.5 \arrayrulewidth }

We begin the loop over the rows.

6068 \clist_map_inline:Nn \1_Q@_rows_tl

6069 {

6070 \@@_if_in_corner:nF { ####1 - ##1 }

6071 {

6072 \@@_gpoint:n { row - \int_eval:n { ####1 + 1 } }

6073 \dim_set:Nn \1_tmpb_dim { \pgf@y + 0.5 \arrayrulewidth }

6074 \@@_gpoint:n { row - ####1 }

149

6075 \dim_set:Nn \1_0@_tmpd_dim { \pgf@y + 0.5 \arrayrulewidth }

6076 \cs_if_exist:cF { @@ _ nocolor _ ####1 - ##1 }
6077 {

6078 \pgfpathrectanglecorners

6079 { \pgfpoint \1_@@_tmpc_dim \1_@@_tmpd_dim }
6080 { \pgfpoint \1_tmpa_dim \1_tmpb_dim }

6081 }

6082 }

6083 }

6084 ¥

6085 3

The following command corresponds to a radius of the corners equal to 0 pt. This command is used
by the commands \@@_rowcolors, \@@_columncolor and \@@_rowcolor:n (used in \@@_rowcolor).

ss6 \cs_new_protected:Npn \@@_cartesian_path: { \@@_cartesian_path:n \c_zero_dim }

Despite its name, the following command does not create a PGF path. It declares as colored by
the “empty color” all the cells in what would be the path. Hence, the other coloring instructions of
nicematrix won’t put color in those cells. the

c0s7 \cs_new_protected:Npn \@@_cartesian_path_nocolor:n #1

6088 {

6089 \bool_set_true:N \1_@@_nocolor_used_bool

6090 \@@_expand_clist:NN \1_@@_cols_t1l \c@jCol

6001 \@@_expand_clist:NN \1_0@_rows_tl \c@iRow
We begin the loop over the columns.

6002 \clist_map_inline:Nn \1_0@_rows_tl

6093 {

6094 \clist_map_inline:Nn \1_Q@@_cols_tl

6095 { \cs_set_nopar:cpn { @@ _ nocolor _ ##1 - ####1 } { } }

6096 }

6097 ¥

The following command will be used only with \1_0@_cols_tl and \c@jCol (first case) or with
\1_0@_rows_tl and \c@iRow (second case). For instance, with \1_@@_cols_t1 equal to 2,4-6,8-*
and \c@jCol equal to 10, the clist \1_@@_cols_t1 will be replaced by 2,4,5,6,8,9,10.

60 \cs_new_protected:Npn \@@_expand_clist:NN #1 #2

6099

6100

6101

6102

6103

{
\clist_set_eq:NN \1_tmpa_clist #1
\clist_clear:N #1
\clist_map_inline:Nn \1_tmpa_clist
{

We use \def instead of \t1l_set:Nn for efficiency only.

6104

6105

6106

6107

6108

6109

6110

6111

6112

6113

6114

6116

6117

6118

6119

6120

6121

\def \1_tmpa_tl { ##1 }
\tl_if_in:NnTF \1_tmpa_tl { - }

{ \@@_cut_on_hyphen:w ##1 \g_stop }

{ \@@_cut_on_hyphen:w ##1 - ##1 \q_stop }
\bool_lazy_or:nnT

{ \str_if_eq_p:ee { \1_tmpa_tl } { * } }

{ \tl_if_blank_p:o \1_tmpa_tl }

{ \def \1_tmpa_tl {112} }
\bool_lazy_or:nnT

{ \str_if_eq_p:ee { \1_tmpb_t1 } { * } }

{ \tl_if_blank_p:o \l_tmpb_tl }

{ \tl_set:No \1_tmpb_tl { \int_use:N #2 } }
\int_compare:nNnT { \1_tmpb_tl } > { #2 }

{ \tl_set:No \1_tmpb_tl { \int_use:N #2 } }
\int_step_inline:nnn { \1_tmpa_tl } { \1_tmpb_t1l }

{ \clist_put_right:Nn #1 { ####1 } }

150

The following command will be linked to \cellcolor in the tabular.

6122 \NewDocumentCommand \@@_cellcolor_tabular { O { } m }

6123 {

6124 \tl_gput_right:Ne \g_0@_pre_code_before_tl

6125 {
We must not expand the color (#2) because the color may contain the token ! which may be activated
by some packages (ex.: babel with the option french on latex and pdflatex).

6126 \@@_cellcolor [#1] { \exp_not:n { #2 } }
6127 { \int_use:N \c@iRow - \int_use:N \c@jCol }
6128 }

6129 \ignorespaces

6130 3

6131 \NewDocumentCommand \@@_cellcolor_error { 0 { } m }
6132 { \@@_error:n { cellcolor~in~Block } }

6133 % \end{macrocode}

6134 fo

6135 \begin{macrocode}

6136 \NewDocumentCommand \@@_rowcolor_error { 0 { } m }
6137 { \@@_error:n { rowcolor~in~Block } }

6138 % \end{macrocode}

6139 f

6140 o \bigskip

6141 % The following command will be linked to |\rowcolor| in the tabular.

o152 Yo \begin{macrocode}

6143 \NewDocumentCommand \@@_rowcolor_tabular { 0 { } m }
6144 {

6145 \tl_gput_right:Ne \g_0@_pre_code_before_tl

6146 {

6147 \@@_rectanglecolor [#1] { \exp_not:n { #2 } }
6148 { \int_use:N \c@iRow - \int_use:N \c@jCol }
6149 { \int_use:N \c@iRow - \exp_not:n { \int_use:N \c@jCol } }
6150 }

6151 \ignorespaces

6152 }

The following command will be linked to \rowcolors in the tabular. The last argument (an optional
argument between square brackets is taken by curryfication).

6153 \NewDocumentCommand { \@@_rowcolors_tabular } { 0 { } mm }
6152 { \@@_rowlistcolors_tabular [#1 1 { { #2 } , { #3 } } }

The braces around #2 and #3 are mandatory.

The following command will be linked to \rowlistcolors in the tabular.

6155 \NewDocumentCommand { \@@_rowlistcolors_tabular } { 0 { }m 0 {2} }

6156 {
A use of \rowlistcolors in the tabular erases the instructions \rowlistcolors which are in force.
However, it’s possible to put several instructions \rowlistcolors in the same row of a tabular: it may
be useful when those instructions \rowlistcolors concerns different columns of the tabular (thanks
to the key cols of \rowlistcolors). That’s why we store the different instructions \rowlistcolors
which are in force in a sequence \g_0@_rowlistcolors_seq. Now, we will filter that sequence to
keep only the elements which have been issued on the actual row. We will store the elements to keep
in the \g_tmpa_seq.

6157 \seq_gclear:N \g_tmpa_seq

6158 \seq_map_inline:Nn \g_0@_rowlistcolors_seq

6159 { \@@_rowlistcolors_tabular:nnnn ##1 }

6160 \seq_gset_eq:NN \g_0@_rowlistcolors_seq \g_tmpa_seq

Now, we add to the sequence \g_0@_rowlistcolors_seq (which is the list of the commands
\rowlistcolors which are in force) the current instruction \rowlistcolors.

6161 \seq_gput_right:Ne \g_0@_rowlistcolors_seq
6162 {

151

6163 { \int_use:N \c@iRow }

6164 { \exp_not:n { #1 } }

6165 { \exp_not:n { #2 } }

6166 { restart , cols = \int_use:N \c@jCol - , \exp_not:n { #3 } }
6167 }

6168 \ignorespaces

6169 }

The following command will be applied to each component of \g_0@_rowlistcolors_seq. Each
component of that sequence is a kind of 4-uple of the form {#1}{#2}{#3}{#4}.

#1 is the number of the row where the command \rowlistcolors has been issued.

#2 is the colorimetric space (optional argument of the \rowlistcolors).

#3 is the list of colors (mandatory argument of \rowlistcolors).

#4 is the list of key=value pairs (last optional argument of \rowlistcolors).

6170 \cs_new_protected:Npn \@@_rowlistcolors_tabular:nnnn #1 #2 #3 #4
6171 {
6172 \int_compare:nNnTF { #1 } = { \c@iRow }

We (temporary) keep in memory in \g_tmpa_seq the instructions which will still be in force after
the current instruction (because they have been issued in the same row of the tabular).

6173 { \seq_gput_right:Nn \g_tmpa_seq { { #1 } { #2 > { #3 } { #4 } } }
6174 {

6175 \tl_gput_right:Ne \g_0@_pre_code_before_tl
6176 {

6177 \@@_rowlistcolors

6178 [\exp_not:n { #2 }]

6179 { #1 - \int_eval:n { \c@iRow - 1 } }
6180 { \exp_not:n { #3 } }

6181 [\exp_not:n { #4 }]

6182 }

6183 }

6184 3

The following command will be used at the end of the tabular, just before the execution of the
\g_0@_pre_code_before_tl. It clears the sequence \g_@@_rowlistcolors_seq of all the commands
\rowlistcolors which are (still) in force.

e155 \cs_new_protected:Npn \@@_clear_rowlistcolors_seq:

6186 {

6187 \seq_map_inline:Nn \g_Q@_rowlistcolors_seq
6188 { \@@_rowlistcolors_tabular_ii:nnnn ##1 }
6189 \seq_gclear:N \g_0@_rowlistcolors_seq

6190 3

6101 \cs_new_protected:Npn \@@_rowlistcolors_tabular_ii:nnnn #1 #2 #3 #4
6192 {

6193 \tl_gput_right:Nn \g_0@_pre_code_before_tl

6104 { \@@_rowlistcolors [#2 1 { #1 } { #3 } [#4 1 }

6195 }

The first mandatory argument of the command \@@_rowlistcolors which is writtent in the
pre-\CodeBefore is of the form i: it means that the command must be applied to all the rows
from the row ¢ until the end of the tabular.

6196 \NewDocumentCommand \@@_columncolor_preamble { 0 { } m }

6197 {

With the following line, we test whether the cell is the first one we encounter in its column (don’t
forget that some rows may be incomplete).

6198 \int_compare:nNnT { \c@jCol } > { \g_0@_col_total_int }
6199 {

152

You use gput_left because we want the specification of colors for the columns drawn before the
specifications of color for the rows (and the cells). Be careful: maybe this is not effective since we
have an analyze of the instructions in the \CodeBefore in order to fill color by color (to avoid the
thin white lines).

6200 \tl_gput_left:Ne \g_Q@_pre_code_before_tl

6201 {

6202 \exp_not:N \columncolor [#1]

6203 { \exp_not:n { #2 } } { \int_use:N \c@jCol }
6204 }

6205 ¥

6206 }

5207 \cs_new_protected:Npn \@@_EmptyColumn:n #1

6208 {

6200 \clist_map_inline:nn { #1 }

6210 {

6211 \seq_gput_right:Nn \g_Q@_future_pos_of_blocks_seq

6212 {{-2Y{#1 {98} {##1} {2} % 98 and not 99 !
6213 \columncolor { nocolor } { ##1 }

6214 }

6215 }

6216 \cs_new_protected:Npn \@Q@_EmptyRow:n #1

6217 {

6218 \clist_map_inline:nn { #1 }

6219 {

6220 \seq_gput_right:Nn \g_0@_future_pos_of_blocks_seq

6221 {{##1 Y {23 {##13>{98} {2} 3} % 98 and not 99 !
6222 \rowcolor { nocolor } { ##1 }

6223 }

6224 3

22 The vertical and horizontal rules

OnlyMainNiceMatrix

We give to the user the possibility to define new types of columns (with \newcolumntype of array) for
special vertical rules (e.g. rules thicker than the standard ones) which will not extend in the potential
exterior rows of the array.

We provide the command \OnlyMainNiceMatrix in that goal. However, that command must be
no-op outside the environments of nicematrix (and so the user will be allowed to use the same new
type of column in the environments of nicematrix and in the standard environments of array).
That’s why we provide first a global definition of \OnlyMainNiceMatrix.

625 \cs_new_eq:NN \OnlyMainNiceMatrix \use:n

Another definition of \OnlyMainNiceMatrix will be linked to the command in the environments of
nicematrix. Here is that definition, called \@@_OnlyMainNiceMatrix:mn.

626 \cs_new_protected:Npn \@@_OnlyMainNiceMatrix:n #1

6227 {

6228 \int_if_zero:nTF { \1_@@_first_col_int }

6229 { \@@_OnlyMainNiceMatrix_i:n { #1 } }

6230 {

6231 \int_if_zero:nTF { \c@jCol }

6232 {

6233 \int_compare:nNnF { \c@iRow } = { -1 }
6234 {

153

6235 \int_compare:nNnF { \c@iRow } = { \1_@@_last_row_int - 1 }
6236 { #1 }

6237 }

6238 }

6239 { \@@_OnlyMainNiceMatrix_i:n { #1 } }
6240 }

6241 i

This definition may seem complicated but we must remind that the number of row \c@iRow is
incremented in the first cell of the row, after a potential vertical rule on the left side of the first cell.

The command \@@_OnlyMainNiceMatrix_i:n is only a short-cut which is used twice in the above
command. This command must not be protected.

04 \cs_new_protected:Npn \@@_OnlyMainNiceMatrix_i:n #1

6243 {

6244 \int_if_zero:nF { \c@iRow }

6245 {

6246 \int_compare:nNnF { \c@iRow } = { \1_@@_last_row_int }
6247 {

6248 \int_compare:nNnT { \c@jCol } > { \c_zero_int }
6249 { \bool_if:NF \1_@@_in_last_col_bool { #1 } }
6250 }

6251 }

6252 }

Remember that \c@iRow is not always inferior to \1_@@_last_row_int because \1_@@_last_row_int
may be equal to —2 or —1 (we can’t write \int_compare:nNnT \c@iRow < \1_0@_last_row_int).

The following command will be used for \Toprule, \BottomRule and \MidRule.
653 \cs_new:Npn \@@_tikz_booktabs_loaded:nn #1 #2

6254 {

6255 \IfPackageLoadedTF { tikz }

6256 {

6257 \IfPackageLoadedTF { booktabs }

6258 { #2 }

6250 { \@@_error:nn { TopRule~without~booktabs } { #1 } }
6260 }

6261 { \@@_error:nn { TopRule~without~tikz } { #1 } }

6262}

063 \NewExpandableDocumentCommand { \@@_TopRule } { }
o264 { \@Q@_tikz_booktabs_loaded:nn { \TopRule } { \@@_TopRule_i: } }

065 \cs_new:Npn \@@_TopRule_i:

6266 {

6267 \noalign \bgroup

6268 \peek_meaning:NTF [

6269 { \@@_TopRule_ii: }

6270 { \@@_TopRule_ii: [\dim_use:N \heavyrulewidth] }
6271 }

5272 \NewDocumentCommand \@@_TopRule_ii: { o }

6273 {

6274 \tl_gput_right:Ne \g_0@_pre_code_after_tl

6275 {

6276 \@@_hline:n

6277 {

6278 position = \int_eval:n { \c@iRow + 1 } ,
6279 tikz =

6280 {

6281 line~width = #1 ,

6282 yshift = 0.25 \arrayrulewidth ,
6283 shorten~< = - 0.5 \arrayrulewidth
6284 },

6285 total-width = #1

6286 }

154

6287 }
6288 \skip_vertical:n { \belowrulesep + #1 }
6289 \egroup

6290 }

0201 \NewExpandableDocumentCommand { \@@_BottomRule } { }
6200 { \@@_tikz_booktabs_loaded:nn { \BottomRule } { \@@_BottomRule_i: } }

003 \cs_new:Npn \Q@@_BottomRule_i:

6294 {

6295 \noalign \bgroup

6296 \peek_meaning:NTF [

6207 { \@@_BottomRule_ii: }

6298 { \@@_BottomRule_ii: [\dim_use:N \heavyrulewidth] }
6299 }

5300 \NewDocumentCommand \@@_BottomRule_ii: { o }

6301 {

6302 \tl_gput_right:Ne \g_0@_pre_code_after_tl

6303 {

6304 \@@_hline:n

6305 {

6306 position = \int_eval:n { \c@iRow + 1 } ,
6307 tikz =

6308 {

6309 line~width = #1 ,

6310 yshift = 0.25 \arrayrulewidth ,
6311 shorten~< = - 0.5 \arrayrulewidth
6312 },

6313 total-width = #1 ,

6314 }

6315 }

6316 \skip_vertical:N \aboverulesep

6317 \@@_create_row_node_i:

6318 \skip_vertical:n { #1 }

6319 \egroup

6320 }

6321 \NewExpandableDocumentCommand { \@@_MidRule } { }
6322 { \@@_tikz_booktabs_loaded:nn { \MidRule } { \@@_MidRule_i: } }

623 \cs_new:Npn \@@_MidRule_i:

6324 {

6325 \noalign \bgroup

6326 \peek_meaning:NTF [

6327 { \@e_MidRule ii: }

6328 { \@@_MidRule_ii: [\dim_use:N \lightrulewidth] }
6329 3

6330 \NewDocumentCommand \@@_MidRule_ii: { o }

6331 {

6332 \skip_vertical:N \aboverulesep

6333 \@@_create_row_node_i:

6334 \tl_gput_right:Ne \g_0@_pre_code_after_tl

6335 {

6336 \@@_hline:n

6337 {

6338 position = \int_eval:n { \c@iRow + 1 } ,
6339 tikz =

6340 {

6341 line~width = #1 ,

6342 yshift = 0.25 \arrayrulewidth ,
6343 shorten~< = - 0.5 \arrayrulewidth
6344 } s

6345 total-width = #1 ,

6346 }

6347 }

155

6348 \skip_vertical:n { \belowrulesep + #1 }
6349 \egroup

6350 }

General system for drawing rules

When a command, environment or “subsystem” of nicematrix wants to draw a rule, it will write in the
internal \CodeAfter a command \@@_vline:n or \@@_hline:n. Both commands take in as argument
a list of key=value pairs. That list will first be analyzed with the following set of keys. However,
unknown keys will be analyzed further with another set of keys.

o351 \keys_define:nn { nicematrix / Rules }

6352 {

6353 position .int_set:N = \1_QQ_position_int ,
6354 position .value_required:n = true ,

6355 start .int_set:N = \1_@@_start_int ,

6356 end .code:n =

6357 \bool_lazy_or:nnTF

6358 { \tl_if_empty_p:n { #1 } }

6359 { \str_if_eq_p:ee { #1 } { last } }
6360 { \int_set_eq:NN \1_@@_end_int \c@jCol }
6361 { \int_set:Nn \1_@@_end_int { #1 } }
6362 3

It’s possible that the rule won’t be drawn continuously from start to end because of the blocks
(created with the command \Block), the virtual blocks (created by \Cdots, etc.), etc. That’s why an
analysis is done and the rule is cut in small rules which will actually be drawn. The small continuous
rules will be drawn by \@@_vline_ii: and \@@_hline_ii:. Those commands use the following set
of keys.

0363 \keys_define:nn { nicematrix / RulesBis }

6364 {

6365 multiplicity .int_set:N = \1_@@_multiplicity_int ,

6366 multiplicity .initial:n =1 ,

6367 dotted .bool_set:N = \1_@@_dotted_bool ,

6368 dotted .initial:n = false ,

6369 dotted .default:n = true ,

We want that, even when the rule has been defined with TikZ by the key tikz, the user has still the
possibility to change the color of the rule with the key color (in the command \Hline, not in the
key tikz of the command \Hline). The main use is, when the user has defined its own command
\MyDashedLine by \newcommand{\MyDashedRule}{\Hline[tikz=dashed]}, to give the ability to
write \MyDashedRule [color=red].

6370 color .code:n =

6371 \@@_set_CTarc:n { #1 }

6372 \tl_set:Nn \1_@@_rule_color_tl { #1 } ,

6373 color .value_required:n = true ,

6374 sep-color .code:n = \@@_set_CTdrsc:n { #1 } ,
6375 sep-color .value_required:n = true ,

If the user uses the key tikz, the rule (or more precisely: the different sub-rules since a rule may be
broken by blocks or others) will be drawn with TikZ.

6376 tikz .code:n =

6377 \IfPackageLoadedTF { tikz }

6378 { \clist_put_right:Nn \1_@@_tikz_rule_tl { #1 } }
6379 { \@@_error:n { tikz~without~tikz } } ,

6380 tikz .value_required:n = true ,

6381 total-width .dim_set:N = \1_@@_rule_width_dim ,

6382 total-width .value_required:n = true ,

6383 width .meta:n = { total-width = #1 } ,

6384 unknown .code:n =

6385 \@@_unknown_key:nn

156

6386 { nicematrix / RulesBis }
6387 { Unknown~key~for~RulesBis }

6388 }

The vertical rules

The following command will be executed in the internal \CodeAfter. The argument #1 is a list of
key=value pairs.

6380 \cs_new_protected:Npn \@Q_vline:n #1

6390 {
The group is for the options.

6391 \group_begin:
6392 \int_set_eq:NN \1_@@_end_int \c@iRow
6393 \keys_set_known:nnN { nicematrix / Rules } { #1 } \1_0@_other_keys_tl

The following test is for the case where the user does not use all the columns specified in the preamble
of the environment (for instance, a preamble of |clclc| but only two columns used).

6394 \int_compare:nNnT { \1_@@_position_int } < { \c@jCol + 2 }
6395 \@@_vline_i:

6396 \group_end:

6397 }

630e \cs_new_protected:Npn \@@_vline_i:

6399 {

\1_tmpa_tl is the number of row and \1_tmpb_t1l the number of column. When we have found a
row corresponding to a rule to draw, we note its number in \1_0@_tmpc_t1.

6400 \tl_set:No \1_tmpb_tl { \int_use:N \1_0@_position_int }
6401 \int_step_variable:nnNn \1_0Q@_start_int \1_@@_end_int
6402 \1_tmpa_tl

6403 {

The boolean \g_tmpa_bool indicates whether the small vertical rule will be drawn. If we find that it
is in a block (a real block, created by \Block or a virtual block corresponding to a dotted line, created
by \Cdots, \Vdots, etc.), we will set \g_tmpa_bool to false and the small vertical rule won’t be
drawn.

6404 \bool_gset_true:N \g_tmpa_bool

6405 \seq_map_inline:Nn \g_0@_pos_of_blocks_seq

6406 { \@@_test_vline_in_block:nnnnn ##1 }

6407 \seq_map_inline:Nn \g_@@_pos_of_xdots_seq

6408 { \@@_test_vline_in_block:nnnnn ##1 }

6409 \seq_map_inline:Nn \g_@@_pos_of_stroken_blocks_seq
6410 { \@@_test_vline_in_stroken_block:nnnn ##1 }

6411 \clist_if_empty:NF \1_@@_corners_clist { \@@_test_in_corner_v: }
6412 \bool_if:NTF \g_tmpa_bool

6413 {

6414 \int_if_zero:nT { \1_@@_local_start_int }

We keep in memory that we have a rule to draw. \1_@@_local_start_int will be the starting row
of the rule that we will have to draw.

6415 { \int_set:Nn \1_@@_local_start_int \1l_tmpa_tl }

6416 }

6417 {

6418 \int_compare:nNnT { \1_0@_local_start_int } > { \c_zero_int }
6419 {

6420 \int_set:Nn \1_0@_local_end_int { \1_tmpa_tl - 1 }
6421 \@@_vline_ii:

6422 \int_zero:N \1_@@_local_start_int

6423 }

6424 }

6425 }

6426 \int_compare:nNnT { \1_0@_local_start_int } > { \c_zero_int }
6427 {

157

6428 \int_set_eq:NN \1_0@_local_end_int \1_0@_end_int
6429 \@@_vline_ii:

6430 }

6431 T

6132 \cs_new_protected:Npn \QQ_test_in_corner_v:

6433 {

6434 \int_compare:nNnTF { \1_tmpb_t1l } = { \c@jCol + 1 }

6435 {

6436 \@@_if_in_corner:nT { \1l_tmpa_tl - \int_eval:n { \1_tmpb_tl - 1 } }
6437 { \bool_set_false:N \g_tmpa_bool }

6438 ¥

6439 {

6440 \@@_if_in_corner:nT { \1_tmpa_tl - \1_tmpb_tl }

6441 {

6442 \int_compare:nNnTF { \1_tmpb_tl } = { \c_one_int }
6443 { \bool_set_false:N \g_tmpa_bool }

6444 {

6445 \@@_if_in_corner:nT

6446 { \1_tmpa_t1l - \int_eval:n { \1_tmpb_tl - 1 } }
6447 { \bool_set_false:N \g_tmpa_bool }

6448 }

6449 }

6450 3

6451 }

6152 \cs_new_protected:Npn \@@_vline_ii:

6453 {

6454 \tl_clear:N \1_@@_tikz_rule_tl

6455 \keys_set:no { nicematrix / RulesBis } \1_0@_other_keys_t1l
6456 \bool_if:NTF \1_@@_dotted_bool

6457 { \@@_vline_iv: }

6458 {

6459 \tl_if_empty:NTF \1_Q@_tikz_rule_tl
6460 { \@@_vline_iii: }

6461 { \@@_vline_v: }

6462 }

6463 }

First the case of a standard rule: the user has not used the key dotted nor the key tikz.

6164 \CS_new_protected:Npn \@@_vline_iii:

6465 {

6466 \pgfpicture

6467 \pgfrememberpicturepositiononpagetrue

6468 \pgf@relevantforpicturesizefalse

6469 \@@_gpoint:n { row - \int_use:N \1_@@_local_start_int }

6470 \dim_set_eq:NN \1_tmpa_dim \pgfQy

6471 \@@_gpoint:n { col - \int_use:N \1_@@_position_int }

6472 \dim_set:Nn \1_tmpb_dim

6473 {

6474 \p gfOx

6475 - 0.5 \1_0@@_rule_width_dim

6476 +

6477 (\arrayrulewidth * \1_0@_multiplicity_int

6478 + \doublerulesep * (\1_@@_multiplicity_int - 1)) / 2
6479 }

6480 \@@_gpoint:n { row - \int_eval:n { \1_0@_local_end_int + 1 } }
6481 \dim_set_eq:NN \1_@@_tmpc_dim \pgfQy

6482 \bool_lazy_all:nT

6483 {

6484 { \int_compare_p:nNn { \1_@@_multiplicity_int } > { \c_one_int } }

158

6485 { \cs_if_exist_p:N \CT@drsc@ }

6486 { ! \tl_if_blank_p:o \CT@drsc@ }

6487 }

6488 {

6489 \group_begin:

6490 \CT@drsc@

6491 \dim_add:Nn \1_tmpa_dim { 0.5 \arrayrulewidth }

6492 \dim_sub:Nn \1_0@_tmpc_dim { 0.5 \arrayrulewidth }
6493 \dim_set:Nn \1_0@_tmpd_dim

6494 {

6495 \1_tmpb_dim - (\doublerulesep + \arrayrulewidth)
6496 * (\1_@@_multiplicity_int - 1)

6497 }

6498 \pgfpathrectanglecorners

6499 { \pgfpoint \1_tmpb_dim \1_tmpa_dim }

6500 { \pgfpoint \1_0@_tmpd_dim \1_Q@_tmpc_dim }

6501 \pgfusepath { fill }

6502 \group_end:

6503 }

6504 \pgfpathmoveto { \pgfpoint \1_tmpb_dim \1_tmpa_dim }

6505 \pgfpathlineto { \pgfpoint \1_tmpb_dim \1_0@_tmpc_dim }
6506 \prg_replicate:nn { \1_Q@_multiplicity_int - 1 }

6507 {

6508 \dim_sub:Nn \1_tmpb_dim { \arrayrulewidth + \doublerulesep }
6500 \pgfpathmoveto { \pgfpoint \1_tmpb_dim \1_tmpa_dim }
6510 \pgfpathlineto { \pgfpoint \1_tmpb_dim \1_@@_tmpc_dim }
6511 }

6512 \CT@arc®@

6513 \pgfsetlinewidth { 1.1 \arrayrulewidth }

6514 \pgfsetrectcap

6515 \pgfusepathgstroke

6516 \endpgfpicture

6517 }

The following code is for the case of a dotted rule (with our system of rounded dots).

6515 \cs_new_protected:Npn \@@_vline_iv:

6519 {

6520 \pgfpicture

6521 \pgfrememberpicturepositiononpagetrue

6522 \pgf@relevantforpicturesizefalse

6523 \@@_gpoint:n { col - \int_use:N \1_@@_position_int }

6524 \dim_set:Nn \1_Q@_x_initial_dim { \pgf@x - 0.5 \1_@@_rule_width_dim }
6525 \dim_set_eq:NN \1_@@_x_final_dim \1_Q@_x_initial_dim

6526 \@@_gpoint:n { row - \int_use:N \1_@@_local_start_int }

6527 \dim_set_eq:NN \1_@@_y_initial_dim \pgfQy

6528 \@@_gpoint:n { row - \int_eval:n { \1_@@_local_end_int + 1 } }
6529 \dim_set_eq:NN \1_@@_y_final_dim \pgf@y

6530 \CTQ@arc@

6531 \@@_draw_line:

6532 \endpgfpicture

6533 3

The following code is for the case when the user uses the key tikz.

653 \cs_new_protected:Npn \@@_vline_v:

6535 {

6536 \begin { tikzpicture }
By default, the color defined by \arrayrulecolor or by rules/color will be used, but it’s still
possible to change the color by using the key color or, of course, the key color inside the key tikz
(that is to say the key color provided by PGF.

6537 \CTQarc@
6538 \tl_if_empty:NF \1_@@_rule_color_tl
6539 { \tl_put_right:Ne \1_@@_tikz_rule_tl { , color = \1_@@_rule_color_tl } }

159

6540 \pgfrememberpicturepositiononpagetrue

6541 \pgf@relevantforpicturesizefalse

6542 \@@_gpoint:n { row - \int_use:N \1_@@_local_start_int }

6543 \dim_set_eq:NN \1_tmpa_dim \pgfQy

6544 \@@_gpoint:n { col - \int_use:N \1_@@_position_int }

6545 \dim_set:Nn \1_tmpb_dim { \pgf@x - 0.5 \1_00@_rule_width_dim }
6546 \@@_gpoint:n { row - \int_eval:n { \1_0@_local_end_int + 1 } }
6547 \dim_set_eq:NN \1_@@_tmpc_dim \pgfQ@y

6548 \exp_args:No \tikzset \1_00_tikz_rule_tl

6549 \use:e { \exp_not:N \draw [\1_0@_tikz_rule_tl] }

6550 (\1_tmpb_dim , \1l_tmpa_dim) --

6551 (\1_tmpb_dim , \1_@@_tmpc_dim) ;

6552 \end { tikzpicture }

6553 3

The command \@@_draw_vlines: draws all the vertical rules excepted in the blocks, in the virtual
blocks (determined by a command such as \Cdots) and in the corners (if the key corners is used).

e3¢ \cs_new_protected:Npn \Q@@_draw_vlines:

6555 {

6556 \int_step_inline:nnn

6557 {

6558 \bool_lazy_or:nnTF { \g_0@_delims_bool } { \1_@@_except_borders_bool }
6559 { 2 }

6560 {1}

6561 }

6562 {

6563 \bool_lazy_or:nnTF { \g_0@@_delims_bool } { \1_@@_except_borders_bool }
6564 { \C@jCOJ- }

6565 { \int_eval:n { \c@jCol + 1 } }

6566 }

6567 {

6568 \str_if_eq:eeF { \1_0@_vlines_clist } { all }

6569 { \clist_if_in:NnT \1_@@_vlines_clist { ##1 } }

6570 { \@@_vline:n { position = ##1 , total-width = \arrayrulewidth } }
6571 }

6572 }

The horizontal rules

The following command will be executed in the internal \CodeAfter. The argument #1 is a list of
key=value pairs of the form {nicematrix/Rules}.

6573 \cs_new_protected:Npn \@Q@_hline:n #1
6574 {

The group is for the options.

6575 \group_begin:

6576 \int_set_eq:NN \1_@@_end_int \c@jCol

6577 \keys_set_known:nnN { nicematrix / Rules } { #1 } \1_0@_other_keys_tl
6578 \@@_hline_i:

6579 \group_end:

6580 }

ess1 \cs_new_protected:Npn \@@_hline_i:

6582 {

\1_tmpa_t1 is the number of row and \1_tmpb_t1l the number of column. When we have found a
column corresponding to a rule to draw, we note its number in \1_0@_tmpc_t1.

6583 \tl_set:No \1_tmpa_tl { \int_use:N \1_0@_position_int }
6584 \int_step_variable:nnNn \1_0@_start_int \1_@@_end_int
6585 \1_tmpb_tl

6586 {

160

The boolean \g_tmpa_bool indicates whether the small horizontal rule will be drawn. If we find that
it is in a block (a real block, created by \Block or a virtual block corresponding to a dotted line,
created by \Cdots, \Vdots, etc.), we will set \g_tmpa_bool to false and the small horizontal rule
won’t be drawn.

6587 \bool_gset_true:N \g_tmpa_bool
We test whether we are in a block.
6588 \seq_map_inline:Nn \g_@@_pos_of_blocks_seq
6589 { \@@_test_hline_in_block:nnnnn ##1 }
6590 \seq_map_inline:Nn \g_0@_pos_of_xdots_seq
6501 { \@@_test_hline_in_block:nnnnn ##1 }
6592 \seq_map_inline:Nn \g_0@_pos_of_stroken_blocks_seq
6593 { \@@_test_hline_in_stroken_block:nnnn ##1 }
6594 \clist_if_empty:NF \1_@@_corners_clist { \@@_test_in_corner_h: }
6505 \bool_if:NTF \g_tmpa_bool
6596 {
6507 \int_if_zero:nT { \1_@@_local_start_int }

We keep in memory that we have a rule to draw. \1_0@_local_start_int will be the starting row
of the rule that we will have to draw.

6508 { \int_set:Nn \1_@@_local_start_int \1_tmpb_tl }

6599 }

6600 {

6601 \int_compare:nNnT { \1_0@_local_start_int } > { \c_zero_int }
6602 {

6603 \int_set:Nn \1_Q@@_local_end_int { \1_tmpb_tl - 1 }
6604 \@@_hline_ii:

6605 \int_zero:N \1_@@_local_start_int

6606 }

6607 }

6608 }

6600 \int_compare:nNnT { \1_0@_local_start_int } > { \c_zero_int }
6610 {

6611 \int_set_eq:NN \1_0@_local_end_int \1_0@_end_int
6612 \@@_hline_ii:

6613 }

6614 3

6615 \cs_new_protected:Npn \Q@@_test_in_corner_h:

6616 {

6617 \int_compare:nNnTF { \1_tmpa_tl } = { \c@iRow + 1 }

6618 {

6619 \@@_if_in_corner:nT { \int_eval:n { \1_tmpa_tl - 1 } - \1_tmpb_t1l }
6620 { \bool_set_false:N \g_tmpa_bool }

6621 }

6622 {

6623 \@@_if_in_corner:nT { \1_tmpa_tl - \1_tmpb_t1l }

6624 {

6625 \int_compare:nNnTF { \1_tmpa_tl } = { \c_one_int }
6626 { \bool_set_false:N \g_tmpa_bool }

6627 {

6628 \@@_if_in_corner:nT

6629 { \int_eval:n { \1_tmpa_tl - 1 } - \1_tmpb_t1l }
6630 { \bool_set_false:N \g_tmpa_bool }

6631 }

6632 }

6633 }

6634 }

6635 \cs_new_protected:Npn \@@_hline_ii:

6636 {

161

6637 \tl_clear:N \1_@@_tikz_rule_tl
6638 \keys_set:no { nicematrix / RulesBis } \1_0@_other_keys_tl

6639 \bool_if:NTF \1_@@_dotted_bool

6640 { \@@_hline_iv: }

6641 {

6642 \tl_if_empty:NTF \1_@@_tikz_rule_tl
6643 { \@@_hline_iii: }

6644 { \e@_hline_v: }

6645 }

6646 }

First the case of a standard rule (without the keys dotted and tikz).

6647 \cs_new_protected:Npn \@@_hline_iii:

6648 {

6649 \pgfpicture

6650 \pgfrememberpicturepositiononpagetrue

6651 \pgf@relevantforpicturesizefalse

6652 \@@_gpoint:n { col - \int_use:N \1_@@_local_start_int }

6653 \dim_set_eq:NN \1_tmpa_dim \pgf@x

6654 \@@_gpoint:n { row - \int_use:N \1_@@_position_int }

6655 \dim_set:Nn \1_tmpb_dim

6656 {

6657 \pgf@y

6658 - 0.5 \1_@@_rule_width_dim

6659 +

6660 (\arrayrulewidth * \1_Q@_multiplicity_int

6661 + \doublerulesep * (\1_@@_multiplicity_int - 1)) / 2
6662 }

6663 \@@_gpoint:n { col - \int_eval:n { \1_@@_local_end_int + 1 } }
6664 \dim_set_eq:NN \1_0@_tmpc_dim \pgf@x

6665 \bool_lazy_all:nT

6666 {

6667 { \int_compare_p:nNn { \1_@@_multiplicity_int } > { \c_one_int } }
6668 { \cs_if_exist_p:N \CT@drsc@ }

6669 { ! \tl_if_blank_p:o \CT@drsc@ }

6670 }

6671 {

6672 \group_begin:

6673 \CT@drsc@

6674 \dim_set:Nn \1_0@_tmpd_dim

6675 {

6676 \1_tmpb_dim - (\doublerulesep + \arrayrulewidth)
6677 * (\1_@@_multiplicity_int - 1)

6678 }

6679 \pgfpathrectanglecorners

6680 { \pgfpoint \1_tmpa_dim \1_tmpb_dim }

6681 { \pgfpoint \1_0@_tmpc_dim \1_Q@_tmpd_dim }

6682 \pgfusepathqfill

6683 \group_end:

6684 }

6685 \pgfpathmoveto { \pgfpoint \1_tmpa_dim \1_tmpb_dim }

6686 \pgfpathlineto { \pgfpoint \1_@@_tmpc_dim \1_tmpb_dim }

6687 \prg_replicate:nn { \1_Q@@_multiplicity_int - 1 }

6688 {

6689 \dim_sub:Nn \1_tmpb_dim { \arrayrulewidth + \doublerulesep }
6690 \pgfpathmoveto { \pgfpoint \1_tmpa_dim \1_tmpb_dim }
6691 \pgfpathlineto { \pgfpoint \1_Q@_tmpc_dim \1_tmpb_dim }
6692 }

6693 \CT@arc®@

6694 \pgfsetlinewidth { 1.1 \arrayrulewidth }

6695 \pgfsetrectcap

6696 \pgfusepathgstroke

6697 \endpgfpicture

162

6698 }

The following code is for the case of a dotted rule (with our system of rounded dots). The aim is
that, by standard the dotted line fits between square brackets (\hline doesn’t).
\begin{bNiceMatrix}
1 &2 &3 &4\\
\hline
1&2&3&4\\
\hdottedline
1&2&3&4
\end{bNiceMatrix}
But, if the user uses margin, the dotted line extends to have the same width as a \hline.

\begin{bNiceMatrix} [margin]
1 &2 &3 &4 \\

\hline 1 2 3 4
1&28&3%&4\\ 1234
\hdottedline 1 2 3 4
1 &2 &3&4
\end{bNiceMatrix}

6699 \cs_new_protected:Npn \@@_hline_iv:

6700 {

6701 \pgfpicture

6702 \pgfrememberpicturepositiononpagetrue

6703 \pgf@relevantforpicturesizefalse

6704 \@@_gpoint:n { row - \int_use:N \1_@@_position_int }

6705 \dim_set:Nn \1_@@_y_initial_dim { \pgf@y - 0.5 \1_@@_rule_width_dim }

6706 \dim_set_eq:NN \1_@@_y_final_dim \1_@@_y_initial_dim

6707 \@@_gpoint:n { col - \int_use:N \1_@@_local_start_int }

6708 \dim_set_eq:NN \1_0@_x_initial_dim \pgf@x

6700 \int_compare:nNnT { \1_@@_local_start_int } = { \c_one_int }

6710 {

6711 \dim_sub:Nn \1_0@_x_initial_dim \1_Q@_left_margin_dim

6712 \bool_if:NF \g_0@_delims_bool

6713 { \dim_sub:Nn \1_0@_x_initial_dim \arraycolsep }

For reasons purely aesthetic, we do an adjustment in the case of a rounded bracket. The correction
by 0.5 \1_@@_xdots_inter_dim is ad hoc for a better result.

6714 \tl_if_eq:NnF \g_0@_left_delim_t1 (

6715 { \dim_add:Nn \1_@@_x_initial _dim { 0.5 \1_0@_xdots_inter_dim } }
6716 }

6717 \@@_gpoint:n { col - \int_eval:n { \1_0@@_local_end_int + 1 } }

6718 \dim_set_eq:NN \1_@@_x_final_dim \pgf@x

6719 \int_compare:nNnT { \1_0@_local_end_int } = { \c@jCol }

6720 {

6721 \dim_add:Nn \1_0@_x_final_dim \1_@@_right_margin_dim

6722 \bool_if:NF \g_0@_delims_bool

6723 { \dim_add:Nn \1_@@_x_final_dim \arraycolsep }

6724 \tl_if_eq:NnF \g_0@_right_delim_tl1)

6725 { \dim_gsub:Nn \1_0@_x_final_dim { 0.5 \1_@@_xdots_inter_dim } }
6726 ¥

6727 \CTQarc@

6728 \@@_draw_line:

6729 \endpgfpicture

6730 }

The following code is for the case when the user uses the key tikz (in the definition of a customized
rule by using the key custom-line).

6731 \cs_new_protected:Npn \@@_hline_v:

o2 o{

6733 \begin { tikzpicture ¥

163

By default, the color defined by \arrayrulecolor or by rules/color will be used, but it’s still
possible to change the color by using the key color or, of course, the key color inside the key tikz
(that is to say the key color provided by PGF.

6734

6735

6736

6737

6738

6739

\CTQarc@
\tl_if_empty:NF \1_@@_rule_color_tl

{ \tl_put_right:Ne \1_@@_tikz_rule_tl { , color = \1_@@_rule_color_tl } }
\pgfrememberpicturepositiononpagetrue
\pgf@relevantforpicturesizefalse
\@@_gpoint:n { col - \int_use:N \1_@@_local_start_int }
\dim_set_eq:NN \1_tmpa_dim \pgf@x
\@@_gpoint:n { row - \int_use:N \1_@@_position_int }
\dim_set:Nn \1_tmpb_dim { \pgf@y - 0.5 \1_@@_rule_width_dim }
\@@_gpoint:n { col - \int_eval:n { \1_0@_local_end_int + 1 } }
\dim_set_eq:NN \1_0@_tmpc_dim \pgf@x
\exp_args:No \tikzset \1_Q@_tikz_rule_tl
\use:e { \exp_not:N \draw [\1_@@_tikz_rule_tl] }

(\1_tmpa_dim , \1_tmpb_dim) --

(\1_@@_tmpc_dim , \1_tmpb_dim) ;
\end { tikzpicture }

The command \@@_draw_hlines: draws all the horizontal rules excepted in the blocks (even the
virtual blocks determined by commands such as \Cdots and in the corners — if the key corners is
used).

o751 \cs_new_protected:Npn \@@_draw_hlines:

6752

6753

6755

6756

6758
6759
6760
6761
6762
6763
6764

6765

The

6766

The
6767
6768
6769
6770
6771

6772
6774
6775
6776

6

A

7

6778

6779

6780

6781

6782

6783

{

}

\int_step_inline:nnn
{ \bool_lazy_or:nnTF \g_0@_delims_bool \1_0@_except_borders_bool 2 1 }
{
\bool_lazy_or:nnTF { \g_0@_delims_bool } { \1_0Q@_except_borders_bool }
{ \c@iRow }
{ \int_eval:n { \c@iRow + 1 } }

}
{
\str_if_eq:eeF { \1_@@_hlines_clist } { all }
{ \clist_if_in:NnT \1_@@_hlines_clist { ##1 } }
{ \@@_hline:n { position = ##1 , total-width = \arrayrulewidth } }
}

command \@@_Hline: will be linked to \Hline in the environments of nicematrix.

\cs_

set:Npn \@@_Hline: { \noalign \bgroup \@@_Hline_i:n { 1 } }

argument of the command \@@_Hline_i:n is the number of successive \Hline found.

\cs_

{

}

\cs_

\cs_

{

\cs_

{

set:Npn \@@_Hline_i:n #1

\peek_remove_spaces:n

{
\peek_meaning:NTF \Hline
{ \@@_Hline_ii:nn { #1 + 1 } }
{ \@0_Hline_iii:n { #1 } }
¥

set:Npn \@@_Hline_ii:nn #1 #2 { \@@_Hline_i:n { #1 } }

set:Npn \@@_Hline_iii:n #1
\@@_collect_options:n { \@@_Hline_iv:nn { #1 } } }

set_protected:Npn \@Q_Hline_iv:nn #1 #2
\@@_compute_rule_width:n { multiplicity = #1 , #2 }

\skip_vertical:N \1_@@_rule_width_dim
\tl_gput_right:Ne \g_0@_pre_code_after_tl

164

6785 \@@_hline:n

6786 {

6787 multiplicity = #1 ,

6788 position = \int_eval:n { \c@iRow + 1 } ,

6789 total-width = \dim_use:N \1_@@_rule_width_dim ,
6790 #2

6791 }

6792 }

6793 \egroup

6794 }

Customized rules defined by the final user

The final user can define a customized rule by using the key custom-line in \NiceMatrixOptions.
That key takes in as value a list of key=value pairs.

The following command will create the customized rule (it is executed when the final user uses the
key custom-line, for example in \NiceMatrixOptions).

6795 \cs_new_protected:Npn \@@_custom_line:n #1

6796 {

6797 \str_clear_new:N \1_Q@_command_str

6798 \str_clear_new:N \1_@@_ccommand_str

6799 \str_clear_new:N \1_0@@_letter_str

6800 \tl_clear_new:N \1_Q@_other_keys_tl

6801 \keys_set_known:nnN { nicematrix / custom-line } { #1 } \1_0@_other_keys_tl
6802 \str_if_eq:eeT \c_backslash_str { \str_head:N \1_@@_command_str }

6803 {

6804 \str_set:Ne \1_@@_command_str { \str_tail:N \1_@@_command_str }

We delete the last character which is a space.

6805 \str_set:Ne \1_@@_command_str

6806 { \str_range:Nnn \1_@@_command_str { 1 > { -2 } }

6807 }

6808 \str_if_eq:eeT \c_backslash_str { \str_head:N \1_0@_ccommand_str }
6809 {

6810 \str_set:Ne \1_@@_ccommand_str

6811 { \str_tail:N \1_@@_ccommand_str }

6812 \str_set:Ne \1_@@_ccommand_str

6813 { \str_range:Nnn \1_0@_ccommand_str { 1 } { -2 } }

6814 }

If the final user only wants to draw horizontal rules, he does not need to specify a letter (for the
vertical rules in the preamble of the array). On the other hand, if he only wants to draw vertical
rules, he does not need to define a command (which is the tool to draw horizontal rules in the array).
Of course, a definition of custom lines with no letter and no command would be point-less.

6815 \bool_lazy_all:nTF

6816 {

6817 { \str_if_empty_p:N \1_0@_letter_str }
6818 { \str_if_empty_p:N \1_0@_command_str }
6819 { \str_if_empty_p:N \1_0@_ccommand_str }
6820 }

6821 { \@@_error:n { No~letter~and~no~command } }
6822 { \@@_custom_line_i:o \1_@@_other_keys_tl }
6823 }

o2« \keys_define:nn { nicematrix / custom-line }

6825 {

6826 letter .str_set:N = \1_@@_letter_str ,

6827 letter .value_required:n = true ,

6828 command .str_set:N = \1_@@_command_str ,

6829 command .value_required:n = true ,

6830 ccommand .str_set:N = \1_@@_ccommand_str ,
6831 ccommand .value_required:n = true ,

6832 3

165

6333 \cs_new_protected:Npn \@@_custom_line_i:n #1

6834

The following flags will be raised when the keys tikz, dotted and color are used (in the custom-

line).

6835

6836

6837

6838

6839

6840

6841

6842

6843

6844

6845

6846

6848

6849

6850

6851

6852

6853

6854

6855

6856

6857

6858

6859

6860

\bool_set_false:N \1_@@_tikz_rule_bool
\bool_set_false:N \1_@@_dotted_rule_bool
\bool_set_false:N \1_0@_color_bool

\keys_set:nn { nicematrix / custom-line-bis } { #1 }
\bool_if:NT \1_@@_tikz_rule_bool

{
\IfPackageLoadedF { tikz }
{ \@@_error:n { tikz~in~custom-line~without~tikz } }
\bool_if:NT \1_@@_color_bool
{ \@@_error:n { color~in~custom-line~with~tikz } }
}
\bool_if:NT \1_@@_dotted_rule_bool
{
\int_compare:nNnT { \1_0@_multiplicity_int } > { \c_one_int }
{ \@@_error:n { key~multiplicity~with~dotted } }
}
\str_if_empty:NF \1_0@_letter_str
{

\int_compare:nTF { \str_count:N \1_00@_letter_str != 1 }
{ \@@_error:n { Several~letters } }
{
\tl_if_in:NoTF

\c_0@_forbidden_letters_str
\1_@@_letter_str
{ \@@_error:ne { Forbidden~letter } \1_@@_letter_str }
{

During the analysis of the preamble provided by the final user, our automaton, for the letter cor-
responding at the custom line, will directly use the following command that you define in the main
hash table of TeX.

6861

6862

6863

6864

6865

6866

6867

6868

6869

6870

6871

\cs_set_nopar:cpn { @@ _ \1_0@_letter_str : } ##1
{ \@@_v_custom_line:nn { #1 } }

}
\str_if_empty:NF \1_Q@_command_str { \@@_h_custom_line:n { #1 } }
\str_if_empty:NF \1_Q@_ccommand_str { \@@_c_custom_line:n { #1 } }

\cs_generate_variant:Nn \Q@@_custom_line_i:n { o }

\tl_const:Nn \c_@@_forbidden_letters_tl { lcrpmbVX|()[]J'!e<> }
\str_const:Nn \c_@@_forbidden_letters_str { lcrpmbVX|()[]'e<> }

The previous command \@@_custom_line_i:n uses the following set of keys. However, the whole
definition of the customized lines (as provided by the final user as argument of custom-line) will
also be used further with other sets of keys (for instance {nicematrix/Rules}). That’s why the
following set of keys has some keys which are no-op.

\keys_define:nn { nicematrix / custom-line-bis }

multiplicity .int_set:N = \1_@@_multiplicity_int ,
multiplicity .initial:n 1,

multiplicity .value_required:n = true ,

color .code:n = \bool_set_true:N \1_@@_color_bool ,

color .value_required:n = true ,

tikz .code:n = \bool_set_true:N \1_@@_tikz_rule_bool ,
tikz .value_required:n = true ,

dotted .code:n = \bool_set_true:N \1_@@_dotted_rule_bool ,
dotted .value_forbidden:n = true ,

166

6883 total-width .code:n = { } ,

6884 total-width .value_required:n = true ,
6885 width .code:n = { } ,

6886 width .value_required:n = true ,

6887 sep-color .code:n = { } ,

6888 sep-color .value_required:n = true ,
6889 unknown .code:n =

6890 \@@_unknown_key:nn

6891 { nicematrix / custom-line-bis }
6892 { Unknown~key~for~custom-line }
6893 }

The following keys will indicate whether the keys dotted, tikz and color are used in the use of a
custom-line.

6804 \bool_new:N \1_@@_dotted_rule_bool
6505 \bool_new:N \1_@@_tikz_rule_bool
6306 \bool_new:N \1_@@_color_bool

The following keys are used to determine the total width of the line (including the spaces on both
sides of the line). The key width is deprecated and has been replaced by the key total-width.

6307 \keys_define:nn { nicematrix / custom-line-width }

6898 {

6899 multiplicity .int_set:N = \1_Q@@_multiplicity_int ,

6900 multiplicity .initial:n =1 ,

6901 multiplicity .value_required:n = true ,

6902 tikz .code:n = \bool_set_true:N \1_@@_tikz_rule_bool ,

6003 total-width .code:n = \dim_set:Nn \1_@@_rule_width_dim { #1 }
6004 \bool_set_true:N \1_@@_total_width_bool ,
6905 total-width .value_required:n = true ,

6006 width .meta:n = { total-width = #1 } ,

6007 dotted .code:n = \bool_set_true:N \1_@@_dotted_rule_bool ,

6908 3

The following command will create the command that the final user will use in its array to draw an
horizontal rule (hence the ‘h‘ in the name) with the full width of the array. #1 is the whole set of
keys to pass to the command \@@_hline:n (which is in the internal \CodeAfter).

600 \cs_new_protected:Npn \@Q@_h_custom_line:n #1

6910 {
We use \cs_set:cpn and not \cs_new:cpn because we want a local definition. Moreover, the com-
mand must not be protected since it begins with \noalign (which is in \Hline).

6911 \cs_set_nopar:cpn { nicematrix - \1_0@_command_str } { \Hline [#1] }

6012 \seq_put_left:No \1_@@_custom_line_commands_seq \1_Q@_command_str
6913 }

The following command will create the command that the final user will use in its array to draw an
horizontal rule on only some of the columns of the array (hence the letter ¢ as in \cline). #1 is the
whole set of keys to pass to the command \@@_hline:n (which is in the internal \CodeAfter).

o014 \cs_new_protected:Npn \@@_c_custom_line:n #1

6915 {

Here, we need an expandable command since it begins with an \noalign.

6916 \exp_args:Nc \NewExpandableDocumentCommand

6017 { nicematrix - \1_@@_ccommand_str }

6918 {0{}m}

6919 {

6920 \noalign

6921 {

6022 \@@_compute_rule_width:n { #1 , ##1 }

6023 \skip_vertical:n { \1_@@_rule_width_dim }

167

6024 \clist_map_inline:nn

6925 { ##2 }

6026 { \@@_c_custom_line_i:nn { #1 , ##1 } { ####1 } }

6927 }

6928 }

6929 \seq_put_left:No \1_@@_custom_line_commands_seq \1_Q@_ccommand_str
6930 }

The first argument is the list of key-value pairs characteristic of the line. The second argument is the
specification of columns for the \cline with the syntax a-b.

6031 \cs_new_protected:Npn \@@_c_custom_line_i:nn #1 #2

6932 {

6933 \tl_if_in:nnTF { #2 } { - }

6934 { \@@_cut_on_hyphen:w #2 \g_stop }

6935 { \@@_cut_on_hyphen:w #2 - #2 \g_stop }

6936 \tl_gput_right:Ne \g_00_pre_code_after_tl

6937 {

6938 \@@_hline:n

6939 {

6940 #1 ,

6941 start = \1_tmpa_tl ,

6942 end = \1_tmpb_tl ,

6943 position = \int_eval:n { \c@iRow + 1 } ,

6044 total-width = \dim_use:N \1_@@_rule_width_dim
6945 }

6946 }

6947 ¥

6045 \cS_new_protected:Npn \@@_compute_rule_width:n #1

6949 {

6950 \bool_set_false:N \1_0@_tikz_rule_bool

6051 \bool_set_false:N \1_0@_total_width_bool

6952 \bool_set_false:N \1_@@_dotted_rule_bool

6953 \keys_set_known:nn { nicematrix / custom-line-width } { #1 }
oa5e \bool_if:NF \1_@@_total width_bool

6955 {

6056 \bool_if:NTF \1_@@_dotted_rule_bool

6057 { \dim_set:Nn \1_@@_rule_width_dim { 2 \1_@@_xdots_radius_dim } }
6958 {

6059 \bool_if:NF \1_@@_tikz_rule_bool

6960 {

6961 \dim_set:Nn \1_@@_rule_width_dim

6962 {

6963 \arrayrulewidth * \1_@@_multiplicity_int
6964 + \doublerulesep * (\1_Q@_multiplicity_int - 1)
6965 }

6966 }

6967 3

6968 }

6969 }

The following constructions aims to allow cumulative blocks of options between square brackets such
as in I[color=blue] [tikz=dashed].

e070 \cs_new_protected:Npn \@@_v_custom_line:nn #1 #2

6971 {

6072 \str_if_eq:nnTF { #2 } { [}

6973 { \@@_v_custom_line i:nw { #1 } [}

6974 { \@@_v_custom_line_ii:nn { #2 } { #1 } }

6975 }

e076 \cs_new_protected:Npn \Q@@_v_custom_line_i:nw #1 [#2]
6077 { \@@_v_custom_line:nn { #1 , #2 } }

eo7s \cs_new_protected:Npn \@@_v_custom_line_ii:nn #1 #2
6979 {

6980 \@@_compute_rule_width:n { #2 }

168

In the following line, the \dim_use:N is mandatory since we do an expansion.

6081 \tl_gput_right:Ne \g_0@_array_preamble_tl

6982 { \exp_not:N ! { \skip_horizontal:n { \dim_use:N \1_@@_rule_width_dim } } }
6083 \tl_gput_right:Ne \g_00_pre_code_after_tl

6984 {

6985 \@@_vline:n

6986 {

6987 #2 ,

6988 position = \int_eval:n { \c@jCol + 1 } ,

6089 total-width = \dim_use:N \1_@@_rule_width_dim
6990 }

6991 }

6092 \@@_rec_preamble:n #1

6993 }

6904 \@@_custom_line:n
6995 { letter = : , command = hdottedline , ccommand = cdottedline, dotted }

The key hvlines

The following command tests whether the current position in the array (given by \1_tmpa_t1 for the
row and \1_tmpb_t1 for the column) would provide an horizontal rule towards the right in the block
delimited by the four arguments #1, #2, #3 and #4. If this rule would be in the block (it must not be
drawn), the boolean \1_tmpa_bool is set to false.

6996 \CcS_new_protected:Npn \@@_test_hline_in_block:nnnnn #1 #2 #3 #4 #5

6997 {

6098 \int_compare:nNnT { \1_tmpa_t1l } > { #1 }

6999 {

7000 \int_compare:nNnT { \1_tmpa_tl } < { #3 + 1 }

7001 {

7002 \int_compare:nNnT { \1_tmpb_tl } > { #2 - 1 }
7003 {

7004 \int_compare:nNnT { \1_tmpb_tl } < { #4 + 1 }
7005 { \bool_gset_false:N \g_tmpa_bool }

7006 }

7007 3

7008 }

7009 }

The same for vertical rules.

7010 \cs_new_protected:Npn \@@_test_vline_in_block:nnnnn #1 #2 #3 #4 #5
7011 {

7012 \int_compare:nNnT { \1_tmpa_tl } > { #1 - 1 }

7013 {

7014 \int_compare:nNnT { \1_tmpa_tl } < { #3 + 1 }
7015 {

7016 \int_compare:nNnT { \1_tmpb_tl } > { #2 }
7017 {

7018 \int_compare:nNnT { \1_tmpb_tl } < { #4 + 1 }
7019 { \bool_gset_false:N \g_tmpa_bool }
7020 }

7021 3

7022 }

7023 }

7024 \cs_new_protected:Npn \@@_test_hline_in_stroken_block:nnnn #1 #2 #3 #4
7025 {

7026 \int_compare:nNnT { \1_tmpb_tl } > { #2 - 1 }

7027 {

7028 \int_compare:nNnT { \1_tmpb_tl } < { #4 + 1 }
7029 {

7030 \int_compare:nNnTF { \1_tmpa_tl } = { #1 }
7031 { \bool_gset_false:N \g_tmpa_bool }

7032 {

169

7033 \int_compare:nNnT { \1_tmpa_tl } = { #3 + 1 }

7034 { \bool_gset_false:N \g_tmpa_bool }

7035 }

7036 }

7037 ¥

7038 }

7030 \cs_new_protected:Npn \@O_test_vline_in_stroken_block:nnnn #1 #2 #3 #4
7040 {

7041 \int_compare:nNnT { \1_tmpa_tl } > { #1 - 1 }

7042 {

7043 \int_compare:nNnT { \1_tmpa_tl } < { #3 + 1 }

7044 {

7045 \int_compare:nNnTF { \1_tmpb_tl } = { #2 }

7046 { \bool_gset_false:N \g_tmpa_bool }

7047 {

7048 \int_compare:nNnT { \1_tmpb_tl } = { #4 + 1 }
7049 { \bool_gset_false:N \g_tmpa_bool }

7050 }

7051 }

7052 T

7053 }

23 The empty corners

When the key corners is raised, the rules are not drawn in the corners; they are not colored and
\TikzEveryCell does not apply. Of course, we have to compute the corners before we begin to draw
the rules.

7054 \cs_new_protected:Npn \@@_compute_corners:

7055 {
7056 \seq_map_inline:Nn \g_0@_pos_of_blocks_seq
7057 { \@@_mark_cells_of_block:nnnnn ##1 }

The list \1_@@_corners_cells_clist will be the list of all the empty cells (and not in a block)
considered in the corners of the array. We use a clist instead of a seq because we will frequently
search in that list (and searching in a clist is faster than searching in a seq).

7058 \clist_clear:N \1_@@_corners_cells_clist

7059 \clist_map_inline:Nn \1_@@_corners_clist

7060 {

7061 \str_case:nnF { ##1 }

7062 {

NW }

\@@_compute_a_corner:nnnnnn 1 1 1 1 \c@iRow \c@jCol }

NE }

\@@_compute_a_corner:nnnnnn 1 \c@jCol 1 { -1 } \c@iRow 1 }
SW }

\@@_compute_a_corner:nnnnnn \cQiRow 1 { -1 } 1 1 \c@jCol }
SE }

\@@_compute_a_corner:nnnnnn \c@iRow \c@jCol { -1 } { -1 } 11}

7063

7064

7065

7066

7067

7068

7069

P e S NSy

7070
7071 3
7072 { \@@_error:nn { bad~corner } { ##1 } }

7073 }
Even if the user has used the key corners the list of cells in the corners may be empty.

7074 \clist_if_empty:NF \1_@@_corners_cells_clist

7075 {
You write on the aux file the list of the cells which are in the (empty) corners because you need that
information in the \CodeBefore since the commands which colors the rows, columns and cells must
not color the cells in the corners.

170

7076 \tl_gput_right:Ne \g_0@_aux_tl
{

7078 \clist_set:Nn \exp_not:N \1_0@_corners_cells_clist
7079 { \1_@@_corners_cells_clist }

7080 }

7081 }

7082 }

7053 \cs_new_protected:Npn \@@_mark_cells_of_block:nnnnn #1 #2 #3 #4 #5
7084 {

7085 \int_step_inline:nnn { #1 } { #3 }

7086 {

7087 \int_step_inline:nnn { #2 } { #4 }

7088 { \cs_set_nopar:cpn { @@ _ block _ ##1 - ####1 + { } }
7089 }

7090 }

7001 \prg_new_conditional:Npnn \Q@@_if_in_block:nn #1 #2 { p }

7092 {

7003 \cs_if_exist:cTF

7004 { @@ _ block _ \int_eval:n { #1 } - \int_eval:n { #2 } }
7095 { \prg_return_true: }

7096 { \prg_return_false: }

7097 3

“Computing a corner” is determining all the empty cells (which are not in a block) that belong to
that corner. These cells will be added to the sequence \1_@@_corners_cells_clist.

The six arguments of \@@_compute_a_corner:nnnnnn are as follow:
e #1 and #2 are the number of row and column of the cell which is actually in the corner;
e #3 and #4 are the steps in rows and the step in columns when moving from the corner;
e #5 is the number of the final row when scanning the rows from the corner;
e #6 is the number of the final column when scanning the columns from the corner.

700s \cs_new_protected:Npn \@@_compute_a_corner:nnnnnn #1 #2 #3 #4 #5 #6
7099 {

For the explanations and the name of the variables, we consider that we are computing the left-upper
corner.

First, we try to determine which is the last empty cell (and not in a block: we won’t add that precision
any longer) in the column of number 1. The flag \1_tmpa_bool will be raised when a non-empty cell
is found.

7100 \bool_set_false:N \1_tmpa_bool

7101 \int_zero_new:N \1_0@_last_empty_row_int

7102 \int_set:Nn \1_0@_last_empty_row_int { #1 }

7103 \int_step_inline:nnnn { #1 } { #3 } { #5 }

7104 {

7105 \bool_lazy_or:nnTF

7106 {

7107 \cs_if_exist_p:c

7108 { pgf @ sh @ ns @ \@@_env: - ##1 - \int_eval:n { #2 } }
7109 }

7110 { \@@_if_in_block_p:nn { ##1 } { #2 } }

7111 { \bool_set_true:N \1_tmpa_bool }

7112 {

7113 \bool_if:NF \1_tmpa_bool

7114 { \int_set:Nn \1_0@_last_empty_row_int { ##1 } }
7115 }

7116 }

171

Now, you determine the last empty cell in the row of number 1.
7117 \bool_set_false:N \1_tmpa_bool

7118 \int_zero_new:N \1_@@_last_empty_column_int
7119 \int_set:Nn \1_Q@_last_empty_column_int { #2 }
7120 \int_step_inline:nnnn { #2 } { #4 } { #6 }
7121 {
7122 \bool_lazy_or:nnTF
7123 {
7124 \cs_if_exist_p:c
7125 { pgf @ sh @ ns @ \@@_env: - \int_eval:n { #1 } - ##1 }
7126 }
7127 { \@@_if_in_block_p:nn { #1 } { ##1 } }
7128 { \bool_set_true:N \1_tmpa_bool }
7129 {
7130 \bool_if:NF \1_tmpa_bool
7131 { \int_set:Nn \1_Q@_last_empty_column_int { ##1 } }
7132 }
7133 }
Now, we loop over the rows.
7134 \int_step_inline:nnnn { #1 } { #3 } { \1_00@_last_empty_row_int }
7135 {
We treat the row number ##1 with another loop.
7136 \bool_set_false:N \1_tmpa_bool
7137 \int_step_inline:nnnn { #2 } { #4 } { \1_0@_last_empty_column_int }
7138 {
7139 \bool_lazy_or:nnTF
7140 { \cs_if_exist_p:c { pgf @ sh @ ns @ \Q0_env: - ##1 - ####1 }
7141 { \e@_if_in_block_p:nn { ##1 } { ####1 } }
7142 { \bool_set_true:N \1_tmpa_bool }
7143 {
7144 \bool_if:NF \1_tmpa_bool
7145 {
7146 \int_set:Nn \1_00_last_empty_column_int { ####1 }
7147 \clist_put_right:Nn
7148 \1_@@_corners_cells_clist
7149 { ##1 - ####1 }
7150 \cs_set_nopar:cpn { @@ _ corner _ ##1 - ####1 } { }
7151 }
7152 }
7153 }
7154 }
7155 ¥

Of course, instead of the following lines, we could have use \prg_new_conditional:Npnn.

ns6 \cs_new:Npn \@Q@_if_in_corner:nT #1 { \cs_if_exist:cT { @@ _ corner _ #1 } }
7157 \cs_new:Npn \Q@@_if_in_corner:nF #1 { \cs_if_exist:cF { @@ _ corner _ #1 } }

Instead of the previous lines, we could have used \1_@@_corners_cells_clist but it’s less efficient:
\clist_if_in:NeT \1_0@_corners_cells_clist { #1 }

24 The environment {NiceMatrixBlock}

The following flag will be raised when all the columns of the environments of the block must have
the same width in “auto” mode.

7158 \bool_new:N \1_@@_block_auto_columns_width_bool

172

Up to now, there is only one option available for the environment {NiceMatrixBlock}.

7150 \keys_define:nn { nicematrix / NiceMatrixBlock }

7160 {

7161 auto-columns-width .code:n =

7162 {

7163 \bool_set_true:N \1_@@_block_auto_columns_width_bool
7164 \dim_gzero_new:N \g_0@_max_cell_width_dim

7165 \bool_set_true:N \1_@@_auto_columns_width_bool

7166 }

7167 }

7165 \NewDocumentEnvironment { NiceMatrixBlock } { ! 0 { } }

7169 {

7170 \int_gincr:N \g_0@_NiceMatrixBlock_int

771 \dim_zero:N \1_@@_columns_width_dim

772 \keys_set:nn { nicematrix / NiceMatrixBlock } { #1 }

7173 \bool_if:NT \1_@@_block_auto_columns_width_bool

7174 {

7175 \cs_if_exist:cT

7176 { @0_max_cell_width_ \int_use:N \g_0@_NiceMatrixBlock_int }
7177 {

7178 \dim_set:Nn \1_@@_columns_width_dim

7179 {

7180 \use:c

7181 { @0_max_cell_width _ \int_use:N \g_0@_NiceMatrixBlock_int }
7182 }

7183 }

7184 }

7185 }

At the end of the environment {NiceMatrixBlock}, we write in the main aux file instructions for
the column width of all the environments of the block (that’s why we have stored the number of the
first environment of the block in the counter \1_Q@@_first_env_block_int).

7186 {

7187 \legacy_if :nTF { measuring@ }
If {NiceMatrixBlock} is used in an environment of amsmath such as {align}: cf. question 694957
on TeX StackExchange. The most important line in that case is the following one.

7188 { \int_gdecr:N \g_0@_NiceMatrixBlock_int }

7189 {

7190 \bool_if:NT \1_@@_block_auto_columns_width_bool

7191 {

7192 \iow_shipout:Nn \@mainaux \ExplSyntaxOn

7103 \iow_shipout:Ne \@mainaux

7194 {

7195 \cs_gset:cpn

7196 { @ _ max _ cell _ width _ \int_use:N \g_0@_NiceMatrixBlock_int }
For technical reasons, we have to include the width of a potential rule on the right side of the cells.

7107 { \dim_eval:n { \g_0@_max_cell_width_dim + \arrayrulewidth } }

7198 }

7199 \iow_shipout:Nn \@mainaux \ExplSyntaxOff

7200 }

7201 }

7202 \ignorespacesafterend

7203 }

173

25 The extra nodes

The following command is called in \@@_use_arraybox_with_notes_c: just before the construction
of the blocks (if the creation of medium nodes is required, medium nodes are also created for the
blocks and that construction uses the standard medium nodes).

704 \cs_new_protected:Npn \Q@@_create_extra_nodes:

7205 {

7206 \bool_if:nTF \1_@@_medium_nodes_bool

7207 {

7208 \bool_if:NTF \1_@@_no_cell_nodes_bool

7209 { \@@_error:n { extra-nodes~with~no-cell-nodes } }
7210 {

7211 \bool_if:NTF \1_@@_large_nodes_bool

7212 \@@_create_medium_and_large_nodes:

7213 \@@_create_medium_nodes:

7214 }

7215 }

7216 {

7217 \bool_if:NT \1_0@_large_nodes_bool

7218 {

7219 \bool_if:NTF \1_@@_no_cell_nodes_bool

7220 { \@@_error:n { extra-nodes~with~no-cell-nodes } }
7221 \@@_create_large_nodes:

7222 }

7223 }

7224 3

We have three macros of creation of nodes: \@@_create_medium_nodes:, \@@_create_large_nodes:
and \Q@@_create_medium_and_large_nodes:.

We have to compute the mathematical coordinates of the “medium nodes”. These mathematical
coordinates are also used to compute the mathematical coordinates of the “large nodes”. That’s why
we write a command \@@_computations_for_medium_nodes: to do these computations.

The command \@@_computations_for_medium_nodes: must be used in a {pgfpicture}.

For each row i, we compute two dimensions 1_@@_row_i_min_dim and 1_@@_row_i_max_dim. The
dimension 1_@@_row_i_min_dim is the minimal y-value of all the cells of the row ¢. The dimension
1_@@_row_i_max_dim is the maximal y-value of all the cells of the row i.
Similarly, for each column j, we compute two dimensions 1_0@_column_j_min_dim and 1_@@_-
column_j_max_dim. The dimension 1_0@_column_j_min_dim is the minimal z-value of all the cells
of the column j. The dimension 1_@@_column_j_max_dim is the maximal x-value of all the cells of
the column j.
Since these dimensions will be computed as maximum or minimum, we initialize them to \c_max_dim
or -\c_max_dim.

7225 \cs_new_protected:Npn \@@_computations_for_medium_nodes:

7226 {

7207 \int_step_variable:nnNn \1_0@_first_row_int \g_0@_row_total_int \Q@_i:

7229 \dim_zero_new:c { 1_0@@_row_ \@@_i: _min_dim }

7230 \dim_set_eq:cN { 1_0@_row_ \Q@@_i: _min_dim } \c_max_dim

7231 \dim_zero_new:c { 1_@@_row_ \@@_i: _max_dim }

7232 \dim_set:cn { 1_@@_row_ \@C_i: _max_dim } { - \c_max_dim }
7233 }

7234 \int_step_variable:nnNn \1_@@_first_col_int \g_0@_col_total_int \Q@@_j:
7235 {

7236 \dim_zero_new:c { 1_0@_column_ \@@_j: _min_dim }

7237 \dim_set_eq:cN { 1_@@_column_ \@@_j: _min_dim } \c_max_dim
7238 \dim_zero_new:c { 1_@@_column_ \@@_j: _max_dim }

7239 \dim_set:cn { 1_@@_column_ \@@_j: _max_dim } { - \c_max_dim }
7240 }

174

We begin the two nested loops over the rows and the columns of the array.

7241 \int_step_variable:nnNn \1_0@_first_row_int \g_0@_row_total_int \@0_i:
7242 {

7243 \int_step_variable:nnNn

7244 \1_@@_first_col_int \g_0@_col_total_int \@@_j:

If the cell (i-7) is empty or an implicit cell (that is to say a cell after implicit ampersands &) we don’t
update the dimensions we want to compute.

7245 {
7246 \cs_if_exist:cT
7247 { pgf @ sh @ ns @ \@@_env: - \@O@_i: - \@@_j: }

We retrieve the coordinates of the anchor south west of the (normal) node of the cell (i-j). They
will be stored in \pgf@x and \pgf@y.

7248 {

7249 \pgfpointanchor { \@@_env: - \@@_i: - \@@_j: } { south~west }
7250 \dim_set:cn { 1_@@_row_ \@@_i: _min_dim }

7251 { \dim_min:vn { 1_0@_row _ \@@_i: _min_dim } \pgf@y }

7252 \seq_if_in:NeF \g_0@_multicolumn_cells_seq { \@@_i: - \@@_j: }
7253 {

7254 \dim_set:cn { 1_@@_column _ \@@_j: _min_dim }

7255 { \dim_min:vn { 1_@@_column _ \@@_j: _min_dim } \pgf@x }
7256 }

We retrieve the coordinates of the anchor north east of the (normal) node of the cell (i-j). They
will be stored in \pgf@x and \pgfQy.

7257 \pgfpointanchor { \@@_env: - \@@_i: - \@@_j: } { north~east }
7258 \dim_set:cn { 1_@@_row _ \@@_i: _ max_dim }

7259 { \dim_max:vn { 1_@@_row _ \@@_i: _ max_dim } { \pgf@y } }
7260 \seq_if_in:NeF \g_00@_multicolumn_cells_seq { \@@_i: - \@@_j: }
7261 {

7262 \dim_set:cn { 1_@@_column _ \@@_j: _ max_dim }

7263 { \dim_max:vn { 1_@@_column _ \@@_j: _max_dim } { \pgfex } }
7264 }

7265 }

7266 }

7267 }

Now, we have to deal with empty rows or empty columns since we don’t have created nodes in such
rows and columns.

7268 \int_step_variable:nnNn \1_@@_first_row_int \g_0@_row_total_int \QQ_i:
7269 {

7270 \dim_compare:nNnT

7211 { \dim_use:c { 1_@@_row _ \@@_i: _ min _ dim } } = \c_max_dim
7272 {

7213 \@@_gpoint:n { row - \@Q@_i: - base }

7274 \dim_set:cn { 1_@@_row _ \@@_i: _ max _ dim } \pgf@y

7275 \dim_set:cn { 1_@@_row _ \@@_i: _ min _ dim } \pgf@y

7276 }

7277 }

7278 \int_step_variable:nnNn \1_0@_first_col_int \g_0@_col_total_int \Q@_j:
7279 {

7280 \dim_compare:nNnT

7281 { \dim_use:c { 1_00@_column _ \@@_j: _ min _ dim } } = \c_max_dim
7282 {

7283 \@@_qpoint:n { col - \@@_j: }

7284 \dim_set:cn { 1_@@_column _ \@@_j: _ max _ dim } \pgfQy

7285 \dim_set:cn { 1_0@_column _ \@@_j: _ min _ dim } \pgfQy

7286 3

7287 T

7288 }

Here is the command \@@_create_medium_nodes:. When this command is used, the “medium nodes”
are created.

175

780 \cs_new_protected:Npn \@@_create_medium_nodes:

7290 {

7201 \pgfpicture

7292 \pgfrememberpicturepositiononpagetrue
7203 \pgf@relevantforpicturesizefalse

7204 \@@_computations_for_medium_nodes:

Now, we can create the “medium nodes”. We use a command \@@_create_nodes: because this
command will also be used for the creation of the “large nodes”.

7295 \tl_set:Nn \1_@@_suffix_tl { -medium }
7296 \@@_create_nodes:

7207 \endpgfpicture

7208 ¥

The command \@@_create_large_nodes: must be used when we want to create only the “large
nodes” and not the medium ones'”. However, the computation of the mathematical coordinates
of the “large nodes” needs the computation of the mathematical coordinates of the “medium
nodes”. Hence, we use first \@@_computations_for_medium_nodes: and then the command
\@@_computations_for_large_nodes:.

70 \cs_new_protected:Npn \Q@@_create_large_nodes:

7300 {

7301 \pgfpicture

7302 \pgfrememberpicturepositiononpagetrue
7303 \pgf@relevantforpicturesizefalse

7304 \Q@_computations_for_medium_nodes:

7305 \@@_computations_for_large_nodes:

7306 \tl_set:Nn \1_@@_suffix_tl { - large }
7307 \@@_create_nodes:

7308 \endpgfpicture

7309 }

7310 \cs_new_protected:Npn \Q@@_create_medium_and_large_nodes:
7311 {

7312 \pgfpicture

7313 \pgfrememberpicturepositiononpagetrue
7314 \pgf@relevantforpicturesizefalse

7315 \@@_computations_for_medium_nodes:

Now, we can create the “medium nodes”. We use a command \@@_create_nodes: because this
command will also be used for the creation of the “large nodes”.

7316 \tl_set:Nn \1_@@_suffix_tl { - medium }
7317 \@@_create_nodes:

7318 \@@_computations_for_large_nodes:

7319 \tl_set:Nn \1_@@_suffix_tl { - large }
7320 \@@_create_nodes:

7321 \endpgfpicture

7322 }

For “large nodes”, the exterior rows and columns don’t interfere. That’s why the loop over the
columns will start at 1 and stop at \c@jCol (and not \g_0@_col_total_int). Idem for the rows.

7323 \cs_new_protected:Npn \Q@@_computations_for_large_nodes:

7324 {
7325 \int_set_eq:NN \1_@@_first_row_int \c_one_int
7326 \int_set_eq:NN \1_@@_first_col_int \c_one_int

We have to change the values of all the dimensions 1_0@_row_i_min_dim, 1_0@_row_i_max_dim,
1_00@_column_j_min_dim and 1_0@_column_j_max_dim.

7327 \int_step_variable:nlNn { \c@iRow - 1 } \@@_i:

7328 {

7329 \dim_set:cn { 1_@0_row _ \@@_i: _ min _ dim }

151f we want to create both, we have to use \@@_create_medium_and_large_nodes:

176

7330 {

7331 (
7332 \dim_use:c { 1_@@_row _ \@@_i: _ min _ dim } +
7333 \dim_use:c { 1_@@_row _ \int_eval:n { \@@_i: + 1 } _ max _ dim }
7334)
7335 / 2
7336 }
7337 \dim_set_eq:cc { 1_@@_row _ \int_eval:n { \@@_i: + 1 } _ max _ dim }
7338 { 1_00_row_ \@@_i: _min_dim }
7339 }
7340 \int_step_variable:nNn { \c@jCol - 1 } \@@_j:
7341 {
7342 \dim_set:cn { 1_@@_column _ \@@_j: _ max _ dim }
7343 {
7344 (
7345 \dim_use:c { 1_Q@@_column _ \@@_j: _ max _ dim } +
7346 \dim_use:c
7347 { 1_00_column _ \int_eval:n { \@@_j: + 1 } _ min _ dim }
7348)
7349 / 2
7350 }
7351 \dim_set_eq:cc { 1_0@_column _ \int_eval:n { \@@_j: + 1 } _ min _ dim }
7352 { 1_0@_column _ \@@_j: _ max _ dim }
7353 }
Here, we have to use \dim_sub:cn because of the number 1 in the name.
7354 \dim_sub:cn
7355 {1_00_column _ 1 _ min _ dim }
7356 \1_0@_left_margin_dim
7357 \dim_add:cn
7358 { 1_00_column _ \int_use:N \c@jCol _ max _ dim }
7359 \1_0@_right_margin_dim
7360 3

The command \@@_create_nodes: is used twice: for the construction of the “medium nodes” and for
the construction of the “large nodes”. The nodes are constructed with the value of all the dimensions
1_00@_row_i_min_dim, 1_Q@_row_i_max_dim, 1_@@_column_j_min_dim and 1_0@_column_j_max_-
dim. Between the construction of the “medium nodes” and the “large nodes”, the values of these

dimensions are changed.
The function also uses \1_0@_suffix_t1 (-medium or -large).

7361 \cs_new_protected:Npn \@Q_create_nodes:

7362 {

7363 \int_step_variable:nnNn \1_0@_first_row_int \g_0@_row_total_int \Q@_i:

7364 {

7365 \int_step_variable:nnNn \1_@@_first_col_int \g_0@_col_total_int \@@_j:
7366 {

We draw the rectangular node for the cell (\@@_i-\@@_j).

7367 \@@_pgf_rect_node:nnnnn
7368 { \@@_env: - \@@_i: - \@@_j: \1_0@_suffix_tl }

}

7369 { \dim_use:c { 1_@0_column_ \@@_j: _min_dim } }
7370 { \dim_use:c { 1_@@_row_ \@@_i: _min_dim } }

7371 { \dim_use:c { 1_00@_column_ \@@_j: _max_dim } }
7372 { \dim_use:c { 1_@@_row_ \@@_i: _max_dim } }

7373 \str_if_empty:NF \1_@@_name_str

7374 {

7375 \pgfnodealias

7376 { \1_@@_name_str - \@@_i: - \@@_j: \1_0@_suffix_tl }
7377 { \@@_env: - \@@_i: - \@@_j: \1_@@_suffix_tl
7378 }

7379 }

7380 }

7381 \int_step_inline:nn { \c@iRow }

177

7382 {

7383 \pgfnodealias

7384 { \@@_env: - ##1 - last \1_@@_suffix_tl }

7385 { \@@_env: - ##1 - \int_use:N \c@jCol \1_@@_suffix_tl }
7386 }

7387 \int_step_inline:nn { \c@jCol }

7388 {

7389 \pgfnodealias

7390 { \@@_env: - last - ##1 \1_@@_suffix_tl }

7301 { \@@_env: - \int_use:N \c@iRow - ##1 \1_@@_suffix_tl }
7392 }

7303 \pgfnodealias % added 2025-04-05

7394 { \@@_env: - last - last \1_@@_suffix_tl }

7395 { \@@_env: - \int_use:N \c@iRow - \int_use:N \c@jCol \1_@@_suffix_tl }

Now, we create the nodes for the cells of the \multicolumn. We recall that we have stored in
\g_0@_multicolumn_cells_seq the list of the cells where a \multicolumn{n}{...}{...} with n>1
was issued and in \g_@@_multicolumn_sizes_seq the correspondent values of n.

7396 \seq_map_pairwise_function:NNN

7397 \g_00@_multicolumn_cells_seq

7308 \g_00@_multicolumn_sizes_seq

7399 \@@_node_for_multicolumn:nn

7400 }

7200 \cs_new_protected:Npn \@@_extract_coords_values: #1 - #2 \q_stop

7402 {
7403 \cs_set_nopar:Npn \@@_i: { #1 }
7404 \cs_set_nopar:Npn \@@_j: { #2 }
7405 }

The command \@@_node_for_multicolumn:nn takes two arguments. The first is the position of the
cell where the command \multicolumn{n}{...}{...} was issued in the format i-j and the second
is the value of n (the length of the “multi-cell”).

7200 \cs_new_protected:Npn \@@_node_for_multicolumn:nn #1 #2

a0 {

7408 \@@_extract_coords_values: #1 \g_stop

7409 \@@_pgf_rect_node:nnnnn

7410 { \@@_env: - \@@_i: - \@@_j: \1_@@_suffix_tl }

7411 { \dim_use:c { 1_@@_column _ \@@_j: _ min _ dim } }

7412 { \dim_use:c { 1_@@_row _ \@@_i: _ min _ dim } }

7413 { \dim_use:c { 1_@@_column _ \int_eval:n { \@@_j: +#2-1 } _ max _ dim } }
7414 { \dim_use:c { 1_@@_row _ \@@_i: _ max _ dim } }

7415 \str_if_empty:NF \1_@@_name_str

7416 {

7417 \pgfnodealias

7418 { \1_@@_name_str - \@@_i: - \@@_j: \1_@@_suffix_tl }

7419 { \int_use:N \g_0@_env_int - \@0_i: - \@@_j: \1_0@_suffix_tl }
7420 }

7421 }

26 The blocks

The following code deals with the command \Block. This command has no direct link with the
environment {NiceMatrixBlock}.

The options of the command \Block will be analyzed first in the cell of the array (and once again

when the block will be put in the array). Here is the set of keys for the first pass (in the cell of the
array).

178

22> \keys_define:nn { nicematrix / Block / FirstPass }
7423 {

7424 j .code:n = \str_set:Nn \1_0@_hpos_block_str j
7425 \bool_set_true:N \1_0@_p_block_bool ,
.value_forbidden:n = true ,

.code:n = \str_set:Nn \1_@@_hpos_block_str 1 ,
.value_forbidden:n = true ,

.code:n = \str_set:Nn \1_Q@@_hpos_block_str r ,
.value_forbidden:n = true ,

.code:n = \str_set:Nn \1_@@_hpos_block_str c ,
.value_forbidden:n = true ,

.code:n = \str_set:Nn \1_@@_hpos_block_str 1 ,
.value_forbidden:n = true ,

.code:n = \str_set:Nn \1_Q@@_hpos_block_str r ,
.value_forbidden:n = true ,

.code:n = \str_set:Nn \1_@@_hpos_block_str c ,
.value_forbidden:n = true ,

.code:n = \str_set:Nn \1_@@_vpos_block_str t ,
.value_forbidden:n = true ,

.code:n = \str_set:Nn \1_Q@@_vpos_block_str T ,
.value_forbidden:n = true ,

.code:n = \str_set:Nn \1_@@_vpos_block_str b ,
.value_forbidden:n = true ,

.code:n = \str_set:Nn \1_@@_vpos_block_str B ,
.value_forbidden:n = true ,

.code:n = \str_set:Nn \1_Q@@_vpos_block_str c ,
.value_forbidden:n = true ,

<
BB wWwooHH3d QIO 0R BB BEC

7449 v-center .meta:n =m ,

7450 p .code:n = \bool_set_true:N \1_@@_p_block_bool ,
7451 p .value_forbidden:n = true ,

7452 color .code:n =

7453 \@@_color:n { #1 }

7454 \tl_set_rescan:Nnn

7455 \1_@@_draw_t1

7456 { \char_set_catcode_other:N ! }

7457 {#1 3},

7458 color .value_required:n = true ,

7459 respect-arraystretch .code:n =

7460 \cs_set_eq:NN \Q@@_reset_arraystretch: \prg_do_nothing: ,
7461 respect-arraystretch .value_forbidden:n = true ,
7462 }

The following command \@@_Block: will be linked to \Block in the environments of nicematrix. We
define it with \NewExpandableDocumentCommand because it has an optional argument between <
and >. It’s mandatory to use an expandable command.

763 \cs_new_protected:Npn \@@_Block: { \@@_collect_options:n { \@@_Block_i: } }

764 \NewExpandableDocumentCommand \@Q@_Block_i: { m m D < > { } +m }
7465 {

If the first mandatory argument of the command (which is the size of the block with the syntax i-75)
has not been provided by the user, you use 1-1 (that is to say a block of only one cell).

7466 \tl_if_blank:nTF { #2 }

7467 { \@@_Block_ii:nnnnn \c_one_int \c_one_int }

7468 {

7469 \tl_if_in:nnTF { #2 } { - }

7470 {

7471 \int_compare:nNnTF { \char_value_catcode:n { 45 } } = { 13 }
7472 \@@_Block_i_czech:w \@@_Block_i:w

7473 #2 \q_StOp

7474 }

7475 {

7476 \@@_error:nn { Bad~argument~for~Block } { #2 }

179

7477 \@@_Block_ii:nnnnn \c_one_int \c_one_int

7478 }

7479 }

7480 {#1 Y {#3} {# 1}
7481 \ignorespaces

7482 }

With the following construction, we extract the values of ¢ and j in the first mandatory argument of
the command.

753 \cs_new:Npn \Q@@_Block_i:w #1-#2 \q_stop { \@0@_Block_ii:nnnnn { #1 } { #2 } }

With babel with the key czech, the character - (hyphen) is active. That’s why we need a special
version. Remark that we could not use a preprocessor in the command \@@_Block: to do the job
because the command \@@_Block: is defined with the command \NewExpandableDocumentCommand.

748 {

g5 \char_set_catcode_active:N -

7ss \cs_new:Npn \@Q@_Block_i_czech:w #1-#2 \g_stop { \@O@_Block_ii:nnnnn { #1 } { #2 } }

7487

Now, the arguments have been extracted: #1 is ¢ (the number of rows of the block), #2 is j (the
number of columns of the block), #3 is the list of key=values pairs, #4 are the tokens to put before
the math mode and before the composition of the block and #5 is the label (=content) of the block.
755 \cs_new_protected:Npn \@@_Block_ii:nnnnn #1 #2 #3 #4 #5
7489 {

We recall that #1 and #2 have been extracted from the first mandatory argument of \Block (which
is of the syntax i-j). However, the user is allowed to omit ¢ or j (or both). We detect that situation
by replacing a missing value by 100 (it’s a convention: when the block will actually be drawn these
values will be detected and interpreted as mazimal possible value according to the actual size of the
array).

7490 \bool_lazy_or:nnTF

7401 { \tl_if_blank_p:n { #1 } }

7492 { \str_if_eq_ p:ee { * } { #1 } }
7493 { \int_set:Nn \1_tmpa_int { 100 } }
7494 { \int_set:Nn \1_tmpa_int { #1 } }
7495 \bool_lazy_or:nnTF

7496 { \tl_if_blank_p:n { #2 } }

7407 { \str_if_eq piee { * } { #2 } }
7498 { \int_set:Nn \1_tmpb_int { 100 } }

7499 { \int_set:Nn \1_tmpb_int { #2 } }

If the block is mono-column.

7500 \int_compare:nNnTF { \1_tmpb_int } = { \c_one_int }

7501 {

7502 \tl_if_empty:NTF \1_0@_hpos_cell_tl

7503 { \str_set_eq:NN \1_@@_hpos_block_str \c_0@_c_str }

7504 { \str_set:No \1_0@_hpos_block_str \1_0@_hpos_cell_tl }
7505 }

7506 { \str_set_eq:NN \1_Q@_hpos_block_str \c_00@_c_str }

The value of \1_@@_hpos_block_str may be modified by the keys of the command \Block that we
will analyze now.

7507 \keys_set_known:nn { nicematrix / Block / FirstPass } { #3 }
7508 \tl_set:Ne \1_tmpa_tl

7509 {

7510 { \int_use:N \c@iRow }

7511 { \int_use:N \c@jCol }

7512 { \int_eval:n { \c@iRow + \1_tmpa_int - 1 } }

7513 { \int_eval:n { \c@jCol + \1_tmpb_int - 1 } }

7514 }

180

Now, \1_tmpa_t1l contains an “object” corresponding to the position of the block with four compo-
nents, each of them surrounded by curly brackets:
{imin}{jmin}{imax}{jmax?.

We have different treatments when the key p is used and when the block is mono-column or
mono-row, etc. That’s why we have several macros: \@@_Block_iv:nnnnn, \@@_Block_v:nnnnn,
\@@_Block_vi:nnnn, etc. (the five arguments of those macros are provided by curryfication).

7515 \bool_set_false:N \1_tmpa_bool
7516 \bool_if:NT \1_@@_amp_in_blocks_bool
\tl_if_in:nnT is slightly faster than \str_if_in:nnT.
7517 { \tl_if_in:onT { #5 } { & } { \bool_set_true:N \1_tmpa_bool } }
7518 \bool_case:nF
7519 {
7520 \1_tmpa_bool { \@@_Block_vii:eennn }
7521 \1_0@_p_block_bool { \@@_Block_vi:eennn }

For the blocks mono-column, we will compose right away in a box in order to compute its width and
take that width into account for the width of the column. However, if the column is a X column, we
should not do that since the width is determined by another way. This should be the same for the
p, m and b columns and we should modify that point. However, for the X column, it’s imperative.
Otherwise, the process for the determination of the widths of the columns will be wrong.

7522 \1_@@_X_bool { \@@_Block_v:eennn }
7523 { \tl_if_empty_p:n { #5 } } { \@@_Block_v:eennn }
7524 { \int_compare_p:nNn \1_tmpa_int = \c_one_int } { \@@_Block_iv:eennn }
7525 { \int_compare_p:nNn \1_tmpb_int = \c_one_int } { \@@_Block_iv:eennn }
7526 }

7527 { \@@_Block_v:eennn }

{ \1_tmpa_int } { \1_tmpb_int } { #3 } { #4 } { #5 }

7529 }

The following macro is for the case of a \Block which is mono-row or mono-column (or both) and
don’t use the key p. In that case, the content of the block is composed right away in a box (because we
have to take into account the dimensions of that box for the width of the current column or the height
and the depth of the current row). However, that box will be put in the array after the construction
of the array (by using PGF) with \@@_draw_blocks: and above all \@@_Block_v:nnnnnn which will
do the main job.

#1 is 4 (the number of rows of the block), #2 is j (the number of columns of the block), #3 is the
list of key=values pairs, #4 are the tokens to put before the potential math mode and before the
composition of the block and #5 is the label (=content) of the block.

7530 \cs_new_protected:Npn \@Q@_Block_iv:nnnnn #1 #2 #3 #4 #5

7531 {

7532 \int_gincr:N \g_0@_block_box_int

7533 \cs_set_eq:NN \cellcolor \@@_cellcolor_error

7534 \cs_set_eq:NN \rowcolor \@@_rowcolor_error

7535 \cs_set_protected_nopar:Npn \diagbox ##1 ##2

7536 {

7537 \tl_gput_right:Ne \g_0@_pre_code_after_tl

7538 {

7539 \@@_actually_diagbox:nnnnnn

7540 { \int_use:N \c@iRow }

7541 { \int_use:N \c@jCol }

7542 { \int_eval:n { \c@iRow + #1 - 1 } }

7543 { \int_eval:n { \c@jCol + #2 - 1 } }

7544 { \g_0@_row_style_tl \exp_not:n { ##1 } }
7545 { \g_00@_row_style_tl \exp_not:n { ##2 } }
7546 }

7547 }

7548 \box_gclear_new:c

7549 { g_00_ block _ box _ \int_use:N \g_0@_block_box_int _ box }

181

Now, we will actually compose the content of the \Block in a TeX box. Be careful: if after the
construction of the box, the boolean \g_0@_rotate_bool is raised (which means that the command
\rotate was present in the content of the \Block) we will rotate the box but also, maybe, change
the position of the baseline!

7550 \hbox_gset:cn
7551 { g_0@_ block _ box _ \int_use:N \g_00@_block_box_int _ box }
7552 {

For a mono-column block, if the user has specified a color for the column in the preamble of the
array, we want to fix that color in the box we construct. We do that with \set@color and not
\color_ensure_current: (in order to use \color_ensure_current: safely, you should load I3back-
end before the \documentclass).

7553 \tl_if_empty:NTF \1_@@_color_tl
7554 { \int_compare:nNnT { #2 } = { \c_one_int } { \set@color } }
7555 { \@@_color:o \1_@@_color_tl }

If the block is mono-row, we use \g_@@_row_style_t1 even if it has yet been used in the beginning of
the cell where the command \Block has been issued because we want to be able to take into account
a potential instruction of color of the font in \g_0@_row_style_t1.

7556 \int_compare:nNnT { #1 } = { \c_one_int }
7557 {

7558 \int_if_zero:nTF { \c@iRow }

7559 {

In the following code, the value of code-for-first-row contains a \Block (in order to have the “first
row” centered). But, that block will be executed, since it is entirely contained in the first row, the
value of code-for-first-row will be inserted once again... with the same command \Block. That’s
why we have to nullify the command \Block.

$\begin{bNiceMatrix}y,
[
r,
first-row,
last-col,
code-for-first-row = \Block{}{\scriptstyle\color{blue} \arabic{jCol}},
code-for-last-col = \scriptstyle \color{blue} \arabic{iRow}

]
& & & & \\

-2 & 3& -4 &5 & \\
3&-4&5 & -6 & \\
-4 &5 & -6 & 7 & \\
5& -6 &7 & -8 & \\

\end{bNiceMatrix}$
7560 \cs_set_eq:NN \Block \@@_NullBlock:
7561 \1_0@_code_for_first_row_tl
7562 }
7563 {
7564 \int_compare:nNnT { \c@iRow } = { \1_@@_last_row_int }
7565 {
7566 \cs_set_eq:NN \Block \@@_NullBlock:
7567 \1_0@_code_for_last_row_tl
7568 }
7569 }
7570 \g_0@_row_style_tl
7571 }

The following command will be no-op when respect-arraystretch is in force.
7572 \@@_reset_arraystretch:
7573 \dim_zero:N \extrarowheight

#4 is the optional argument of the command \Block, provided with the syntax <...>.
7574 #4

182

We adjust \1_0@_hpos_block_str when \rotate has been used (in the cell where the command
\Block is used but maybe in #4, \RowStyle, code-for-first-row, etc.).

7575 \@@_adjust_hpos_rotate:
The boolean \g_0@_rotate_bool will be also considered after the composition of the box (in order
to rotate the box).

Remind that we are in the command of composition of the box of the block. Previously, we have
only done some tuning. Now, we will actually compose the content with a {tabular}, an {array}
or a {minipage}.

7576 \bool_if:NTF \1_@@_tabular_bool

7577 {

7578 \bool_lazy_all:nTF

7579 {

7580 { \int_compare_p:nNn { #2 } = { \c_one_int } }

Remind that, when the column has not a fixed width, the dimension \1_@@_col_width_dim has the
conventional value of —1 cm.

7581 {
7582 ! \dim_compare_p:nNn
7583 { \1_0@_col_width_dim } < { \c_zero_dim }
7584 }
7585 { ! \g_0@_rotate_bool }
7586 ¥
When the block is mono-column in a column with a fixed width (e.g. p{3cm}), we use a {minipage}.
7587 {
7588 \use:e
7589 {
Curiously, \exp_not:N is still mandatory when tagging=on.
7590 \exp_not:N \begin { minipage }
7501 [\str_lowercase:f \1_@@_vpos_block_str]
7502 { \1_0@_col_width_dim }
7503 \str_case:on \1_@@_hpos_block_str
7594 { ¢ \centering r \raggedleft 1 \raggedright }
7595 }
7596 #5
7507 \end { minipage }
7598 }
In the other cases, we use a {tabular}.
7599 {
7600 \use:e
7601 {
Curiously, \exp_not:N is still mandatory when tagging=on.
7602 \exp_not:N \begin { tabular }
7603 [\str_lowercase:f \1_@@_vpos_block_str]
7604 { @ { } \1_ee_hpos_block_str @ { } }
7605 }
7606 #5
7607 \end { tabular }
7608 }
7609 3

If we are in a mathematical array (\1_@@_tabular_bool is false). The composition is always done
with an {array} (never with a {minipage}).

7610 {

7611 $ % $
7612 \use:e
7613 {

183

Curiously, \exp_not:N is still mandatory when tagging=on.

7614 \exp_not:N \begin { array }

7615 [\str_lowercase:f \1_@@_vpos_block_str]
7616 { @ {2} \1_00@_hpos_block_str @ { } }

7617 }

7618 #5

7619 \end { array }

7620 $%$

7621 3

7622 }

The box which will contain the content of the block has now been composed.

If there were \rotate (which raises \g_0@_rotate_bool) in the content of the \Block, we do a
rotation of the box (and we also adjust the baseline of the rotated box).

7623 \bool_if:NT \g_0@_rotate_bool { \@@_rotate_box_of_block: }
If we are in a mono-column block, we take into account the width of that block for the width of the
column.

7624 \int_compare:nNnT { #2 } = { \c_one_int }
7625 {

7626 \dim_gset:Nn \g_0@_blocks_wd_dim

7627 {

7628 \dim_max:nn

7629 { \g_00@_blocks_wd_dim }

7630 {

7631 \box_wd:c

7632 { g_00@_ block _ box _ \int_use:N \g_0@_block_box_int _ box }
7633 }

7634 }

7635 }

If we are in a mono-row block we take into account the height and the depth of that block for
the height and the depth of the row, excepted when the block uses explicitely an option of vertical
position T or B. Remind that if the user has not used a key for the vertical position of the block, then
\1_@@_vpos_block_str remains empty.

7636 \int_compare:nNnT { #1 } = { \c_one_int }

7637 {

7638 \bool_lazy_any:nT

7639 {

7640 { \str_if_empty_p:N \1_@@_vpos_block_str }

7641 { \str_if_eq_p:ee { \1_00@_vpos_block_str } { t } }
7642 { \str_if_eq_p:ee { \1_@@_vpos_block_str } { b } }
7643 }

7644 { \@@_adjust_blocks_ht_dp: }

7645 }

7646 \seq_gput_right:Ne \g_0@_blocks_seq

7647 {

7648 \1_tmpa_tl

In the list of options #3, maybe there is a key for the horizontal alignment (1, r or c). In that
case, that key has been read and stored in \1_@@_hpos_block_str. However, maybe there were
no key of the horizontal alignment and that’s why we put a key corresponding to the value of
\1_@@_hpos_block_str, which is fixed by the type of current column.

7649 {
7650 \exp_not:n { #3 } ,
7651 \1_@@_hpos_block_str ,
Now, we put a key for the vertical alignment.
7652 \bool_if:NT \g_0@_rotate_bool
7653 {
7654 \bool_if:NTF \g_@@_rotate_c_bool
7655 {m}’
7656 {

184

7657 \int_compare:nNnT { \c@iRow } = { \1_@@_last_row_int }
7658 { T }

7659 }

7660 }

7661 ¥

7662 {

7663 \box_use_drop:c

7664 { g_00_ block _ box _ \int_use:N \g_0@_block_box_int _ box }
7665 }

7666 }

7667 \bool_set_false:N \g_0@_rotate_c_bool

7668 }

7660 \cS_new_protected:Npn \@@_adjust_blocks_ht_dp:
7670 {

7671 \dim_gset:Nn \g_0@_blocks_ht_dim

7672 {

7673 \dim_max:nn

7674 { \g_0@_blocks_ht_dim }

7675 {

7676 \box_ht:c

7677 { g_0@_ block _ box _ \int_use:N \g_00@_block_box_int _ box }
7678 ¥

7679 }

7680 \dim_gset:Nn \g_0@_blocks_dp_dim

7681 {

7682 \dim_max:nn

7683 { \g_0@_blocks_dp_dim }

7684 {

7685 \box_dp:c

7686 { g_0@_ block _ box _ \int_use:N \g_00@_block_box_int _ box }
7687 ¥

7688 }

7689 }

7600 \cs_new:Npn \@@_adjust_hpos_rotate:

7691 {

7602 \bool_if:NT \g_Q@_rotate_bool

7693 {

7604 \str_set:Ne \1_0@_hpos_block_str

7695 {

7696 \bool_if:NTF \g_0@_rotate_c_bool

7697 {c}

7698 {

7699 \str_case:onF \1_Q@_vpos_block_str
7700 {bp1BltrTr}

7701 {

7702 \int_compare:nNnTF { \c@iRow } = { \1_0@_last_row_int }
7703 {r}

7704 {1}

7705 T

7706 }

7707 }

7708 }

7709 }

7710 \cs_generate_variant:Nn \@@_Block_iv:nnnnn { e e }

Despite its name the following command rotates the box of the block but also does vertical adjustment
of the baseline of the block.

7711 \cs_new_protected:Npn \@@_rotate_box_of_block:
7712 {

7713 \box_grotate:cn

185

7714 { g_0@_ block _ box _ \int_use:N \g_0@_block_box_int _ box }
7715 { 90 }

7716 \int_compare:nNnT { \c@iRow } = { \1_@@_last_row_int }

7717 {

7718 \vbox_gset_top:cn

7719 { g_0@_ block _ box _ \int_use:N \g_00@_block_box_int _ box }
7720 {

7721 \skip_vertical:n { 0.8 ex }

7722 \box_use:c

7723 { g_0@_ block _ box _ \int_use:N \g_00@_block_box_int _ box }
7724 ¥

7725 }

7726 \bool_if:NT \g_@@_rotate_c_bool

7727 {

7728 \hbox_gset:cn

7729 { g_00@_ block _ box _ \int_use:N \g_0@_block_box_int _ box }
7730 {

7731 $%$

7732 \vcenter

7733 {

7734 \box_use:c

7735 { g_0@_ block _ box _ \int_use:N \g_0@_block_box_int _ box }
7736 }

7737 $%$

7738 }

7739 }

7740 }

The following macro is for the standard case, where the block is not mono-row and not mono-column
and does not use the key p). In that case, the content of the block is not composed right away in
a box. The composition in a box will be done further, just after the construction of the array (cf.
\@@_draw_blocks: and above all \@@_Block_v:nnnnnn).

#1 is 4 (the number of rows of the block), #2 is j (the number of columns of the block), #3 is the list
of key=values pairs, #4 are the tokens to put before the math mode and before the composition of
the block and #5 is the label (=content) of the block.

1 \cs_new_protected:Npn \Q@@_Block_v:nnnnn #1 #2 #3 #4 #5

7

2 o
7743 \seq_gput_right:Ne \g_@@_blocks_seq
7744 {
7745 \1_tmpa_tl
7746 { \exp_not:n { #3 } }
7747 {
7748 \bool_if:NTF \1_@@_tabular_bool
7749 {
7750 \group_begin:
The following command will be no-op when respect-arraystretch is in force.
7751 \@@_reset_arraystretch:
7752 \exp_not:n
7753 {
7754 \dim_zero:N \extrarowheight
7755 #4

If the box is rotated (the key \rotate may be in the previous #4), the tabular used for the content
of the cell will be constructed with a format c. In the other cases, the tabular will be constructed
with a format equal to the key of position of the box. In other words: the alignment internal to the
tabular is the same as the external alignment of the tabular (that is to say the position of the block
in its zone of merged cells).

7756 \tag_if_active:T { \tag_stop:n { table } }

7757 \use:e

7758 {

7759 \exp_not:N \begin { tabular } [\1_@@_vpos_block_str]

7760 { @ {}\1_ee_hpos_block_str @ { } }

186

7761 }

7762 #5
7763 \end { tabular }
7764 }
7765 \group_end:
7766 }
When we are not in an environment {NiceTabular} (or similar).
7767 {
7768 \group_begin:

The following will be no-op when respect-arraystretch is in force.

7769 \@@_reset_arraystretch:

7770 \exp_not:n

7771 {

7772 \dim_zero:N \extrarowheight

7773 #4

7774 $ % $

7775 \use:e

7776 {

7777 \exp_not:N \begin { array } [\1_Q@_vpos_block_str]
7778 { @ {2} \l_ee_hpos_block_str @ { } }
7779 }

7780 #5

7781 \end { array }

7782 $ % $

7783 }

7784 \group_end :

7785 }

7786 }

7787 }

7788 }

770 \cs_generate_variant:Nn \@Q@_Block_v:nnnnn { e e }

The following macro is for the case of a \Block which uses the key p.
7790 \cs_new_protected:Npn \@Q@_Block_vi:nnnnn #1 #2 #3 #4 #5

7791 {
7792 \seq_gput_right:Ne \g_0@_blocks_seq
7793 {
7794 \1_tmpa_tl
7795 { \exp_not:n { #3 } }
Here, the curly braces for the group are mandatory.
7796 { { \exp_not:n { #4 #5 } } }
7797 }
7798 3

7799 \cs_generate_variant:Nn \@@_Block_vi:nnnnn { e e }

The following macro is also for the case of a \Block which uses the key p.
7500 \cs_new_protected:Npn \@@_Block_vii:nnnnn #1 #2 #3 #4 #5

7801 {

7802 \seq_gput_right:Ne \g_0@_blocks_seq
7803 {

7804 \1_tmpa_tl

7805 { \exp_not:n { #3 } }

7806 { \exp_not:n { #4 #5 } }

7807 }

7808 }

7800 \cs_generate_variant:Nn \@@_Block_vii:nnnnn { e e }

We recall that the options of the command \Block are analyzed twice: first in the cell of the array
and once again when the block will be put in the array after the construction of the array (by using
PGF).

187

710 \keys_define:nn { nicematrix / Block / SecondPass }

7811 {

7812 ampersand-in-blocks .bool_set:N = \1_@@_amp_in_blocks_bool ,
7813 ampersand-in-blocks .default:n = true ,

7814 &-in-blocks .meta:n = ampersand-in-blocks ,

The sequence \1_@@_tikz_seq will contain a sequence of comma-separated lists of keys.

7815 tikz .code:n =

7816 \IfPackageLoadedTF { tikz }

7817 { \seq_put_right:Nn \1_@@_tikz_seq { { #1 } } }
7818 { \@@_error:n { tikz~key~without~tikz } } ,
7819 tikz .value_required:n = true ,

7820 fill .code:n =

7821 \tl_set_rescan:Nnn

7822 \1_ee_fill_t1

7823 { \char_set_catcode_other:N ! }

7824 {#1 3},

7825 fill .value_required:n = true ,

In fine, the opacity will be applied by \pgfsetfillopacity.

7826 opacity .tl_set:N = \1_0@_opacity_tl ,
7827 opacity .value_required:n = true ,
7828 draw .code:n =
7829 \tl_set_rescan:Nnn
7830 \1_0@_draw_t1l
7831 { \char_set_catcode_other:N ! }
7832 {#1 3},
7833 draw .default:n = default ,
7834 rounded-corners .dim_set:N = \1_@@_rounded_corners_dim ,
7835 rounded-corners .default:n = 4 pt ,
7836 color .code:n =
7837 \@@_color:n { #1 }
: \tl_set_rescan:Nnn
7839 \1_0@_draw_t1l
7840 { \char_set_catcode_other:N ! }
7841 { #1 } E]
7842 borders .clist_set:N = \1_@@_borders_clist ,
7843 borders .value_required:n = true ,
7844 hvlines .meta:n = { vlines , hlines } ,
7845 vlines .bool_set:N = \1_@@_vlines_block_bool,
7846 vlines .default:n = true ,
7847 hlines .bool_set:N = \1_@@_hlines_block_bool,
7848 hlines .default:n = true ,
7849 line-width .dim_set:N = \1_@@_line_width_dim ,
7850 line-width .value_required:n = true ,

Some keys have not a property .value_required:n (or similar) because they are in FirstPass.

7851 j .code:n = \str_set:Nn \1_0@_hpos_block_str j

7852 \bool_set_true:N \1_@@_p_block_bool ,

7853 1 .code:n = \str_set:Nn \1_@@_hpos_block_str 1 ,

7854 r .code:n = \str_set:Nn \1_Q@_hpos_block_str r ,

7855 ¢ .code:n = \str_set:Nn \1_@@_hpos_block_str c ,

7856 L .code:n = \str_set:Nn \1_@@_hpos_block_str 1

7857 \bool_set_true:N \1_@@_hpos_of_block_cap_bool ,
7858 R .code:n = \str_set:Nn \1_@@_hpos_block_str r

7859 \bool_set_true:N \1_0@_hpos_of_block_cap_bool ,
7860 C .code:n = \str_set:Nn \1_0@_hpos_block_str c

7861 \bool_set_true:N \1_0@_hpos_of_block_cap_bool ,
7862 t .code:n = \str_set:Nn \1_@@_vpos_block_str t ,

7863 T .code:n = \str_set:Nn \1_Q@_vpos_block_str T ,

7864 b .code:n = \str_set:Nn \1_0@_vpos_block_str b ,

7865 B .code:n = \str_set:Nn \1_@@_vpos_block_str B ,

7866 m .code:n = \str_set:Nn \1_Q@@_vpos_block_str c ,

7867 m .value_forbidden:n = true ,

7868 v-center .meta:n =m ,

188

7869 p .code:n = \bool_set_true:N \1_Q@_p_block_bool ,

7870 p .value_forbidden:n = true ,

7871 name .tl_set:N = \1_@@_block_name_str , % .str_set:N ?
7872 name .value_required:n = true ,

7873 name .initial:n = ,

7874 respect-arraystretch .code:n =

7875 \cs_set_eq:NN \@Q_reset_arraystretch: \prg_do_nothing: ,
7876 respect-arraystretch .value_forbidden:n = true ,

7877 transparent .bool_set:N = \1_0@_transparent_bool ,

7878 transparent .default:n = true ,

7879 transparent .initial:n = false ,

7880 unknown .code:n =

7881 \@@_unknown_key:nn

7882 { nicematrix / Block / SecondPass }

7883 { Unknown~key~for~Block }

7884 }

The command \@@_draw_blocks: will draw all the blocks. This command is used after the construc-
tion of the array. We have to revert to a clean version of \ialign because there may be tabulars in
the \Block instructions that will be composed now.

755 \cs_new_protected:Npn \@@_draw_blocks:

7886 {

7887 \bool_if:NTF \c_@@_revtex_bool

7888 { \cs_set_eq:NN \ialign \@@_old_ialign: }

7889 { \cs_set_eq:NN \ar@ialign \@@_old_ar@ialign: }

7890 \seq_map_inline:Nn \g_0@_blocks_seq { \@@_Block_iv:nnnnnn ##1 }
7891 3

7802 \cs_new_protected:Npn \@@_Block_iv:nnnnnn #1 #2 #3 #4 #5 #6

7893 {

The integer \1_0@_last_row_int will be the last row of the block and \1_@@_last_col_int its last
column.

78904 \int_zero:N \1_@@_last_row_int

7895 \int_zero:N \1_@@_last_col_int
We remind that the first mandatory argument of the command \Block is the size of the block with
the special format i-j. However, the user is allowed to omit 7 or j (or both). This will be interpreted
as follows: the last row (resp. column) of the block will be the last row (resp. column) of the block
(without the potential exterior row—resp. column—of the array). By convention, this is stored in
\g_00@_blocks_seq as a number of rows (resp. columns) for the block equal to 100. That’s what we
detect now (we write 98 for the case the the command \Block has been issued in the “first row”).

7896 \int_compare:nNnTF { #3 } > { 98 }

7807 { \int_set_eq:NN \1_@@_last_row_int \c@iRow }

7898 { \int_set:Nn \1_@@_last_row_int { #3 } }

7899 \int_compare:nNnTF { #4 } > { 98 }

7900 { \int_set_eq:NN \1_@@_last_col_int \c@jCol }

7901 { \int_set:Nn \1_@@_last_col_int { #4 } }

7002 \int_compare:nNnTF { \1_@@_last_col_int } > { \g_0@_col_total_int }
7903 {

7904 \bool_lazy_and:nnTF

7905 { \1_0@_preamble_bool }

7906 {

7907 \int_compare_p:n

7008 { \1_0@_last_col_int <= \g_@@_static_num_of_col_int }

7909 ¥

7910 {

7911 \msg_error:nnnn { nicematrix } { Block~too~large~2 } { #1 } { #2 }
7912 \@@_msg_redirect_name:nn { Block~too~large~2 } { none }

7013 \@@_msg_redirect_name:nn { columns~not~used } { none }

7914 }

7915 { \msg_error:nnnn { nicematrix } { Block~too~large~1 } { #1 } { #2 } }
7916 }

189

7918 \int_compare:nNnTF { \1_@@_last_row_int } > { \g_Q@_row_total_int }
7919 { \msg_error:nnnn { nicematrix } { Block~too~large~1 } { #1 } { #2 } }
7920 {

7021 \@@_Block_v:nneenn

7922 {#1 3}

7923 { #2 }

7924 { \int_use:N \1_@@_last_row_int }

7925 { \int_use:N \1_@@_last_col_int }

7926 { #5 }

7927 { #6 }

7928 }

7929 }

7930 3

The following command \@@_Block_v:nnnnnn will actually draw the block. #1 is the first row of the
block; #2 is the first column of the block; #3 is the last row of the block; #4 is the last column of the
block; #5 is a list of key=value options; #6 is the label (content) of the block.

7931 \cs_new_protected:Npn \@Q@_Block_v:nnnnnn #1 #2 #3 #4 #5 #6

7932 {

The group is for the keys.

7933 \group_begin:

7934 \int_compare:nNnT { #1 } = { #3 }

7035 { \str_set:Nn \1_@@_vpos_block_str { t } }

7936 \keys_set:nn { nicematrix / Block / SecondPass } { #5 }

If the content of the block contains &, we will have a special treatment (since the cell must be divided
in several sub-cells). Remark that \t1_if_in:nnT is faster then \str_if_in:nnT.

7037 \tl_if_in:nnT { #6 } { & } { \bool_set_true:N \1_0@_ampersand_bool }
7038 \bool_lazy_and:nnT

7039 { \1_@@_vlines_block_bool }

7940 { ' \1_e@_ampersand_bool }

7941 {

7042 \tl_gput_right:Ne \g_nicematrix_code_after_tl

7943 {

7944 \@@_vlines_block:nnn

Toss { \exp_not:n { #5 } }

7946 {#1 - #2 }

7047 { \int_use:N \1_@@_last_row_int - \int_use:N \1_@@_last_col_int }
7948 }

7949 }

7950 \bool_if:NT \1_@@_hlines_block_bool

7951 {

7952 \tl_gput_right:Ne \g_nicematrix_code_after_tl

7953 {

7054 \@@_hlines_block:nnn

7955 { \exp_not:n { #5 } }

7956 {#1 - #2 }

7957 { \int_use:N \1_@@_last_row_int - \int_use:N \1_@@_last_col_int }
7958 ¥

7959 }

7960 \bool_if:NF \1_Q@_transparent_bool

7961 {

7962 \bool_lazy_and:nnF { \1_0@_vlines_block_bool } { \1_@@_hlines_block_bool }

7963 {
The sequence of the positions of the blocks (excepted the blocks with the key hvlines) will be used
when drawing the rules (in fact, there is also the \multicolumn and the \diagbox in that sequence).

7964 \seq_gput_left:Ne \g_00_pos_of_blocks_seq

7965 {{#1 Y {#2 ¥ {#3} { #4 } { \1_e@_block_name_str } }

7966 }

7967 }

190

7968 \tl_if_empty:NF \1_@@_draw_tl

7969 {

7970 \bool_lazy_or:nnT \1_0@_hlines_block_bool \1_Q@_vlines_block_bool
7971 { \@@_error:n { hlines~with~color } }

7972 \tl_gput_right:Ne \g_nicematrix_code_after_tl

7973

7974 \@@_stroke_block:nnn

#5 are the options

7975 { \exp_not:n { #5 } }
7976 {#1 - #2 }
7977 { \int_use:N \1_@@_last_row_int - \int_use:N \1_0@_last_col_int }
7978 }
7979 \seq_gput_right:Nn \g_Q@_pos_of_stroken_blocks_seq
7980 {{#1 Y {#2}r{#33}r{# }+}
7981 }
7082 \clist_if_empty:NF \1_@@_borders_clist
7983 {
7984 \tl_gput_right:Ne \g_nicematrix_code_after_tl
7985
7986 \@@_stroke_borders_block:nnn
7987 { \exp_not:n { #5 } }
7988 {#1 - #2 }
7989 { \int_use:N \1_@@_last_row_int - \int_use:N \1_@@_last_col_int }
7990 }
7991 }
7992 \tl_if_empty:NF \1_@@_fill_tl
7993 {
7904 \@@_add_opacity_to_£fill:
7995 \tl_gput_right:Ne \g_0@_pre_code_before_tl
7996 {
7997 \@@_exp_color_arg:No \@@_roundedrectanglecolor \1_@@_fill_tl
7998 {#1 - #2 }
7999 { \int_use:N \1_@@_last_row_int - \int_use:N \1_0@_last_col_int }
8000 { \dim_use:N \1_@@_rounded_corners_dim }
8001 }
8002 }
8003 \seq_if_empty:NF \1_@@_tikz_seq
8004
8005 \tl_gput_right:Ne \g_nicematrix_code_before_tl
8006 {
8007 \@@_block_tikz:nnnnn
8008 { \seq_use:Nn \1_@@_tikz_seq { , } }
8009 { #1 }
8010 {#2 }
8011 { \int_use:N \1_@@_last_row_int }
8012 { \int_use:N \1_@@_last_col_int }
We will have in that last field a list of lists of TikZ keys.
8013 }
8014 }
8015 \cs_set_protected_nopar:Npn \diagbox ##1 ##2
8016 {
8017 \tl_gput_right:Ne \g_0@_pre_code_after_tl
8018 {
8019 \@@_actually_diagbox:nnnnnn
8020 { #1 }
8021 { #2 }
8022 { \int_use:N \1_@@_last_row_int }
8023 { \int_use:N \1_@@_last_col_int }
8024 { \exp_not:n { ##1 } }
8025 { \exp_not:n { ##2 } }

191

8026 }

8027 ¥

Let’s consider the following {NiceTabular}. Because of the instruction !{\hspace{lcm}} in the
preamble which increases the space between the columns (by adding, in fact, that space to the
previous column, that is to say the second column of the tabular), we will create two nodes relative
to the block: the node 1-1-block and the node 1-1-block-short.

\begin{NiceTabular}{cc!{\hspace{lcm}}c}

\Block{2-2}{our block} & & one \\
& & two \\
three & four & five \\
six & seven & eight \\
\end{NiceTabular}
We highlight the node 1-1-block We highlight the node 1-1-block-short
our block one our block one
two two
three four five three four five
six seven eight six seven eight

The construction of the node corresponding to the merged cells.

8028 \pgfpicture

8029 \pgfrememberpicturepositiononpagetrue

8030 \pgf@relevantforpicturesizefalse

8031 \@@_gpoint:n { row - #1 }

8032 \dim_set_eq:NN \1_tmpa_dim \pgf@y

8033 \@@_gpoint:n { col - #2 }

8034 \dim_set_eq:NN \1_tmpb_dim \pgfOx

8035 \@@_gpoint:n { row - \int_eval:n { \1_@@_last_row_int + 1 } }
8036 \dim_set_eq:NN \1_@@_tmpc_dim \pgfQy

8037 \@@_gpoint:n { col - \int_eval:n { \1_@@_last_col_int + 1 } }

8038 \dim_set_eq:NN \1_@@_tmpd_dim \pgf@x

We construct the node for the block with the name (#1-#2-block).
The function \@@_pgf_rect_node:nnnnn takes in as arguments the name of the node and the four
coordinates of two opposite corner points of the rectangle.

8039 \@@_pgf_rect_node:nnnnn

8040 { \@@_env: - #1 - #2 - block }

8041 \1_tmpb_dim \1_tmpa_dim \1_@@_tmpd_dim \1_@@_tmpc_dim
8042 \str_if_empty:NF \1_@@_block_name_str

8043 {

8044 \pgfnodealias

8045 { \@@_env: - \1_@@_block_name_str }

8046 { \@@_env: - #1 - #2 - block }

8047 \str_if_empty:NF \1_Q@_name_str

8048 {

8049 \pgfnodealias

8050 { \1_@@_name_str - \1_@@_block_name_str }
8051 { \@@_env: - #1 - #2 - block }

8052 }

8053 }

Now, we create the “short node” which, in general, will be used to put the label (that is to say the
content of the node). However, if one the keys L, C or R is used (that information is provided by the
boolean \1_@@_hpos_of_block_cap_bool), we don’t need to create that node since the normal node
is used to put the label.

8054 \bool_if:NF \1_@@_hpos_of_block_cap_bool
8055 {
8056 \dim_set_eq:NN \1_tmpb_dim \c_max_dim

192

The short node is constructed by taking into account the contents of the columns involved in at least
one cell of the block. That’s why we have to do a loop over the rows of the array.

8057 \int_step_inline:nnn { \1_Q@_first_row_int } { \g_0@@_row_total_int }

8058 {
We recall that, when a cell is empty, no (normal) node is created in that cell. That’s why we test the
existence of the node before using it.

8059 \cs_if_exist:cT

8060 { pgf @ sh @ ns @ \@Q@_env: - ##1 - #2 }

8061 {

8062 \seq_if_in:NnF \g_0@_multicolumn_cells_seq { ##1 - #2 }

8063 {

8064 \pgfpointanchor { \@@_env: - ##1 - #2 } { west }

8065 \dim_set:Nn \1_tmpb_dim { \dim_min:nn \1_tmpb_dim \pgf@x }
8066 T

8067 }

8068 }

If all the cells of the column were empty, \1_tmpb_dim has still the same value \c_max_dim. In that
case, you use for \1_tmpb_dim the value of the position of the vertical rule.

8069 \dim_compare:nNnT { \1_tmpb_dim } = { \c_max_dim }

8070 {

8071 \@@_gpoint:n { col - #2 }

8072 \dim_set_eq:NN \1_tmpb_dim \pgfOx

8073 }

8074 \dim_set:Nn \1_0@_tmpd_dim { - \c_max_dim }

8075 \int_step_inline:nnn { \1_@@_first_row_int } { \g_@@_row_total_int }
8076 {

8077 \cs_if_exist:cT

8078 { pgf @ sh @ ns @ \@@_env: - ##1 - \int_use:N \1_@@_last_col_int }
8079 {

8080 \seq_if_in:NnF \g_0@_multicolumn_cells_seq { ##1 - #2 }
8081 {

8082 \pgfpointanchor

8083 { \@@_env: - ##1 - \int_use:N \1_0@@_last_col_int }
8084 { east }

8085 \dim_set:Nn \1_0@_tmpd_dim

8086 { \dim_max:nn { \1_Q@_tmpd_dim } { \pgfeéx } }

8087 }

8089 }

8090 \dim_compare:nNnT { \1_0@_tmpd_dim } = { - \c_max_dim }

8091 {

8092 \@@_gpoint:n { col - \int_eval:n { \1_0@_last_col_int + 1 } }
8093 \dim_set_eq:NN \1_0@_tmpd_dim \pgf@x

8094 ¥

8005 \@Q@_pgf_rect_node:nnnnn

8096 { \@@_env: - #1 - #2 - block - short }

8097 \1_tmpb_dim \1_tmpa_dim \1_@@_tmpd_dim \1_@@_tmpc_dim

8098 }

If the creation of the “medium nodes” is required, we create a “medium node” for the block. The
function \@@_pgf_rect_node:nnn takes in as arguments the name of the node and two PGF points.

8099 \bool_if:NT \1_@@_medium_nodes_bool

8100 {

8101 \@@_pgf_rect_node:nnn

8102 { \@@_env: - #1 - #2 - block - medium }

8103 { \pgfpointanchor { \@@_env: - #1 - #2 - medium } { north~west } }
8104 {

8105 \pgfpointanchor

8106 { \@@_env:

8107 - \int_use:N \1_@@_last_row_int

8108 - \int_use:N \1_@@_last_col_int - medium
8109 }

193

8110 { south~east }
8112 }

8113 \endpgfpicture

\1_@@_ampersand_bool is raised when the content of the block actually contents an ampersand &.
8115 \bool_if:NTF \1_@@_ampersand_bool

8116 {

8117 \seq_set_split:Nnn \1_tmpa_seq { & } { #6 }

8118 \int_zero_new:N \1_0@_split_int

8119 \int_set:Nn \1_Q@@_split_int { \seq_count:N \1_tmpa_seq }

The following counters will be used to send information to \cellcolor if the user uses that command
in a subcell.

8120 \int_zero_new:N \1_@@_first_row_int

8121 \int_zero_new:N \1_@@_first_col_int

8122 \int_zero_new:N \1_@@_last_row_int

8123 \int_zero_new:N \1_@@_last_col_int

8124 \int_set:Nn \1_@@_first_row_int { #1 }

8125 \int_set:Nn \1_@@_first_col_int { #2 }

8126 \int_set:Nn \1_@@_last_row_int { #3 }

8127 \int_set:Nn \1_@@_last_col_int { #4 }

8128 \pgfpicture

8129 \pgfrememberpicturepositiononpagetrue

8130 \pgf@relevantforpicturesizefalse

8131 \@@_gpoint:n { row - #1 }

8132 \dim_set_eq:NN \1_@@_tmpc_dim \pgfQy

8133 \@@_gpoint:n { row - \int_eval:n { #3 + 1 } }
8134 \dim_set_eq:NN \1_0@_tmpd_dim \pgfQy

8135 \@@_gpoint:n { col - #2 }

8136 \dim_set_eq:NN \1_tmpa_dim \pgf@x

8137 \@@_gpoint:n { col - \int_eval:n { #4 + 1 } }
8138 \dim_set:Nn \1_tmpb_dim

8139 { (\pgfox - \1_tmpa_dim) / \int_use:N \1_@@_split_int }
8140 \bool_lazy_or:nnT

8141 { \1_@@_vlines_block_bool }

8142 { \str_if_eq_p:ee { \1_0@_vlines_clist } { all } }
8143 {

8144 \int_step_inline:nn { \1_@@_split_int - 1 }
8145 {

8146 \pgfpathmoveto

8147 {

8148 \pgfpoint

8149 { \1_tmpa_dim + ##1 \1_tmpb_dim }
8150 \1_0@_tmpc_dim

8151 }

8152 \pgfpathlineto

8153 {

8154 \pgfpoint

8155 { \1_tmpa_dim + ##1 \1_tmpb_dim }
8156 \1_0@_tmpd_dim

8157 }

8158 \CT@arc@

8150 \pgfsetlinewidth { 1.1 \arrayrulewidth }
8160 \pgfsetrectcap

8161 \pgfusepathgstroke

8162 }

8163 }

8164 \cs_set_eq:NN \cellcolor \@@_subcellcolor

8165 \int_zero_new:N \1_@@_split_i_int

8166 \str_if_eq:eeTF { \1_@@_vpos_block_str } { T }

194

8167 {

8168 \pgfpointanchor { \@@_env: - #1 - #2 - block } { north }
8169 \dim_set_eq:NN \1_@@_tmpc_dim \pgfQy

8170 }

8171 {

8172 \str_if_eq:eeTF { \1_@@_vpos_block_str } { B }

8173 {

8174 \pgfpointanchor { \@@_env: - #1 - #2 - block } { south }
8175 \dim_set_eq:NN \1_@@_tmpc_dim \pgfQy

8176 }

8177 {

8178 \bool_lazy_or:nnTF

8179 { \int_compare_p:nNn { #1 } = { #3 } }

8180 { \str_if_eq_p:ee { \1_0@@_vpos_block_str } { t } }
8181 {

8182 \@@_gpoint:n { row - #1 - base }

8183 \dim_set:Nn \1_0@_tmpc_dim { \pgf@y - 0.5 \arrayrulewidth }
8184 }

8185 {

8186 \str_if_eq:eeTF { \1_@@_vpos_block_str } { b }
8187 {

8188 \@@_gpoint:n { row - #3 - base }

8189 \dim_set:Nn \1_Q@_tmpc_dim { \pgf@y - 0.5 \arrayrulewidth }
8190 }

8191 {

8192 \@@_gpoint:n { #1 - #2 - block }

8103 \dim_set_eq:NN \1_@@_tmpc_dim \pgfQy

8194 }

8195 }

8196 }

8197 }

8198 \int_step_inline:nn { \1_@@_split_int }

8199 {

8200 \group_begin:

The counter \1_@@_split_i_int is only for the command \@@_subcellcolor.

8201 \int_set:Nn \1_0@_split_i_int { ##1 }

8202 \dim_set:Nn \col@sep

8203 { \bool_if:NTF \1_0@_tabular_bool { \tabcolsep } { \arraycolsep } }
8204 \pgftransformshift

8205 {

8206 \pgfpoint

8207 {

8208 \1_tmpa_dim + ##1 \1_tmpb_dim -
8209 \str_case:on \1_@@_hpos_block_str
8210 {

8211 1 { \1_tmpb_dim + \col@sep}
8212 c { 0.5 \l_tmpb_dim }

821 r { \col@sep }

8214 }

8215 }

8216 { \l_@@_tmpc_dim }

8217 }

8218 \pgfset { inner~sep = \c_zero_dim }

8219 \pgfnode

8220 { rectangle }

8221 {

8222 \str_if_eq:eeTF { \1_0@_vpos_block_str } { T }
8223 {

8224 \str_case:on \1_@@_hpos_block_str
8225 {

8226 1 { north~west }

8227 c { north }

8228 r { north~east }

195

8229 }

8230 }
8231 {
8232 \str_if_eq:eeTF { \1_0@_vpos_block_str } { B }
8233 {
8234 \str_case:on \1_0@_hpos_block_str
8235 {
8236 1 { south~west }
8237 c { south }
8238 r { south~east }
8239 }
8240 }
8241 {
8242 \bool_lazy_any:nTF
8243 {
8244 { \int_compare_p:nNn { #1 } = { #3 } }
8245 { \str_if_eq_p:ee { \1_@@_vpos_block_str } { t } }
8246 { \str_if_eq_p:ee { \1_0@_vpos_block_str } { b } }
8247 }
8248 {
8249 \str_case:on \1_@@_hpos_block_str
8250 {
8251 1 { base~west }
8252 c { base }
8253 r { base~east }
8254 }
8255 }
8256 {
8257 \str_case:on \1_@@_hpos_block_str
8258 {
8259 1 { west }
8260 ¢ { center }
8261 r { east }
8262 }
8263 }
8264 }
8265 ¥
8266 }
8267 { \seq_item:Nn \1_tmpa_seq { ##1 } ¥ { } { }
8268 \group_end:
8269 }
8270 \endpgfpicture
8271 }
Now the case where there is no ampersand & in the content of the block.
8272 {
8273 \bool_if:NTF \1_0@_p_block_bool
8274 {
When the final user has used the key p, we have to compute the width.
8275 \pgfpicture
8276 \pgfrememberpicturepositiononpagetrue
8277 \pgf@relevantforpicturesizefalse
8278 \bool_if:NTF \1_0@_hpos_of_block_cap_bool
8279 {
8280 \@@_gpoint:n { col - #2 }
8281 \dim_gset_eq:NN \g_tmpa_dim \pgf@x
8282 \@@_gpoint:n { col - \int_eval:n { \1_@@_last_col_int + 1 } }
8283 }
8284 {
8285 \pgfpointanchor { \@@_env: - #1 - #2 - block - short } { west }
8286 \dim_gset_eq:NN \g_tmpa_dim \pgfOx
8287 \pgfpointanchor { \@@_env: - #1 - #2 - block - short } { east }
8288 }

196

8289 \dim_gset:Nn \g_tmpb_dim { \pgf@x - \g_tmpa_dim }

8290 \endpgfpicture

8201 \hbox_set:Nn \1_@@_cell_box

8292 {

8293 \begin { minipage } [\str_lowercase:f \1_0@_vpos_block_str]
8204 { \g_tmpb_dim }

8295 \str_case:on \1_0@_hpos_block_str

8296 { ¢ \centering r \raggedleft 1 \raggedright j { } }
8207 #6

8208 \end { minipage }

8299 }

8300 }

8301 { \hbox_set:Nn \1_@@_cell_box { \set@color #6 } }

8302 \bool_if:NT \g_Q@_rotate_bool { \@@_rotate_cell_box: }

Now, we will put the label of the block. We recall that \1_@@_vpos_block_str is empty when the
user has not used a key for the vertical position of the block.

8303 \pgfpicture

8304 \pgfrememberpicturepositiononpagetrue

8305 \pgf@relevantforpicturesizefalse

8306 \bool_lazy_any:nTF

8307 {

8308 { \str_if_empty_p:N \1_0@_vpos_block_str }

8309 { \str_if_eq_p:ee { \1_@@_vpos_block_str } { ¢ } }

8310 { \str_if_eq_p:ee { \1_0@_vpos_block_str } { T } }

8311 { \str_if_eq_p:ee { \1_0@_vpos_block_str } { B } }

12 ¥

8313 {
If we are in the “first column”, we must put the block as if it was with the key r.

8314 \int_if_zero:nT { #2 } { \str_set_eq:NN \1_@@_hpos_block_str \c_@@_r_str }
If we are in the “last column”, we must put the block as if it was with the key 1.

8315 \bool_if:nT \g_00@_last_col_found_bool

8316 {

8317 \int_compare:nNnT { #2 } = { \g_0@_col_total_int }

8318 { \str_set_eq:NN \1_@@_hpos_block_str \c_@@_l_str }

8319 }

\1_tmpa_t1l will contain the anchor of the PGF node which will be used.

8320 \tl_set:Ne \1_tmpa_tl

8321 {

8322 \str_case:on \1_0@_vpos_block_str

8323 {
We recall that \1_@@_vpos_block_str is empty when the user has not used a key for the vertical
position of the block.

8324 { } {

8325 \str_case:on \1_0@_hpos_block_str
8326 {

8327 c { center }

8328 1 { west }

8329 r { east }

8330 j { center }

8331 }

8332 }

8333 C {

8334 \str_case:on \1_0@_hpos_block_str
8335 {

8336 c { center }

8337 1 { west }

8338 r { east }

‘‘‘‘‘ 39 j { center }

197

8340 }

8341

8342 }

8343 T {

8344 \str_case:on \1_@@_hpos_block_str
8345 {

8346 ¢ { north }

8347 1 { north~west }

8348 r { north~east }

8349 j { north }

8350 }

8351

8352 }

8353 B {

8354 \str_case:on \1_0@_hpos_block_str
8355 {

8356 c { south }

8357 1 { south~west }

8358 r { south~east }

8350 J { south }

8360 }

8361

8362 3

8363 }

8364 }

8365 \pgftransformshift

8366 {

8367 \pgfpointanchor

8368 {

8369 \@@_env: - #1 - #2 - block

8370 \bool_if:NF \1_0@_hpos_of_block_cap_bool { - short }
8371 }

8372 { \1_tmpa_t1 }

8373 }

8374 \pgfset { inner~sep = \c_zero_dim }

8375 \pgfnode

8376 { rectangle }

8377 { \l_tmpa_tl }

8378 { \box_use_drop:N \1_00@_cell _box } { } { }
8379 }

End of the case when \1_@@_vpos_block_str is equal to c, T or B. Now, the other cases.
8380 {

8381 \pgfextracty \1_tmpa_dim

8382 {

8383 \@@_gpoint:n

8384 {

8385 row - \str_if_eq:eeTF { \1_@@_vpos_block_str } { b } { #3 } { #1 }
8386 - base

8387 }

8388 }

8389 \dim_sub:Nn \1_tmpa_dim { 0.5 \arrayrulewidth }

We retrieve (in \pgf@x) the z-value of the center of the block.

8390 \pgfpointanchor

8391 {

8392 \@@_env: - #1 - #2 - block

8393 \bool_if:NF \1_@@_hpos_of_block_cap_bool { - short }
8394 }

8395 {

8396 \str_case:on \1_@@_hpos_block_str
8397 {

8398 c { center }

198

8399

8400

8402

8403

1 { west }
r { east }
j { center }
}
}

We put the label of the block which has been composed in \1_@@_cell_box.

8404

8405

8406

8408

8417

8418

8419

8420

8421

8422

8423

}

\cs_

\pgftransformshift { \pgfpoint \pgf@x \1_tmpa_dim }
\pgfset { inner~sep = \c_zero_dim }
\pgfnode
{ rectangle }
{
\str_case:on \1_0@_hpos_block_str
{
c { base }
1 { base~west }
r { base~east }
j { base }
}
}
{ \box_use_drop:N \1_0@_cell _box } { } { }
}

\endpgfpicture
\group_end:

generate_variant:Nn \@@_Block_v:nnnnnn { nn e e }

The following command adds the value of \1_@@_opacity_t1 (if not empty) to the specification of
color set in \1_@@_fill_t1 (the information of opacity is added in between square brackets before
the color itself).

8424

8425

8426

8427

8428

8429

8430

8431

8433

8434

8436

8437

8439

8440

\cs_new_protected:Npn \@@_add_opacity_to_fill:

{

\tl_if_empty:NF \1_@@_opacity_tl
{
\tl_if_head_eq_meaning:oNTF \1_@@_£fill_t1l [
{
\tl_set:Ne \1_@@_fill_tl
{
[opacity = \1_0@_opacity_tl ,
\tl_tail:o \1_e@@_fill_tl
}
}
{
\tl_set:Ne \1_@@_fill_tl
{ [opacity = \1_@@_opacity_tl] { \exp_not:o \1_@@_fill_t1 } }

The first argument of \@@_stroke_block:nnn is a list of options for the rectangle that you will stroke.
The second argument is the upper-left cell of the block (with, as usual, the syntax i-j) and the third
is the last cell of the block (with the same syntax).

sz \Ccs_new_protected:Npn \@@_stroke_block:nnn #1 #2 #3

8443

8444

8445

8446

8447

8449

8450

{

\group_begin:

\tl_clear:N \1_@@_draw_tl

\dim_set_eq:NN \1_@@_line_width_dim \arrayrulewidth
\keys_set_known:nn { nicematrix / BlockStroke } { #1 }
\pgfpicture

\pgfrememberpicturepositiononpagetrue
\pgf@relevantforpicturesizefalse

199

8451 \tl_if_empty:NF \1_@@_draw_tl

8452 {
If the user has used the key color of the command \Block without value, the color fixed by
\arrayrulecolor is used.

8453 \tl_if_eq:NnTF \1_0@_draw_tl { default }

8454 { \CT@arce }

8455 { \@@_color:o \1_@@_draw_t1 }

8456 }

8457 \pgfsetcornersarced

8458 {

8450 \pgfpoint

8460 { \1_0@_rounded_corners_dim }

8461 { \1_@@_rounded_corners_dim }

8462 ¥

8463 \@@_cut_on_hyphen:w #2 \g_stop

8464 \int_compare:nNnF { \1_tmpa_tl } > { \c@iRow }

8465 {

8466 \int_compare:nNnF { \1_tmpb_tl } > { \c@jCol }

8467 {

8468 \@@_gpoint:n { row - \1_tmpa_tl }

8469 \dim_set_eq:NN \1_tmpb_dim \pgfQy

8470 \@@_gpoint:n { col - \1_tmpb_tl }

8471 \dim_set_eq:NN \1_0@_tmpc_dim \pgf@x

8472 \@@_cut_on_hyphen:w #3 \q_stop

8473 \int_compare:nNnT { \1_tmpa_tl } > { \c@iRow }

8474 { \tl_set:No \1_tmpa_tl { \int_use:N \c@iRow } }
8475 \int_compare:nNnT { \1_tmpb_tl } > { \c@jCol }

8476 { \tl_set:No \1_tmpb_tl { \int_use:N \c@jCol } }
8477 \@@_gpoint:n { row - \int_eval:n { \1_tmpa_tl + 1 } }
8478 \dim_set_eq:NN \1_tmpa_dim \pgf@y

8479 \@@_gpoint:n { col - \int_eval:n { \1_tmpb_tl + 1 } }
8480 \dim_set_eq:NN \1_0@_tmpd_dim \pgf@x

8481 \pgfsetlinewidth { 1.1 \1_Q@@_line_width_dim }

8482 \pgfpathrectanglecorners

8483 { \pgfpoint \1_@0@_tmpc_dim \1_tmpb_dim }

8484 { \pgfpoint \1_@@_tmpd_dim \1_tmpa_dim }

8485 \dim_compare:nNnTF { \1_@@_rounded_corners_dim } = { \c_zero_dim }
8486 { \pgfusepathgstroke }

8487 { \pgfusepath { stroke } }

8488 }

8489 }

8490 \endpgfpicture

8491 \group_end:

8492 }

Here is the set of keys for the command \@@_stroke_block:nnn.

3103 \keys_define:nn { nicematrix / BlockStroke }

8494 {

8495 color .tl_set:N = \1_@@_draw_t1 ,

8496 draw .code:n =

8497 \tl_if_empty:eF { #1 } { \tl_set:Nn \1_@Q@_draw_tl { #1 } } ,
8498 draw .default:n = default ,

8499 line-width .dim_set:N = \1_@@_line_width_dim ,

8500 rounded-corners .dim_set:N = \1_@@_rounded_corners_dim ,

8501 rounded-corners .default:n = 4 pt

8502 }

The first argument of \@@_vlines_block:nnn is a list of options for the rules that we will draw. The
second argument is the upper-left cell of the block (with, as usual, the syntax i-j) and the third is
the last cell of the block (with the same syntax).

s503 \cs_new_protected:Npn \@@_vlines_block:nnn #1 #2 #3
8504 {

200

8505 \group_begin:

8506 \dim_set_eq:NN \1_0@_line_width_dim \arrayrulewidth

8507 \keys_set_known:nn { nicematrix / BlockBorders } { #1 }
8508 \dim_set_eq:NN \arrayrulewidth \1_@@_line_width_dim

8500 \@@_cut_on_hyphen:w #2 \qg_stop

8510 \tl_set_eq:NN \1_@@_tmpc_tl \1_tmpa_tl

8511 \tl_set_eq:NN \1_@@_tmpd_t1l \1_tmpb_tl

8512 \@@_cut_on_hyphen:w #3 \qg_stop

8513 \tl_set:Ne \1_tmpa_tl { \int_eval:n { \1l_tmpa_tl + 1 } }
8514 \tl_set:Ne \1_tmpb_tl { \int_eval:n { \1_tmpb_tl + 1 } }
8515 \int_step_inline:nnn { \1_@@_tmpd_tl } { \1_tmpb_t1l }
8516 {

8517 \use:e

8518 {

8519 \@@_vline:n

8520 {

8521 position = ##1 ,

8522 start = \1_@@_tmpc_tl ,

8523 end = \int_eval:n { \1_tmpa_tl - 1} ,

8524 total-width = \dim_use:N \1_@@_line_width_dim
8525 }

8526 }

8527 }

8528 \group_end:

8529 }

s530 \cs_new_protected:Npn \@@_hlines_block:nnn #1 #2 #3

8531 {

8532 \group_begin:

8533 \dim_set_eq:NN \1_@@_line_width_dim \arrayrulewidth

8534 \keys_set_known:nn { nicematrix / BlockBorders } { #1 }
8535 \dim_set_eq:NN \arrayrulewidth \1_Q@_line_width_dim

8536 \@@_cut_on_hyphen:w #2 \qg_stop

8537 \tl_set_eq:NN \1_@@_tmpc_tl \1_tmpa_tl

8538 \tl_set_eq:NN \1_@@_tmpd_tl \1_tmpb_tl

8539 \@@_cut_on_hyphen:w #3 \qg_stop

8540 \tl_set:Ne \1_tmpa_tl { \int_eval:n { \1_tmpa_tl + 1 } }
8541 \tl_set:Ne \1_tmpb_tl { \int_eval:n { \1_tmpb_tl + 1 } }
8542 \int_step_inline:nnn { \1_Q@_tmpc_t1l } { \1_tmpa_tl }
8543 {

8544 \use e

8545 {

8546 \@@_hline:n

8547 {

8548 position = ##1 ,

8549 start = \1_@@_tmpd_tl ,

8550 end = \int_eval:n { \1_tmpb_tl - 1 } ,

8551 total-width = \dim_use:N \1_@@_line_width_dim
8552 }

8553 }

8554 }

8555 \group_end:

8556 }

The first argument of \@@_stroke_borders_block:nnn is a list of options for the borders that you
will stroke. The second argument is the upper-left cell of the block (with, as usual, the syntax i-j)
and the third is the last cell of the block (with the same syntax).

557 \cs_new_protected:Npn \Q@@_stroke_borders_block:nnn #1 #2 #3

8558 {

8559 \dim_set_eq:NN \1_0@_line_width_dim \arrayrulewidth

8560 \keys_set_known:nn { nicematrix / BlockBorders } { #1 }

8561 \dim_compare:nNnTF { \1_@@_rounded_corners_dim } > { \c_zero_dim }
8562 { \@@_error:n { borders~forbidden } }

201

8564 \tl_clear_new:N \1_@@_borders_tikz_t1

8565 \keys_set:no

8566 { nicematrix / OnlyForTikzInBorders }

8567 \1_@@_borders_clist

8568 \@@_cut_on_hyphen:w #2 \g_stop

8569 \tl_set_eq:NN \1_@@_tmpc_tl \1_tmpa_tl

8570 \tl_set_eq:NN \1_@@_tmpd_t1l \1_tmpb_tl

8571 \@@_cut_on_hyphen:w #3 \g_stop

8572 \tl_set:Ne \1_tmpa_tl { \int_eval:n { \1_tmpa_tl + 1 } }
8573 \tl_set:Ne \1_tmpb_tl { \int_eval:n { \1_tmpb_tl + 1 } }
8574 \@@_stroke_borders_block_i:

8575 }

8576 3

s577 \hook_gput_code:nnn { begindocument } { . }

8578 {

8579 \cs_new_protected:Npe \@@_stroke_borders_block_i:
8580 {

8581 \c_00_pgfortikzpicture_tl

8582 \@@_stroke_borders_block_ii:

8583 \c_00_endpgfortikzpicture_tl

8584 }

8585 }

sss6 \CS_new_protected:Npn \@Q_stroke_borders_block_ii:
8588 \pgfrememberpicturepositiononpagetrue

8589 \pgf@relevantforpicturesizefalse

8590 \CTQarc@

-~ \pgfsetlinewidth { 1.1 \1_@0_line_width_dim }

8592 \clist_if_in:NnT \1_Q@_borders_clist { right }
8503 { \@@_stroke_vertical:n \1_tmpb_tl }

8504 \clist_if_in:NnT \1_@@_borders_clist { left }

8595 { \@@_stroke_vertical:n \1_Q@@_tmpd_tl }

8506 \clist_if_in:NnT \1_@@_borders_clist { bottom }
8507 { \@@_stroke_horizontal:n \1_tmpa_tl }

8598 \clist_if_in:NnT \1_@@_borders_clist { top }

8509 { \@@_stroke_horizontal:n \1_Q@_tmpc_tl }

8600 }

se01 \keys_define:nn { nicematrix / OnlyForTikzInBorders }
8602 {

8603 tikz .code:n =

8604 \cs_if_exist:NTF \tikzpicture

8605 { \tl_set:Nn \1_@@_borders_tikz_tl1 { #1 } }
8606 { \@@_error:n { tikz~in~borders~without~tikz } } ,
8607 tikz .value_required:n = true ,

8608 top .code:n = ,

8609 bottom .code:n = ,

8610 left .code:n = ,

8611 right .code:n = ,

8612 unknown .code:n = \@@_error:n { bad~border }

8613 }

The following command is used to stroke the left border and the right border. The argument #1 is
the number of column (in the sense of the col node).

s614 \cs_new_protected:Npn \Q@Q_stroke_vertical:n #1

8615 {

8616 \@@_gpoint:n \1_00_tmpc_tl

8617 \dim_set:Nn \1_tmpb_dim { \pgf@y + 0.5 \1_@@_line_width_dim }
8618 \@@_gpoint:n \1_tmpa_tl

8619 \dim_set:Nn \1_@@_tmpc_dim { \pgf@y + 0.5 \1_@@_line_width_dim }
8620 \@@_gpoint:n { #1 }

8621 \tl_if_empty:NTF \1_@@_borders_tikz_tl

202

8622 {

8623 \pgfpathmoveto { \pgfpoint \pgf@x \1_tmpb_dim }

8624 \pgfpathlineto { \pgfpoint \pgf@x \1_0@_tmpc_dim }

8625 \pgfusepathgstroke

8626 }

8627 {

8628 \use:e { \exp_not:N \draw [\1_@@_borders_tikz_tl] }

8629 (\pgf@x , \1_tmpb_dim) -- (\pgf@x , \1_@@_tmpc_dim) ;
8630 }

8631 }

The following command is used to stroke the top border and the bottom border. The argument #1
is the number of row (in the sense of the row node).

s632 \cs_new_protected:Npn \@@_stroke_horizontal:n #1

8633 {

8634 \@@_gpoint:n \1_0@@_tmpd_tl

8635 \clist_if_in:NnTF \1_@@_borders_clist { left }

8636 { \dim_set:Nn \1_tmpa_dim { \pgf@x - 0.5 \1_@@_line_width_dim } }
8637 { \dim_set:Nn \1_tmpa_dim { \pgf@x + 0.5 \1_0@_line_width_dim } }
8638 \@@_gpoint:n \1_tmpb_tl

8639 \dim_set:Nn \1_tmpb_dim { \pgf@x + 0.5 \1_@@_line_width_dim }

8640 \@@_qpoint:n { #1 }

8641 \tl_if_empty:NTF \1_Q@_borders_tikz_tl

8642 {

8643 \pgfpathmoveto { \pgfpoint \1_tmpa_dim \pgf@y }

8644 \pgfpathlineto { \pgfpoint \1_tmpb_dim \pgf@y }

8645 \pgfusepathgstroke

8646

8647 {

8648 \use:e { \exp_not:N \draw [\1_@@_borders_tikz_tl] }

8649 (\l_tmpa_dim , \pgf@y) -- (\1_tmpb_dim , \pgf@y) ;

8650 }

8651 3

Here is the set of keys for the command \@@_stroke_borders_block:nnn.

s6s2 \keys_define:nn { nicematrix / BlockBorders }

8653 {

8654 borders .clist_set:N = \1_@@_borders_clist ,

8655 rounded-corners .dim_set:N = \1_@@_rounded_corners_dim ,
8656 rounded-corners .default:n = 4 pt ,

8657 line-width .dim_set:N = \1_@@_line_width_dim

8658 }

The following command will be used if the key tikz has been used for the command \Block.

#1 is a list of lists of TikZ keys used with the path.

Example: {{offset=1pt,draw,red},{offset=2pt,draw,blue}}

which arises from a command such as :
\Block[tikz={offset=1pt,draw,red},tikz={offset=2pt,draw,blue}] {2-2}{}

The arguments #2 and #3 are the coordinates of the first cell and #4 and #5 the coordinates of the
last cell of the block.

s6s0 \CS_new_protected:Npn \@@_block_tikz:nnnnn #1 #2 #3 #4 #5

8660 {
8661 \begin { tikzpicture }
8662 \@@_clip_with_rounded_corners:

We use clist_map_inline:nn because #5 is a list of lists.

8663 \clist_map_inline:nn { #1 }

8664 {

203

We extract the key offset which is not a key of TikZ but a key added by nicematrix.

8665 \keys_set_known:nnN { nicematrix / SpecialOffset } { ##1 } \1_tmpa_tl
8666 \use:e { \exp_not:N \path [\1_tmpa_tl] }

8667 (

8668 [

8669 xshift = \dim_use:N \1_@@_offset_dim ,

8670 yshift = - \dim_use:N \1_Q@_offset_dim

8671]

8672 #2 -| #3

8673)

8674 rectangle

8675 (

8676 [

8677 xshift = - \dim_use:N \1_0@_offset_dim ,

8678 yshift = \dim_use:N \1_00@_offset_dim

8679]

8680 \int_eval:n { #4 + 1 } -| \int_eval:n { #5 + 1 }
8681)

8682 }

8683 \end { tikzpicture }

8684 3

ss5 \cS_generate_variant:Nn \@@_block_tikz:nnnnn { o }

s6s6 \keys_define:nn { nicematrix / SpecialOffset }
gs7 { offset .dim_set:N = \1_@@_offset_dim }

In some circonstancies, we want to nullify the command \Block. In order to reach that goal, we will
link the command \Block to the following command \@@_NullBlock: which has the same syntax as
the standard command \Block but which is no-op.

s6se \CS_new_protected:Npn \@@_NullBlock:

g0 { \@@_collect_options:n { \@@_NullBlock_i: } }

s600 \NewExpandableDocumentCommand \@@_NullBlock_i: { mm D < > { } +m }

8691 {1}

The following command will be linked to \cellcolor in the sub-cells of a block which contains
ampersands (&). Of course, &-in-blocks must be in force.

3602 \NewDocumentCommand \@@_subcellcolor { 0 { } m }

8693 {

8694 \tl_gput_right:Ne \g_0@_pre_code_before_tl

8695 {
We must not expand the color (#2) because the color may contain the token ! which may be activated
by some packages (ex.: babel with the option french on latex and pdflatex).

8696 \@@_subcellcolor:nnnnnnn

8697 {

8698 \tl_if_blank:nTF { #1 }

8699 { { \exp_not:n { #2 } } }

8700 { [#1] { \exp_not:n { #2 } } }

8701 }

8702 { \int_use:N \1_@@_first_row_int } % first row of the block
8703 { \int_use:N \1_@@_first_col_int } % first column of the block
8704 { \int_use:N \1_@@_last_row_int } % last row of the block
8705 { \int_use:N \1_@@_last_col_int } 7% last column of the block
8706 { \int_use:N \1_@@_split_int }

8707 { \int_use:N \1_@@_split_i_int }

8708 }

8700 \ignorespaces

8710 }

s711 \cs_new_protected:Npn \Q@Q_subcellcolor:nnnnnnn #1 #2 #3 #4 #5 #6 #7
8712 {
8713 \@@_color_opacity: #1

204

8714 \pgfpicture

8715 \pgf@relevantforpicturesizefalse

8716 \@@_gpoint:n { col - #3 }

8717 \dim_set_eq:NN \1_0@_tmpc_dim \pgf@x

8718 \@@_gpoint:n { col - \int_eval:n { #5 + 1 } }

8719 \dim_set:Nn \1_tmpa_dim { (\pgf@x - \1_Q@_tmpc_dim) / #6 }
8720 \dim_set:Nn \1_tmpb_dim { \1_@@_tmpc_dim + #7 \1_tmpa_dim }
8721 \@@_gpoint:n { row - \int_eval:n { #4 + 1 } }

8722 \dim_set_eq:NN \1_@@_tmpc_dim \pgfQy

8723 \@@_qgpoint:n { row - #2 }

8724 \pgfpathrectanglecorners

8725 { \pgfpoint { \1_tmpb_dim - \1_tmpa_dim } { \1_@@_tmpc_dim } }
8726 { \pgfpoint { \1_tmpb_dim } { \pgfey } }

8727 \pgfusepathqfill

8728 \endpgfpicture

8729 T

27 How to draw the dotted lines transparently

s730 \cs_set_protected:Npn \Q@@_renew_matrix:

g {

8732 \RenewDocumentEnvironment { pmatrix } { }
8733 { \pNiceMatrix }

8734 { \endpNiceMatrix }

8735 \RenewDocumentEnvironment { vmatrix } { }
8736 { \vNiceMatrix }

8737 { \endvNiceMatrix }

8738 \RenewDocumentEnvironment { Vmatrix } { }
8739 { \VNiceMatrix }

8740 { \endVNiceMatrix }

8741 \RenewDocumentEnvironment { bmatrix } { }
8742 { \bNiceMatrix }

8743 { \endbNiceMatrix }

8744 \RenewDocumentEnvironment { Bmatrix } { }
8745 { \BNiceMatrix }

8746 { \endBNiceMatrix }

747 }

28 Automatic arrays

We will extract some keys and pass the other keys to the environment {NiceArrayWithDelims}.

s74s \keys_define:nn { nicematrix / Auto }

8749 {

8750 columns-type .tl_set:N = \1_Q@_columns_type_tl ,

8751 columns-type .value_required:n = true ,

8752 1 .meta:n = { columns-type =1 } ,

8753 r .meta:n = { columns-type = r } ,

8754 ¢ .meta:n = { columns-type = c } ,

8755 delimiters / color .tl_set:N = \1_@@_delimiters_color_tl ,

8756 delimiters / color .value_required:n = true ,

8757 delimiters / max-width .bool_set:N = \1_Q@_delimiters_max_width_bool ,
8758 delimiters / max-width .default:n = true ,

8750 delimiters .code:n = \keys_set:nn { nicematrix / delimiters } { #1 } ,
8760 delimiters .value_required:n = true ,

8761 rounded-corners .dim_set:N = \1_@@_tab_rounded_corners_dim ,

8762 rounded-corners .default:n = 4 pt

8763 }

205

576« \NewDocumentCommand \AutoNiceMatrixWithDelims
ees {mmO {2} >{ \SplitArgument { 1 } { -3} Im0{}Im'!O0{}}
s766 { \@@_auto_nice_matrix:nnnnnn { #1 } { #2 } #4 { #6 } { #3 , #5 , #7 1} }

s7e7 \cs_new_protected:Npn \Q@O_auto_nice_matrix:nnnnnn #1 #2 #3 #4 #5 #6
8768 {

The group is for the protection of the keys.

8760 \group_begin:

8770 \keys_set_known:nnN { nicematrix / Auto } { #6 } \1_tmpa_tl
8771 \use:e

8772 {

8773 \exp_not:N \begin { NiceArrayWithDelims } { #1 } { #2 }
8774 {*{ #4 } { \exp_not:o \1_0@_columns_type_tl } }

8775 [\exp_not:o \1_tmpa_tl]

8776 }

8777 \int_if_zero:nT { \1_@@_first_row_int }

8778 {

8779 \int_if_zero:nT { \1_@@_first_col_int } { & }

8780 \prg_replicate:nn { #4 - 1 } { & }

8781 \int_compare:nNnT { \1_0@_last_col_int } > { -1 } { & } \\
8782 }

8783 \prg_replicate:nn { #3 }

8784

8785 \int_if_zero:nT { \1_@@_first_col_int } { & }

We put { } before #6 to avoid a hasty expansion of a potential \arabic{iRow} at the beginning of
the row which would result in an incorrect value of that iRow (since iRow is incremented in the first
cell of the row of the \halign).

8786 \prg_replicate:nn { #4 - 1 } { { } #5 & } #5

8787 \int_compare:nNnT { \1_0@_last_col_int } > { -1 } { & } \\
8788 }

8789 \int_compare:nNnT { \1_@@_last_row_int } > { -2 }

8790 {

8791 \int_if_zero:nT { \1_@@_first _col_int } { & }

8792 \prg_replicate:nn { #4 - 1 } { & }

8703 \int_compare:nNnT { \1_0@_last_col_int } > { -1 } { & } \\
8794 }

8795 \end { NiceArrayWithDelims }

8796 \group_end:

8797 }

s79s \cs_set_protected:Npn \Q@@_define_com:NNN #1 #2 #3

8799 {

8800 \cs_set_protected:cpn { #1 AutoNiceMatrix }

8801 {

8802 \bool_gset_true:N \g_0@_delims_bool

8803 \str_gset:Ne \g_0@_name_env_str { #1 AutoNiceMatrix }
8804 \AutoNiceMatrixWithDelims { #2 } { #3 }

8805 }

8806 }

We define also a command \AutoNiceMatrix similar to the environment {NiceMatrix}.
ss07 \NewDocumentCommand \AutoNiceMatrix { 0O { }m O {3} m ! 0{ 2} }

8808 {

8809 \group_begin:

8810 \bool_gset_false:N \g_0@_delims_bool

8811 \AutoNiceMatrixWithDelims . . { #2 } { #4 } [#1 , #3 , #5]
8812 \group_end:

8813 }

206

29 The redefinition of the command \dotfill

ss14 \cs_set_eq:NN \@@_old_dotfill: \dotfill
ss15 \cs_new_protected:Npn \@@_dotfill:
8816 {

First, we insert \@@_dotfill (which is the saved version of \dotfill) in case of use of \dotfill
“internally” in the cell (e.g. \hbox to lcm {\dotfilll}).

8817 \@@_old_dotfill:

8818 \tl_gput_right:Nn \g_00_cell_after_hook_tl \@@_dotfill_i:

8819 }
Now, if the box if not empty (unfornately, we can’t actually test whether the box is empty and that’s
why we only consider it’s width), we insert \@@_dotfill (which is the saved version of \dotfill) in
the cell of the array, and it will extend, since it is no longer in \1_@@_cell_box.

s20 \cs_new_protected:Npn \@@_dotfill_i:

8821 {

8822 \dim_compare:nNnT { \box_wd:N \1_0@_cell_box } = { \c_zero_dim }
8823 { \@@_old_dotfill: }

8824 T

30 The command \diagbox

The command \diagbox will be linked to \diagbox:nn in the environments of nicematrix. However,
there are also redefinitions of \diagbox in other circonstancies.

5325 \cs_new_protected:Npn \@Q@_diagbox:nn #1 #2

8826 {

8827 \tl_gput_right:Ne \g_0@_pre_code_after_tl
8828 {

8829 \@@_actually_diagbox:nnnnnn

8830 { \int_use:N \c@iRow }

8831 { \int_use:N \c@jCol }

8832 { \int_use:N \c@iRow }

8833 { \int_use:N \c@jCol }

\g_0@_row_style_tl contains several instructions of the form:
\@@_if_row_less_than:nn { number } { instructions }
The command \@@_if_row_less:nn is fully expandable and, thus, the instructions will be inserted
in the \g_0@_pre_code_after_tl only if \diagbox is used in a row which is the scope of that chunk
of instructions.
8834 { \g_00@_row_style_tl \exp_not:n { #1
8835 { \g_0@_row_style_tl \exp_not:n { #2
8836 }
We put the cell with \diagbox in the sequence \g_@@_pos_of_blocks_seq because a cell with
\diagbox must be considered as non empty by the key corners.

}}
T}

8837 \seq_gput_right:Ne \g_0Q@_pos_of_blocks_seq
8838 {
8839 { \int_use:N \c@iRow }
8840 { \int_use:N \c@jCol }
8841 { \int_use:N \c@iRow }
8842 { \int_use:N \c@jCol }
The last argument is for the name of the block.
8843 { }
8844 }
8845 }

207

The command \diagbox is also redefined locally when we draw a block.

The first four arguments of \@@_actually_diagbox:nnnnnn correspond to the rectangle (=block) to
slash (we recall that it’s possible to use \diagbox in a \Block). The other two are the elements to
draw below and above the diagonal line.

ss6 \Cs_new_protected:Npn \@@_actually_diagbox:nnnnnn #1 #2 #3 #4 #5 #6

8847 {

8848 \pgfpicture

8849 \pgf@relevantforpicturesizefalse

8850 \pgfrememberpicturepositiononpagetrue

8851 \@@_gpoint:n { row - #1 }

8852 \dim_set_eq:NN \1_tmpa_dim \pgf@y

8853 \@@_gpoint:n { col - #2 }

8854 \dim_set_eq:NN \1_tmpb_dim \pgfOx

8855 \pgfpathmoveto { \pgfpoint \1_tmpb_dim \1_tmpa_dim }
8856 \@@_qgpoint:n { row - \int_eval:n { #3 + 1 } }

8857 \dim_set_eq:NN \1_0@_tmpc_dim \pgf@y

8858 \@@_gpoint:n { col - \int_eval:n { #4 + 1 } }

8859 \dim_set_eq:NN \1_0@_tmpd_dim \pgf@x

8860 \pgfpathlineto { \pgfpoint \1_Q@@_tmpd_dim \1_@@_tmpc_dim }
8861 {

The command \CT@arc@ is a command of colortbl which sets the color of the rules in the array. The
package nicematrix uses it even if colortbl is not loaded.

8862 \CTQarc@
8863 \pgfsetroundcap
8864 \pgfusepathgstroke
8865 }
8866 \pgfset { inner~sep = 1 pt }
8867 \pgfscope
8868 \pgftransformshift { \pgfpoint \1_tmpb_dim \1_Q@_tmpc_dim }
8860 \pgfnode { rectangle } { south~west }
8870 {
8871 \begin { minipage } { 20 cm }
The \scan_stop: avoids an error in math mode when the argument #5 is empty.
8872 \@@_math_toggle: \scan_stop: #5 \Q@_math_toggle:
8873 \end { minipage }
8874 }
8875 {}
8876 { }
8877 \endpgfscope
8878 \pgftransformshift { \pgfpoint \1_@@_tmpd_dim \1_tmpa_dim }
8879 \pgfnode { rectangle } { north~east }
8880 {
8881 \begin { minipage } { 20 cm }
8882 \raggedleft
8883 \@@_math_toggle: \scan_stop: #6 \Q@@_math_toggle:
888 \end { minipage }
8886 { }
8388 \endpgfpicture
8889 }

31 The keyword \CodeAfter

In fact, in this subsection, we define the user command \CodeAfter for the case of the “normal
syntax”. For the case of “light-syntax”, see the definition of the environment {@@-1ight-syntax} on
p- 90.

208

In the environments of nicematrix, \CodeAfter will be linked to \@@_CodeAfter:. That macro must
not be protected since it begins with \omit.

ss00 \cs_new:Npn \@@_CodeAfter: { \omit \@Q_CodeAfter_ii:n }
However, in each cell of the environment, the command \CodeAfter will be linked to the following
command \@@_CodeAfter_ii:n which begins with \\.

501 \cs_new_protected:Npn \@@_CodeAfter_i: { \\ \omit \@@_CodeAfter_ii:n }

We have to catch everything until the end of the current environment (of nicematrix). First, we go
until the next command \end.

2302 \cs_new_protected:Npn \@@_CodeAfter_ii:n #1 \end

8893 {

8894 \tl_gput_right:Nn \g_nicematrix_code_after_tl { #1 }
8895 \@@_CodeAfter_iv:n

8896 }

We catch the argument of the command \end (in #1).
5507 \cs_new_protected:Npn \@@_CodeAfter_iv:n #1
8898 {
If this is really the end of the current environment (of nicematrix), we put back the command \end
and its argument in the TeX flow.
8899 \str_if_eq:eeTF { \@currenvir } { #1 }
8900 { \end { #1 } }
If this is not the \end we are looking for, we put those tokens in \g_nicematrix_code_after_tl

and we go on searching for the next command \end with a recursive call to the command
\@@_CodeAfter:n.

8901 {

8902 \tl_gput_right:Nn \g_nicematrix_code_after_tl { \end { #1 } }
8003 \@@_CodeAfter_ii:n

8904 }

8905 }

32 The delimiters in the preamble

The command \@@_delimiter:nnn will be used to draw delimiters inside the matrix when delimiters
are specified in the preamble of the array. It does not concern the exterior delimiters added by
{NiceArrayWithDelims} (and {pNiceArray}, {pNiceMatrix}, etc.).

A delimiter in the preamble of the array will write an instruction \@@_delimiter:nnn in the
\g_0@_pre_code_after_tl (and also potentially add instructions in the preamble provided to \array
in order to add space between columns).

The first argument is the type of delimiter ((, [, \{,),] or \}). The second argument is the number
of column. The third argument is a boolean equal to \c_true_bool (resp. \c_false_true) when
the delimiter must be put on the left (resp. right) side.

so0s \CS_new_protected:Npn \@@_delimiter:nnn #1 #2 #3

soor {

8908 \pgfpicture

8909 \pgfrememberpicturepositiononpagetrue
8910 \pgf@relevantforpicturesizefalse

\1_0@@_y_initial_dimand \1_@@_y_final_dim will be the y-values of the extremities of the delimiter
we will have to construct.

8911 \@@_gpoint:n { row - 1 }

8912 \dim_set_eq:NN \1_Q@_y_initial_dim \pgf@y

8913 \@@_gpoint:n { row - \int_eval:n { \c@iRow + 1 } }
8014 \dim_set_eq:NN \1_@@_y_final_dim \pgf@y

209

We will compute in \1_tmpa_dim the z-value where we will have to put our delimiter (on the left
side or on the right side).

8915 \bool_if:nTF { #3 }
8916 { \dim_set_eq:NN \1_tmpa_dim \c_max_dim }
8017 { \dim_set:Nn \1_tmpa_dim { - \c_max_dim } }
8018 \int_step_inline:nnn { \1_0@_first_row_int } { \g_Q@_row_total_int }
8919 {
8920 \cs_if_exist:cT
8921 { pgf @ sh @ ns @ \@Q@_env: - ##1 - #2 }
8922 {
8923 \pgfpointanchor
8024 { \@@_env: - ##1 - #2 }
8925 { \bool_if:nTF { #3 } { west } { east } }
8026 \dim_set:Nn \1_tmpa_dim
8927 {
8028 \bool_if:nTF { #3 }
8929 { \dim_min:nn }
8930 { \dim_max:nn }
8931 \1_tmpa_dim
8032 { \ng@X }
8933 }
8934 }
8935 }
Now we can put the delimiter with a node of PGF.
8936 \pgfset { inner~sep = \c_zero_dim }
8937 \dim_zero:N \nulldelimiterspace
8938 \pgftransformshift
8939 {
8940 \pgfpoint
8941 { \1_tmpa_dim }
8042 { (\1_@0_y_initial_dim + \1_@@_y_final_dim + \arrayrulewidth) / 2 }
8043 }
8044 \pgfnode
8945 { rectangle }
8946 { \bool_if:nTF { #3 } { east } { west } }
8947 {
Here is the content of the PGF node, that is to say the delimiter, constructed with its right size.
8948 \nullfont
8949 $%$
8950 \@@_color:o \1_@@_delimiters_color_tl
8051 \bool_if:nTF { #3 } { \left #1 } { \left . }
8952 \vcenter
8953 {
8954 \nullfont
8955 \hrule \@height
8956 \dim_eval:n { \1_@@_y_initial_dim - \1_@@_y_final_dim }
8057 \@depth \c_zero_dim
8058 \@width \c_zero_dim
8959 }
8060 \bool_if:nTF { #3 } { \right . } { \right #1 }
8961 $ % $
8962 ¥
8963 {3}
8964 {3}
8965 \endpgfpicture
8966 }

33 The command \SubMatrix

210

2067 \keys_define:nn { nicematrix / sub-matrix }

8968 {

8969 extra-height .dim_set:N = \1_Q@_submatrix_extra_height_dim ,
8970 extra-height .value_required:n = true ,

8971 left-xshift .dim_set:N = \1_@@_submatrix_left_xshift_dim ,
8972 left-xshift .value_required:n = true ,

8973 right-xshift .dim_set:N = \1_0@_submatrix_right_xshift_dim ,
8974 right-xshift .value_required:n = true ,

8975 xshift .meta:n = { left-xshift = #1, right-xshift = #1 } ,
8976 xshift .value_required:n = true ,

8977 delimiters / color .tl_set:N = \1_@@_delimiters_color_tl ,
8978 delimiters / color .value_required:n = true ,

8979 slim .bool_set:N = \1_@@_submatrix_slim_bool ,

8980 slim .default:n = true ,

8981 hlines .clist_set:N = \1_@@_submatrix_hlines_clist ,

8982 hlines .default:n = all ,

8983 vlines .clist_set:N = \1_0@@_submatrix_vlines_clist ,

8984 vlines .default:n = all ,

8985 hvlines .meta:n = { hlines, vlines } ,

8986 hvlines .value_forbidden:n = true

8987 }

sose \keys_define:nn { nicematrix }

8989 {

8990 SubMatrix .inherit:n = nicematrix / sub-matrix ,

8991 NiceArray / sub-matrix .inherit:n = nicematrix / sub-matrix ,
8992 pNiceArray / sub-matrix .inherit:n = nicematrix / sub-matrix ,
8993 NiceMatrixOptions / sub-matrix .inherit:n = nicematrix / sub-matrix ,
8994 }

The following keys set is for the command \SubMatrix itself (not the tuning of \SubMatrix that can
be done elsewhere).
s00s \keys_define:nn { nicematrix / SubMatrix }

8996 {

8097 delimiters / color .tl_set:N = \1_@@_delimiters_color_tl ,
8998 delimiters / color .value_required:n = true ,

8999 hlines .clist_set:N = \1_@@_submatrix_hlines_clist ,

9000 hlines .default:n = all ,

9001 vlines .clist_set:N = \1_@@_submatrix_vlines_clist ,

9002 vlines .default:n = all ,

9003 hvlines .meta:n = { hlines, vlines } ,

9004 hvlines .value_forbidden:n = true ,

9005 name .code:n =

9006 \tl_if_empty:nTF { #1 }

9007 { \@@_error:n { Invalid~name } }

9008 {

9009 \regex_if_match:nnTF { \A[A-Za-z] [A-Za-z0-9]*\Z } { #1 }
9010 {

0011 \seq_if_in:NnTF \g_0@_submatrix_names_seq { #1 }
9012 { \@@_error:nn { Duplicate~name~for~SubMatrix } { #1 } }
9013 {

9014 \str_set:Nn \1_@@_submatrix_name_str { #1 }
9015 \seq_gput_right:Nn \g_0Q@_submatrix_names_seq { #1 }
9016 }

9017 }

9018 { \@@_error:n { Invalid~name } }

9019 },

9020 name .value_required:n = true ,

9021 rules .code:n = \keys_set:nn { nicematrix / rules } { #1 } ,
9022 rules .value_required:n = true ,

9023 code .tl_set:N = \1_@@_code_t1 ,

9024 code .value_required:n = true ,

9025 unknown .code:n = \@0_error:n { Unknown~key~for~SubMatrix }
9026 }

211

9027 \NewDocumentCommand \@@_SubMatrix_in_code_before { mmmm ! 0 { } }

9028 {

9029 \tl_gput_right:Ne \g_0@_pre_code_after_tl

9030 {

9031 \SubMatrix { #1 } { #2 } { #3 } { #4 }

9032 [

9033 delimiters / color = \1_@@_delimiters_color_tl ,

9034 hlines = \1_@@_submatrix_hlines_clist ,

9035 vlines = \1_@@_submatrix_vlines_clist ,

9036 extra-height = \dim_use:N \1_@@_submatrix_extra_height_dim ,
9037 left-xshift = \dim_use:N \1_@@_submatrix_left_xshift_dim ,
9038 right-xshift = \dim_use:N \1_0@_submatrix_right_xshift_dim ,
9039 slim = \bool_to_str:N \1_@@_submatrix_slim_bool ,

9040 #5

9041 1

09042 }

0043 \@@_SubMatrix_in_code_before_i { #2 } { #3 }

9044 \ignorespaces

9045 }

9026 \NewDocumentCommand \@@_SubMatrix_in_code_before_i
oa7 { > { \SplitArgument { 1 } { - } } m > { \SplitArgument { 1 } { -} } m }
o4s { \@@_SubMatrix_in_code_before_i:nnnn #1 #2 }

o0s0 \cs_new_protected:Npn \Q@@_SubMatrix_in_code_before_i:nnnn #1 #2 #3 #4

9050 {

9051 \seq_gput_right:Ne \g_0@@_submatrix_seq
9052 {
We use \str_if_eq:eeTF because it is fully expandable (and slightly faster than \t1_if_eq:nnTF).
9053 { \str_if_eq:eeTF { #1 } { last } { \int_use:N \c@iRow } { #1 } }
9054 { \str_if_eq:eeTF { #2 } { last } { \int_use:N \c@jCol } { #2 } }
0055 { \str_if_eq:eeTF { #3 } { last } { \int_use:N \c@iRow } { #3 } }
9056 { \str_if_eq:eeTF { #4 } { last } { \int_use:N \c@jCol } { #4 } }
9057 }
9058 }

The following macro will compute \1_Q@_first_i_t1, \1_@@_first_j_t1, \1_@@_last_i_t1l and
\1_0@_last_j_t1 from the arguments of the command as provided by the user (for example 2-3 and
5-last).

os0 \NewDocumentCommand \@@_compute_i_j:nn

oso £ > { \SplitArgument { 1 } { - } } m > { \SplitArgument { 1 } { -} } m }

9061 { \@@_compute_i_j:nnnn #1 #2 }

o062 \cs_new_protected:Npn \@Q_compute_i_j:nnnn #1 #2 #3 #4

9063 {

o064 \def \1_@@_first i tl { #1 }

9065 \def \1_@@_first_j_tl { #2 }

9066 \def \1_@@_last_i tl1 { #3 }

o067 \def \1_0@_last_j_tl { #4 }

9068 \tl_if_eq:NnT \1_@@_first_i_tl { last }
9069 { \tl_set:NV \1_@@_first_i_tl \c@iRow }
9070 \tl_if_eq:NnT \1_@@_first_j_tl { last }
9071 { \tl_set:NV \1_@@_first_j_tl \c@jCol }
9072 \tl_if_eq:NnT \1_@@_last_i_tl { last }
9073 { \tl_set:NV \1_@@_last_i_t1l \c@iRow }
9074 \tl_if_eq:NnT \1_@@_last_j_tl { last }
9075 { \tl_set:NV \1_@@_last_j_tl \c@jCol }
9076 }

In the pre-code-after and in the \CodeAfter the following command \@@_SubMatrix will be linked
to \SubMatrix.
e #1 is the left delimiter;

o #2 is the upper-left cell of the matrix with the format i-j;

212

e #3 is the lower-right cell of the matrix with the format i-j;
e #4 is the right delimiter;

e #5 is the list of options of the command,;

e #6 is the potential subscript;

e #7 is the potential superscript.

For explanations about the construction with rescanning of the preamble, see the documentation for
the user command \Cdots.

o077 \hook_gput_code:nnn { begindocument } { . }

9078 {

0079 \tl_set_rescan:Nnn \1_tmpa_ tl1 { } {mmmmO{}}E{_ "~ 3{{3>{}1}1}

9080 \exp_args:NNo \NewDocumentCommand \@@_SubMatrix \1_tmpa_tl

0081 { \@@_sub_matrix:nnnnnnn { #1 } { #2 } { #3 > { #4 Y { #5 } { #6 } { #7 } }
9082 }

os3 \cs_new_protected:Npn \@O_sub_matrix:nnnnnnn #1 #2 #3 #4 #5 #6 #7

9084 {

9085 \group_begin:

The four following token lists correspond to the position of the \SubMatrix.

9086 \@@_compute_i_j:nn { #2 } { #3 }
9087 \int_compare:nNnT { \1_@@_first_i_tl } = { \1_@@_last_i_tl }
9088 { \def \arraystretch { 1 } }
9089 \bool_lazy_or:nnTF
9090 { \int_compare_p:nNn { \1_@@_last_i_tl } > { \g_0@@_row_total_int } }
9001 { \int_compare_p:nNn { \1_0@_last_j_tl } > { \g_@@_col_total_int } }
9092 { \@@_error:nn { Construct~too~large } { \SubMatrix } }
9093 {
9004 \str_clear_new:N \1_0@_submatrix_name_str
9095 \keys_set:nn { nicematrix / SubMatrix } { #5 }
9096 \pgfpicture
9097 \pgfrememberpicturepositiononpagetrue
9098 \pgf@relevantforpicturesizefalse
9099 \pgfset { inner~sep = \c_zero_dim }
9100 \dim_set_eq:NN \1_0@_x_initial_dim \c_max_dim
9101 \dim_set:Nn \1_@@_x_final_dim { - \c_max_dim }
The last value of \int_step_inline:nnn is provided by curryfication.
9102 \bool_if:NTF \1_@@_submatrix_slim_bool
9103 { \int_step_inline:nnn { \1_@@_first_i_tl } { \1_@@_last_i_tl } }
9104 { \int_step_inline:nnn { \1_Q@_first_row_int } { \g_0@_row_total_int } }
9105 {
9106 \cs_if_exist:cT
9107 { pgf @ sh @ ns @ \@@_env: - ##1 - \1_0@_first_j_tl }
9108 {
9109 \pgfpointanchor { \@Q@_env: - ##1 - \1_0@_first_j_tl } { west }
9110 \dim_compare:nNnT { \pgf@x } < { \1_0@_x_initial_dim }
o111 { \dim_set_eq:NN \1_@@_x_initial_dim \pgf@x }
9112 }
0113 \cs_if_exist:cT
o114 { pgf @ sh @ ns @ \@@_env: - ##1 - \1_Q0_last_j_tl1 }
9115 {
9116 \pgfpointanchor { \@@_env: - ##1 - \1_00_last_j_tl } { east }
o117 \dim_compare:nNnT { \pgf@x } > { \1_@@_x_final_dim }
o118 { \dim_set_eq:NN \1_@@_x_final_dim \pgf@x }
9119 }
9120 }
0121 \dim_compare:nNnTF { \1_@@_x_initial_dim } = { \c_max_dim }
9122 { \@@_error:nn { Impossible~delimiter } { left } }
9123 {
0124 \dim_compare:nNnTF { \1_@@_x_final_dim } = { - \c_max_dim }

213

9125 { \@@_error:nn { Impossible~delimiter } { right } }

09126 { \@@_sub_matrix_i:nnnn { #1 } { #4 } { #6 } { #7 } }
9127 }

9128 \endpgfpicture

9129 ¥

0130 \group_end:

0131 \ignorespaces

9132 }

#1 is the left delimiter, #2 is the right one, #3 is the subscript and #4 is the superscript.
0133 \cs_new_protected:Npn \@@_sub_matrix_i:nnnn #1 #2 #3 #4

9134 {

0135 \@@_gpoint:n { row - \1_@@_first_i_tl - base }

9136 \dim_set:Nn \1_@@_y_initial_dim

9137 {

9138 \fp_to_dim:n

9139 {

9140 \pgf@y

0141 + (\box_ht:N \strutbox + \extrarowheight) * \arraystretch
0142 }

9143 }

9144 \@@_gpoint:n { row - \1_0@@_last_i_tl - base }

0145 \dim_set:Nn \1_@@_y_final_dim

9146 { \fp_to_dim:n { \pgf@y - (\box_dp:N \strutbox) * \arraystretch } }
0147 \int_step_inline:nnn { \1_Q@_first_col_int } { \g_@@_col_total_int }
9148 {

9149 \cs_if_exist:cT

9150 { pgf @ sh @ ns @ \@@_env: - \1_00@_first_i_tl - ##1 }

9151 {

0152 \pgfpointanchor { \@@_env: - \1_@@_first_i_tl - ##1 } { north }
0153 \dim_set:Nn \1_Q@_y_initial_dim

9154 { \dim_max:nn { \1_@@_y_initial_dim } { \pgf@y } }

9155 3

9156 \cs_if_exist:cT

9157 { pgf @ sh @ ns @ \@@_env: - \1_0@_last_i_tl - ##1 }

9158 {

9159 \pgfpointanchor { \@@_env: - \1_0@_last_i_tl - ##1 } { south }
9160 \dim_compare:nNnT { \pgf@y } < { \1_0@_y_final_dim }

9161 { \dim_set_eq:NN \1_@@_y_final_dim \pgf@y }

9162 }

9163 }

9164 \dim_set:Nn \1_tmpa_dim

9165 {

9166 \1_0@_y_initial_dim - \1_@@_y_final_dim +

9167 \1_@@_submatrix_extra_height_dim - \arrayrulewidth

9168 }

9160 \dim_zero:N \nulldelimiterspace

We will draw the rules in the \SubMatrix.

0170 \group_begin:

0171 \pgfsetlinewidth { 1.1 \arrayrulewidth }
0172 \@@_set_CTarc:o \1_@@_rules_color_tl

9173 \CTQarc@

Now, we draw the potential vertical rules specified in the preamble of the environments with the
letter fixed with the key vlines-in-sub-matrix. The list of the columns where there is such rule to
draw is in \g_@@_cols_vlism_seq.

0174 \seq_map_inline:Nn \g_0@_cols_vlism_seq

9175 {

9176 \int_compare:nNnT { \1_Q@_first_j_tl1 } < { ##1 }

9177 {

9178 \int_compare:nNnT

09179 { ##1 } < { \int_eval:n { \1_@@_last_j_tl + 1 } }

214

9180 {

First, we extract the value of the abscissa of the rule we have to draw.

0181 \@@_gpoint:n { col - ##1 }

0182 \pgfpathmoveto { \pgfpoint \pgf@x \1_0@_y_initial_dim }
0183 \pgfpathlineto { \pgfpoint \pgf@x \1_@@_y_final_dim }
9184 \pgfusepathgstroke

9185 }

9186 }

9187 }

Now, we draw the vertical rules specified in the key vlines of \SubMatrix. The last argument of
\int_step_inline:nn or \clist_map_inline:Nn is given by curryfication.

o188 \str_if_eq:eeTF { \1_0@_submatrix_vlines_clist } { all }

9189 { \int_step_inline:nn { \1_@@_last_j_t1 - \1_@@_first_j_tl1 } }
9190 { \clist_map_inline:Nn \1_0@_submatrix_vlines_clist }

9191 {

0102 \bool_lazy_and:nnTF

9193 { \int_compare_p:nNn { ##1 } > { \c_zero_int } }

9194 {

9195 \int_compare_p:nNn

9106 {##1 } < {\1_00_last_j_t1l - \1_@@_first_j_tl + 1 } }
9197 {

9108 \@@_gpoint:n { col - \int_eval:n { ##1 + \1_@@_first_j_tl } }
9199 \pgfpathmoveto { \pgfpoint \pgfOx \1_@@_y_initial_dim }
9200 \pgfpathlineto { \pgfpoint \pgf@x \1_@@_y_final_dim }

9201 \pgfusepathgstroke

9202 }

9203 { \@@_error:nnn { Wrong~line~in~SubMatrix } { vertical } { ##1 } }
9204 }

Now, we draw the horizontal rules specified in the key hlines of \SubMatrix. The last argument of
\int_step_inline:nn or \clist_map_inline:Nn is given by curryfication.

9205 \str_if_eq:eeTF { \1_0@_submatrix_hlines_clist } { all }
9206 { \int_step_inline:nn { \1_0@_last_i_tl - \1_@@_first_i_tl } }
9207 { \clist_map_inline:Nn \1_0@_submatrix_hlines_clist }
9208 {
9209 \bool_lazy_and:nnTF
9210 { \int_compare_p:nNn { ##1 } > { \c_zero_int } }
9211 {
9212 \int_compare_p:nNn
0013 {##1 } < { \1_@@_last_i tl - \1_@@ first i t1 + 1 } }
0214 {
9215 \@@_gpoint:n { row - \int_eval:n { ##1 + \1_@@_first_i_tl } }
We use a group to protect \1_tmpa_dim and \1_tmpb_dim.
9216 \group_begin:
We compute in \1_tmpa_dim the z-value of the left end of the rule.
9217 \dim_set:Nn \1_tmpa_dim
9218 { \1_@@_x_initial_dim - \1_@@_submatrix_left_xshift_dim }
9219 \str_case:nn { #1 }
9220 {
9221 ({ \dim_sub:Nn \1_tmpa_dim { 0.9 mm } }
0222 [{ \dim_sub:Nn \1_tmpa_dim { 0.2 mm } }
9223 \{ { \dim_sub:Nn \1_tmpa_dim { 0.9 mm } }
9224 }
9225 \pgfpathmoveto { \pgfpoint \1_tmpa_dim \pgf@y }
We compute in \1_tmpb_dim the z-value of the right end of the rule.
9226 \dim_set:Nn \1_tmpb_dim
9227 { \1_@0_x_final_dim + \1_Q@_submatrix_right_xshift_dim }
9228 \str_case:nn { #2 }
9229 {
9230) { \dim_add:Nn \1_tmpb_dim { 0.9 mm } }

215

9231] { \dim_add:Nn \1_tmpb_dim { 0.2 mm } }

0232 \} { \dim_add:Nn \1_tmpb_dim { 0.9 mm } }

9233 }

9234 \pgfpathlineto { \pgfpoint \1_tmpb_dim \pgf@y }

0235 \pgfusepathgstroke

9236 \group_end:

9237 }

9238 { \@@_error:nnn { Wrong~line~in~SubMatrix } { horizontal } { ##1 } }
9239 }

If the key name has been used for the command \SubMatrix, we create a PGF node with that name
for the submatrix (this node does not encompass the delimiters that we will put after).

9240 \str_if_empty:NF \1_QQ@_submatrix_name_str

9241 {

9242 \@@_pgf_rect_node:nnnnn \1_Q@_submatrix_name_str
9243 \1_0@_x_initial_dim \1_Q@_y_initial_dim

9244 \1_@@_x_final_dim \1_Q@_y_final_dim

9245 }

9246 \group_end:

The group was for \CT@arc@ (the color of the rules).

Now, we deal with the left delimiter. Of course, the environment {pgfscope} is for the
\pgftransformshift.

9247 \begin { pgfscope }

9248 \pgftransformshift

9249 {

9250 \pgfpoint

9251 { \1_@@_x_initial_dim - \1_@@_submatrix_left_xshift_dim }
9252 { (\1_@@_y_initial_dim + \1_@@_y_final_dim) / 2 }

9253 }

9254 \str_if_empty:NTF \1_0@_submatrix_name_str

9255 { \@@_node_left:nn #1 { } }

9256 { \@@_node_left:nn #1 { \@@_env: - \1_0@@_submatrix_name_str - left } }
9257 \end { pgfscope }

Now, we deal with the right delimiter.

9258 \pgftransformshift

9259 {

9260 \pgfpo int

9261 { \1_@@_x_final_dim + \1_QQ@_submatrix_right_xshift_dim }
9262 { (\1_@@_y_initial_dim + \1_@@_y_final_dim) / 2 }

9263 }

9264 \str_if_empty:NTF \1_0@_submatrix_name_str

9265 { \@@_node_right:nnnn #2 { } { #3 >} { #4 } }

9266 {

9267 \@@_node_right:nnnn #2

9268 { \@@_env: - \1_0@_submatrix_name_str - right } { #3 } { #4 }
9269 }

Now, we deal with the key code of \SubMatrix. That key should contain a TikZ instruction and
the nodes in that instruction will be relative to the current \SubMatrix. That’s why we need a
redefinition of \pgfpointanchor.

9270 \cs_set_eq:NN \pgfpointanchor \Q@_pgfpointanchor:n
0271 \flag_clear_new:N \1_0@_code_flag

9272 \1_0@_code_t1l

9273 3

In the key code of the command \SubMatrix there may be TikZ instructions. We want that, in these
instructions, the ¢ and j in specifications of nodes of the forms i-j, row-i, col-j and i-1|j refer to
the number of row and column relative of the current \SubMatrix. That’s why we will patch (locally
in the \SubMatrix) the command \pgfpointanchor.

0274 \cs_set_eq:NN \@@_old_pgfpointanchor: \pgfpointanchor

216

The following command will be linked to \pgfpointanchor just before the execution of the option
code of the command \SubMatrix. In this command, we catch the argument #1 of \pgfpointanchor
and we apply to it the command \@@_pgfpointanchor_i:nn before passing it to the original
\pgfpointanchor. We have to act in an expandable way because the command \pgfpointanchor is
used in names of TikZ nodes which are computed in an expandable way.
The original command \pgfpointanchor takes in two arguments: the name of the name and the name
of the anchor. However, you don’t have to modify the anchor, and that’s why we do a redefinition of
\pgfpointanchor by curryfication.

0275 \cs_new:Npn \@@_pgfpointanchor:n #1

o { \exp_args:Ne \@@_old_pgfpointanchor: { \@@_pgfpointanchor_i:n { #1 } } }

First, we must detect whether the argument is of the form \tikz@pp@name{...} (the command
\tikz@pp@name is a command of TikZ that adds the prefix and the suffix of the name. If the name
refers to a TikZ node which does not exist, there isn’t the wrapper \tikz@pp@name.

9277 \cs_new:Npn \@@_pgfpointanchor_i:n #1

o27s { \@@_pgfpointanchor_ii:w #1 \tikz@pp@name \q_stop }

9279 \cs_new:Npn \@@_pgfpointanchor_ii:w #1 \tikz@pp@name #2 \qg_stop

o8 {
The command \str_if_empty:nTF is “fully expandable”.
9281 \str_if_empty:nTF { #1 }
First, when the name of the name begins with \tikz@pp@name.
9282 { \@@_pgfpointanchor_iv:w #2 }
And now, when there is no \tikz@pp@name.
9283 { \@@_pgfpointanchor_ii:n { #1 } }
9284 }

In the case where the name begins with \tikz@pp@name, we must retrieve the second \tikz@pp@name,
that is to say to marker that we have added at the end (cf. \@@_pgfpointanchor_i:n).

o285 \cs_new:Npn \Q@@_pgfpointanchor_iv:w #1 \tikz@pp@name
o8 { \@@_pgfpointanchor_ii:n { #1 } }

With the command \@@_pgfpointanchor_ii:n, we deal with the actual name of the node (without
the \tikz@pp@name). First, we have to detect whether it is of the form i of the form i-j (with an
hyphen).

Remark: It would be possible to test the presence of the hyphen in an expandable way to using
\etl_if_in:nnTF of the package etl but, as of now, we do not load etl.

0287 \cs_new:Npn \Q@@_pgfpointanchor_ii:n #1 { \@@_pgfpointanchor_i:w #1- \g_stop }

o285 \cs_new:Npn \@@_pgfpointanchor_i:w #1-#2 \qg_stop
9289 {
The command \str_if_empty:nTF is “fully expandable”.
9290 \str_if_empty:nTF { #2 }
First the case where the argument does not contain an hyphen.
9201 { \@@_pgfpointanchor_iii:n { #1 } }
And now the case the argument contains a hyphen. In that case, we have a weird construction because
we must retreive the extra hyphen we have added as marker (cf. \@@_pgfpointanchor_ii:n).
9202 { \@@_pgfpointanchor_iii:w { #1 } #2 }
9293 }
The following function is for the case when the name contains an hyphen.
9204 \cs_new:Npn \@@_pgfpointanchor_iii:w #1 #2 -
9295 {
We have to add the prefix \@@_env: “by hand” since we have retreived the potential \tikz@pp@name.

9296 \@@_env:

9207 - \int_eval:n { #1 + \1_@@_first_i_ tl - 1 }
9208 - \int_eval:n { #2 + \1_@@_first_j_tl - 1 }
9299 }

217

Since \seq_if_in:NnTF and \clist_if_in:NnTF are not expandable, we will use the following token
list and \str_case:nVTF to test whether we have an integer or not.

030 \tl_const:Nn \c_@@_integers_alist_tl

9301 {

0302 {1 3X{y{ 2y {¥{3r¥{r{4r{x¥{53xr4{}

0303 {6 {Y{73¥y{3r{8r{3r¥{9r{xr{103x{13
9304 {11 ¥ {3¥y{12¥y{¥ry{13y{y{14r{3r{153r4{13
9305 {163 {r{17ry{r{18r{r{19r{xr{203r4{1}
9306 }

0307 \cs_new:Npn \@@_pgfpointanchor_iii:n #1

9308 {

If there is no hyphen, that means that the node is of the form of a single number (ex.: 5 or 11).
In that case, we are in an analysis which result from a specification of node of the form i-|j. That
special form is the reason of the special form of the argument of \pgfpointanchor which arises witht
its command \name_of_command (see above).

In that case, the ¢ of the number of row arrives first (and alone) in a \pgfpointanchor and, the, the
j arrives (alone) in the following \pgfpointanchor. In order to know whether we have a number of
row or a number of column, we keep track of the number of such treatments by the expandable flag
called nicematrix.

9309 \str_case:nVTF { #1 } \c_00_integers_alist_tl
9310 {
0311 \flag_raise:N \1_0@_code_flag
We have to add the prefix \@@_env: “by hand” since we have retreived the potential \tikz@pp@name.
0312 \@@_env: -
9313 \int_if_even:nTF { \flag_height:N \1_Q@_code_flag }
9314 { \int_eval:n { #1 + \1_@@_first i tl - 1 } }
9315 { \int_eval:n { #1 + \1_@@_first_j_tl - 1 } }
9316 }
9317 {
9318 \str_if_eq:eeTF { #1 } { last }
9319 {
9320 \flag_raise:N \1_Q@_code_flag
9321 \@@_env: -
0322 \int_if_even:nTF { \flag_height:N \1_@@_code_flag }
9323 { \int_eval:n { \1_@@_last_i_tl + 1 } }
9324 { \int_eval:n { \1_@@_last_j_tl + 1 } }
9325 ¥
9326 { #1 }
9327 }
9328 3

The command \@@_node_left:nn puts the left delimiter with the correct size. The argument #1 is
the delimiter to put. The argument #2 is the name we will give to this PGF node (if the key name
has been used in \SubMatrix).

o0 \cs_new_protected:Npn \Q@@_node_left:nn #1 #2

9330 {

9331 \pgfnode

9332 { rectangle }

0333 { east }

9334 {

9335 \nullfont

9336 $ % $

9337 \@@_color:o \1_@@_delimiters_color_tl
0338 \left #1

9339 \vcenter

9340 {

0341 \nullfont

9342 \hrule \@height \1_tmpa_dim
9343 \@depth \c_zero_dim

218

9344 \@width \c_zero_dim

9345 }

0346 \right .
0347 $ 7% $
9348 ¥

9349 { #2 }

9350 {1}

9351 }

The command \@@_node_right:nn puts the right delimiter with the correct size. The argument #1
is the delimiter to put. The argument #2 is the name we will give to this PGF node (if the key name
has been used in \SubMatrix). The argument #3 is the subscript and #4 is the superscript.

032 \cs_new_protected:Npn \@Q@_node_right:nnnn #1 #2 #3 #4

9353 {

9354 \pgfnode

0355 { rectangle }

9356 { west }

9357 {

0358 \nullfont

9359 $ % $

9360 \colorlet { current-color } { . }

9361 \@@_color:o \1_@@_delimiters_color_tl
9362 \left .

9363 \vcenter

9364 {

9365 \nullfont

9366 \hrule \G@height \1_tmpa_dim

9367 \@depth \c_zero_dim

9368 \@width \c_zero_dim

9369 }

9370 \I‘ight #1

0371 \tl_if_empty:nF { #3 } { _ { \smash { #3 } } }
0372 ~ { \color { current-color } \smash { #4 } }
9373 $ %8

9374 }

9375 { #2 }

9376 {17

9377 }

34 Les commandes \UnderBrace et \OverBrace

The following commands will be linked to \UnderBrace and \OverBrace in the \CodeAfter.

937 \NewDocumentCommand \@@_UnderBrace { 0 { } mmm O { } }

9379 {

9380 \@@_brace:nnnnn { #2 } { #3 } { #4 } { #1 , #5 } { under }
9381 \ignorespaces

9382 ¥

9383 \NewDocumentCommand \@@_OverBrace { 0 { } mmm O { } }

9384 {

0385 \@@_brace:nnnnn { #2 } { #3 } { #4 } { #1 , #5 } { over }
9386 \ignorespaces

9387 }

o35 \keys_define:nn { nicematrix / Brace }

9389 {

9390 left-shorten .bool_set:N = \1_@@_brace_left_shorten_bool ,
09301 left-shorten .default:n = true ,

9392 left-shorten .value_forbidden:n = true ,

219

9393 right-shorten .bool_set:N = \1_Q@_brace_right_shorten_bool ,

9394 right-shorten .default:n = true ,

9395 right-shorten .value_forbidden:n = true ,
9396 shorten .meta:n = { left-shorten , right-shorten } ,
9397 shorten .value_forbidden:n = true ,

9308 yshift .dim_set:N = \1_Q@_brace_yshift_dim ,
9399 yshift .value_required:n = true ,

9400 yshift .initial:n = \c_zero_dim ,

9401 color .tl_set:N = \1_tmpa_tl ,

9402 color .value_required:n = true ,

9403 unknown .code:n =

9404 \@@_unknown_key:nn

9405 { nicematrix / Brace }

9406 { Unknown~key~for~Brace }

9407 }

#1 is the first cell of the rectangle (with the syntax i-|j; #2 is the last cell of the rectangle; #3 is the
label of the text; #4 is the optional argument (a list of key-value pairs); #5 is equal to under or over.
008 \cs_new_protected:Npn \@@_brace:nnnnn #1 #2 #3 #4 #5
9409 {
9410 \group_begin:
The four following token lists correspond to the position of the sub-matrix to which a brace will be
attached.

0411 \@@_compute_i_j:nn { #1 } { #2 }

9412 \bool_lazy_or:nnTF

0413 { \int_compare_p:nNn { \1_@@_last_i_tl } > { \g_0@@_row_total_int } }
9414 { \int_compare_p:nNn { \1_0@_last_j_tl } > { \g_@@_col_total_int } }
9415 {

9416 \str_if_eq:eeTF { #5 } { under }

9417 { \@@_error:nn { Construct~too~large } { \UnderBrace } }

0418 { \@@_error:nn { Construct~too~large } { \OverBrace } }

9419 }

9420 {

9421 \tl_clear:N \1_tmpa_tl

9422 \keys_set:nn { nicematrix / Brace } { #4 }

0423 \tl_if_empty:NF \1_tmpa_tl { \color { \1l_tmpa_tl } }

0424 \pgfpicture

9425 \pgfrememberpicturepositiononpagetrue

9426 \pgf@relevantforpicturesizefalse

9427 \bool_if:NT \1_@@_brace_left_shorten_bool

9428 {

9429 \dim_set_eq:NN \1_0@_x_initial_dim \c_max_dim

9430 \int_step_inline:nnn { \1_@@_first_i_t1 } { \1_@@_last_i_tl }
0431 {

9432 \cs_if_exist:cT

0433 { pgf @ sh @ ns @ \@@_env: - ##1 - \1_@@_first_j_tl }
0434 {

9435 \pgfpointanchor { \@@_env: - ##1 - \1_00@_first_j_tl } { west }
9436

0437 \dim_compare:nNnT { \pgf@x } < { \1_0@_x_initial_dim }
9438 { \dim_set_eq:NN \1_@@_x_initial_dim \pgfOx }

9439 }

9440 ¥

9441 }

9442 \bool_lazy_or:nnT

9443 { \bool_not_p:n \1_@@_brace_left_shorten_bool }

9444 { \dim_compare_p:nNn { \1_@@_x_initial_dim } = { \c_max_dim } }
09445 {

9446 \@@_gpoint:n { col - \1_@@_first_j_t1 }

9447 \dim_set_eq:NN \1_0@_x_initial_dim \pgf@x

9448 }

9449 \bool_if:NT \1_0@_brace_right_shorten_bool

9450 {

220

9451 \dim_set:Nn \1_@@_x_final dim { - \c_max_dim }

0452 \int_step_inline:nnn { \1_@@_first_i_t1 } { \1_@@_last_i_tl }
9453 {

9454 \cs_if_exist:cT

9455 { pgf @ sh @ ns @ \@@_env: - ##1 - \1_0@_last_j_tl }
9456 {

9457 \pgfpointanchor { \@@_env: - ##1 - \1_00_last_j_tl } { east }
0458 \dim_compare:nNnT { \pgf@x } > { \1_0@_x_final_dim }
9459 { \dim_set_eq:NN \1_@@_x_final_dim \pgf@x }

9460 }

9461 }

9462 }

9463 \bool_lazy_or:nnT

9464 { \bool_not_p:n \1_0@_brace_right_shorten_bool }

9465 { \dim_compare_p:nNn { \1_@@_x_final_dim } = { - \c_max_dim } }
9466 {

467 \@@_gpoint:n { col - \int_eval:n { \1_@@_last_j_tl + 1 } }
9468 \dim_set_eq:NN \1_@@_x_final_dim \pgf@x

9469 }

9470 \pgfset { inner~sep = \c_zero_dim }

0471 \str_if_eq:eeTF { #5 } { under }

9472 { \@@_underbrace_i:n { #3 } }

0473 { \@@_overbrace_i:n { #3 } }

9474 \endpgfpicture

9475 }

9476 \group_end:

9477 3

The argument is the text to put above the brace.

9175 \cs_new_protected:Npn \@@_overbrace_i:n #1

9479 {

9480 \@@_gpoint:n { row - \1_@@_first_i_tl }

9481 \pgftransformshift

0482 {

0483 \pgfpo int

9484 { (\1_@@_x_initial_dim + \1_@@_x_final dim) / 2 }
9485 { \pgf@y + \1_@@_brace_yshift_dim - 3 pt }

9486 }

0487 \pgfnode

9488 { rectangle }

0459 { south }

9490 {

9491 \vtop

9492 {

0493 \group_begin:

9404 \everycr { }

9495 \halign

9496 {

9497 \hfil ## \hfil \crcr

9498 \bool_if:NTF \1_@@_tabular_bool

9499 { \begin { tabular } { ¢ } #1 \end { tabular } }
9500 { $ \begin { array } { ¢ } #1 \end { array } $ }
9501 \cr

9502 $%$

9503 \overbrace

9504 {

9505 \hbox_to_wd:nn

9506 { \1_@0@_x_final_dim - \1_@@_x_initial_dim }
9507 { }

9508 }

9509 $ % $

9510 \CI‘

9511 }

9512 \group_end:

221

9514 ¥
9515 {1}
9516 {1}
9517 }

The argument is the text to put under the brace.

o515 \cs_new_protected:Npn \@@_underbrace_i:n #1

9519 {

9520 \@@_gpoint:n { row - \int_eval:n { \1_@@_last_i_tl + 1 } }
9521 \pgftransformshift

9522 {

9523 \pgfpoint

9524 { (\1_@@_x_initial_dim + \1_@@_x_final dim) / 2 }
9525 { \pgf@y - \1_0@_brace_yshift_dim + 3 pt }

9526 }

9527 \pgfnode

9528 { rectangle }

9529 { north }

9530 {

9531 \group_begin:

9532 \everycr { }

9533 \vbox

9534 {

9535 \halign

9536 {

0537 \hfil ## \hfil \crcr

9538 $7% 3

9539 \underbrace

9540 {

9541 \hbox_to_wd:nn

9542 { \1_@@_x_final_dim - \1_@@_x_initial_dim }
9543 { }

9544 T

9545 $%$

9546 \cr

0547 \bool_ if:NTF \1_@@_tabular_ bool

9548 { \begin { tabular } { ¢ } #1 \end { tabular } }
9549 { $ \begin { array } { ¢ } #1 \end { array } $ }
9550 \CI‘

9551 }

9552 }

9553 \group_end:

9554 }

9555 { }

9556 {17

9557 ¥

35 The commands HBrace et VBrace

The TikZ style nicematrix/brace is a TikZ style used to draw the braces created by \Hbrace and
\Vbrace.

We can’t load that definition right away because of course, maybe the final user has not yet
loaded TikZ (\Hbrace and \Vbrace are available only when TikZ is loaded and also its library
decorations.pathreplacing).

o555 \AddToHook { package / tikz / after }
9559 {

222

9560 \tikzset

9561 {

9562 nicematrix / brace / .style =

9563 {

9564 decoration = { brace , raise = -0.15 em } ,
9565 decorate ,

9566 },

Unlike the previous one, the following set of keys is internal. It won’t be provided by the final user.
9567 nicematrix / mirrored-brace / .style =
9568 {
9569 nicematrix / brace ,
9570 decoration = mirror ,

9572 ¥
9573 3

The following set of keys will be used only for security since the keys will be sent to the command
\Ldots or \Vdots.

o572 \keys_define:nn { nicematrix / Hbrace }

9575 {

9576 color .code:n = ,

9577 horizontal-label .code:n = ,
9578 horizontal-labels .code:n = ,
9579 shorten .code:n = ,

9580 shorten-start .code:n = ,

9581 shorten-end .code:n = ,

9582 shorten+ .code:n = ,

9583 shorten-start+ .code:n = ,
9584 shorten-end+ .code:n = ,

9585 shorten~+ .code:n = ,

9586 shorten-start~+ .code:n = ,
9587 shorten-end~+ .code:n = ,

9588 brace-shift .code:n = ,

9589 brace-shift+ .code:n = ,

9590 brace-shift~+ .code:n = ,

9501 unknown .code:n = \Q@0_fatal:n { Unknown~key~for~Hbrace }
9592 }

Here we need an “fully expandable” command.
0503 \NewExpandableDocumentCommand { \@@_Hbrace } { 0 { } m m }

9594 {

9595 \cs_if_exist:cTF { tikz@library@decorations.pathreplacing@loaded }
9596 { \@@_hbrace:nnn { #1 } { #2 } { #3 } }

9507 { \@@_error:nn { Hbrace~not~allowed } { \Hbrace } }

9598 }

The following command must not be protected because of the \Hdotsfor which contains a
\multicolumn (whereas the similar command \@@_vbrace:nnn must be protected).

o500 \cs_new:Npn \@@_hbrace:nnn #1 #2 #3

9600 {
9601 \int_compare:nNnTF { \c@iRow } < { 2 }
9602 {
We recall that \str_if_eq:nnTF is “fully expandable”.
9603 \str_if_eq:nnTF { #2 } { * }
9604 {
9605 \bool_set_true:N \1_00@_nullify_dots_bool
9606 \Ldots
9607 [
9608 line-style = nicematrix / brace ,
9609 #1 ,

223

9610 up =

0611 \bool_if:NT \1_0@_tabular_bool \text { \exp_not:n { #3 } }
9612]

9613 }

9614 {

9615 \Hdotsfor

9616 [

9617 line-style = nicematrix / brace ,

9618 #1 ,

9619 up =

9620 \bool_if:NT \1_0@_tabular_bool \text { \exp_not:n { #3 } }
9621]

9622 {#2 }

9623 3

9624 }

9625 {

9626 \str_if_eq:nnTF { #2 } { * }

9627 {

9628 \bool_set_true:N \1_00@_nullify_dots_bool

9629 \Ldots

9630 [

9631 line-style = nicematrix / mirrored-brace ,

9632 #1 ,

9633 down =

9634 \bool_if:NT \1_0@_tabular_bool \text { \exp_not:n { #3 } }
9635]

9636 }

9637 {

9638 \Hdotsfor

9639 [

9640 line-style = nicematrix / mirrored-brace ,

9641 #1 ,

9642 down =

9643 \bool_if:NT \1_0@_tabular_bool \text { \exp_not:n { #3 } }
9644]

9645 {#2 }

9646 }

9647 }

9648 \keys_set:nn { nicematrix / Hbrace } { #1 }

9649 }

9650 \NewDocumentCommand { \@@_Vbrace } { 0 { } m m }

9651 {

9652 \cs_if_exist:cTF { tikz@library@decorations.pathreplacing@loaded }
9653 { \@@_vbrace:nnn { #1 } { #2 } { #3 } }

9654 { \@@_error:nn { Hbrace~not~allowed } { \Vbrace } }

9655 F

The following command must be protected (whereas the similar command \@@_hbrace:nnn must
not.

956 \CS_new_protected:Npn \@@_vbrace:nnn #1 #2 #3

9657 {

0658 \int_compare:nNnTF { \c@jCol } < { 2 }

9659 {

9660 \str_if_eq:nnTF { #2 } { * }

9661 {

9662 \bool_set_true:N \1_@@_nullify_dots_bool
9663 \Vdots

9664 [

9665 Vbrace ,

9666 line-style = nicematrix / mirrored-brace ,
9667 #1 ,

9668 down =

224

9669 \bool_if:NT \1_0@_tabular_bool \text { \exp_not:n { #3 } }

9670]

9671 }

9672 {

9673 \Vdotsfor

9674 [

9675 Vbrace ,

9676 line-style = nicematrix / mirrored-brace ,
9677 #1 ,

9678 down =

9679 \bool_if:NT \1_0@_tabular_bool \text { \exp_not:n { #3 } }
9680 1

9681 { #2 }

9682 3

9683 }

9684 {

9685 \str_if_eq:nnTF { #2 } { * }

9686 {

9687 \bool_set_true:N \1_00@_nullify_dots_bool

9688 \Vdots

9689 [

9690 Vbrace ,

9691 line-style = nicematrix / brace ,

9692 #1 ,

9693 up =

9694 \bool_if:NT \1_0@_tabular_bool \text { \exp_not:n { #3 } }
9695]

9696 }

9697 {

9698 \Vdotsfor

9699 [

9700 Vbrace >

9701 line-style = nicematrix / brace ,

9702 #1 ,

9703 up =

9704 \bool_if:NT \1_@@_tabular_bool \text { \exp_not:n { #3 } }
9705]

9706 { #2 }

9707 }

9708 }

9709 \keys_set:nn { nicematrix / Hbrace } { #1 }

9710 }

36 The command TikzEveryCell

o711 \bool_new:N \1_Q@_not_empty_bool
o712 \bool_new:N \1_Q@_empty_bool
9713

o4 \keys_define:nn { nicematrix / TikzEveryCell }

9715 {

9716 not-empty .code:n =

o717 \bool_lazy_or:nnTF

09718 { \1_@@_in_code_after_bool }

9719 { \g_0@_create_cell_nodes_bool }

9720 { \bool_set_true:N \1_Q@_not_empty_bool }

o721 { \@@_error:n { detection~of~empty~cells } } ,
9722 not-empty .value_forbidden:n = true ,

9723 empty .code:n =

9724 \bool_lazy_or:nnTF

225

9733
9734
9735
9736
9737
9738

9739

The

{ \1_@@_in_code_after_bool }

{ \g_0@_create_cell_nodes_bool }

{ \bool_set_true:N \1_Q@_empty_bool }

{ \@@_error:n { detection~of~empty~cells } } ,
empty .value_forbidden:n = true ,

unknown .code:n = \Q@@_error:n { Unknown~key~for~TikzEveryCell }

\NewDocumentCommand { \Q@@_TikzEveryCell } { 0 { } m }
{
\IfPackageLoadedTF { tikz }
{
\group_begin:
\keys_set:nn { nicematrix / TikzEveryCell } { #1 }

inner pair of braces in the following line is mandatory because,

\@@_tikz:nnnnn is a list of lists of TikZ keys.

9740

9741

9742

9743

9744

9745

9746

9747

9760

9761

9762

9763

9764

9765

9766

9767

9768

9769

\tl_set:Nn \1_tmpa_t1l { { #2 } }
\seq_map_inline:Nn \g_@@_pos_of_blocks_seq
{ \@@_for_a_block:nnnnn ##1 }
\@@_all_the_cells:
\group_end:
}
{ \@@_error:n { TikzEveryCell~without~tikz } }

\cs_new_protected:Nn \@0_all_the_cells:
{
\int_step_inline:nn \c@iRow
{
\int_step_inline:nn \c@jCol
{
\cs_if_exist:cF { cell - ##1 - ####1 }
{
\clist_if_in:NeF \1_0@_corners_cells_clist
{ ##1 - ####l }
{
\bool_set_false:N \1_tmpa_bool
\cs_if_exist:cTF

{ pgf @ sh @ ns @ \Q@@_env: - ##1 - ####1 T

{
\bool_if:NF \1_@@_empty_bool
{ \bool_set_true:N \1_tmpa_bool }
}
{
\bool_if:NF \1_Q@@_not_empty_bool
{ \bool_set_true:N \1_tmpa_bool }
}
\bool_if:NT \1_tmpa_bool
{
\@@_block_tikz:onnnn

the last argument of

\1_tmpa_tl { ##1 } { ####1 } { ##1 } { ####1 }

}

\cs_new_protected:Nn \@Q_for_a_block:nnnnn

{
\bool_if:NF \1_@@_empty_bool

226

9786 {

9787 \@@_block_tikz:onnnn

\l_tmpa_t1 { #1 } { #2 } { #3 } { #4 }

9789 }

9790 \@@_mark_cells_of block:nnnn { #1 } { #2 } { #3 } { #4 }
9791 }

9792

o793 \cs_new_protected:Nn \Q@@_mark_cells_of_block:nnnn

9794 {

9795 \int_step_inline:nnn { #1 } { #3 }

9796 {

9797 \int_step_inline:nnn { #2 } { #4 }

9798 { \cs_set_nopar:cpn { cell - ##1 - ####1 } { } }
9799 }

9800 }

37 The command \CreateBlocksInColumn

o500 \cs_new_protected:Npn \Q@O_create_blocks_in_col:n #1
oz { \clist_gput_right:Nn \g_Q@_cbic_clist { #1 } }

0303 \cs_new_protected:Npn \@@_cbic:

9804 {

9805 \clist_map_inline:Nn \g_@@_cbic_clist

9806 {

9807 \cs_set:cpn

9808 {

9809 pgf @ sh @ ns @ \QQ@_env:

9810 - \int_eval:n { \c@iRow + 1 } - ##1 }
0811 { rien }

\1_tmpa_int will be the first row of the block being created.

0812 \int_set:Nn \1_tmpa_int { 1 }

9813 \int_step_inline:nn { \c@iRow + 1 }

9814 {

0815 \cs_if_exist:cT

9816 { pgf @ sh @ ns @ \QQ@_env: - ####1 - ##1 }
9817 {

9818 \int_compare:nNnT { ####1 } > { \1_tmpa_int + 1 }
9819 {

9820 \seq_gput_right:Ne \g_0@_pos_of_blocks_seq
9821 {

9822 { \int_use:N \1_tmpa_int }

9823 { ##1 }

9824 { \int_eval:n { ####1 - 1 } }
0825 { ##1 }

9826 { }

9827 }

9828 }

9829 \int_set:Nn \1_tmpa_int { ####1 }

9830 }

0831 }

9832 }

0833 \clist_gclear:N \g_0@_cbic_clist

0834 ¥

38 The command \ShowCellNames

9535 \NewDocumentCommand \@@_ShowCellNames { }
9836 {

0837 \bool_if:NT \1_@@_in_code_after_bool

227

9838

9839

9840

9841

9842

9843

9844

9845

9846

9847

9848

9849

9850

9851

9852

9853

9854

9855

9856

9857

9858

9859

9860

9861

9862

9863

9864

9865

9866

9867

9868

9869

9870

9875

9876

9877

9878

9879

9880

9881

9882

9883

9884

9885

9886

9887

9888

9889

9890

9891

9892

9893

9894

9895

9896

9897

9898

9899

9900

\pgfpicture
\pgfrememberpicturepositiononpagetrue
\pgf@relevantforpicturesizefalse
\pgfpathrectanglecorners
{ \@ee_gpoint:n { 1 } }
{
\@@_gpoint:n
{ \int_eval:n { \int_max:nn { \c@iRow } { \c@jCol } + 1 } }
}
\pgfsetfillopacity { 0.75 }
\pgfsetfillcolor { white }
\pgfusepathqfill
\endpgfpicture
}
\dim_gzero_new:N \g_0@_tmpc_dim
\dim_gzero_new:N \g_Q@_tmpd_dim
\dim_gzero_new:N \g_Q@_tmpe_dim
\int_step_inline:nn { \c@iRow }
{
\bool_if:NTF \1_@@_in_code_after_bool
{
\pgfpicture
\pgfrememberpicturepositiononpagetrue
\pgf@relevantforpicturesizefalse
}
{ \begin { pgfpicture } }
\@@_qgpoint:n { row - ##1 }
\dim_set_eq:NN \1_tmpa_dim \pgf@y
\@@_gpoint:n { row - \int_eval:n { ##1 + 1 } }
\dim_gset:Nn \g_tmpa_dim { (\1_tmpa_dim + \pgf@y) / 2 }
\dim_gset:Nn \g_tmpb_dim { \1_tmpa_dim - \pgf@y }
\bool_if:NTF \1_@@_in_code_after_bool
{ \endpgfpicture }
{ \end { pgfpicture } }
\int_step_inline:nn { \c@jCol }
{
\hbox_set:Nn \1_tmpa_box
{
\normalfont \Large \sffamily \bfseries
\bool_if:NTF \1_@@_in_code_after_bool
{ \color { red } }
{ \color { red ! 50 } }
##1 - ###H#1
}
\bool_if:NTF \1_@@_in_code_after_bool
{
\pgfpicture
\pgfrememberpicturepositiononpagetrue
\pgf@relevantforpicturesizefalse
}
{ \begin { pgfpicture } }
\@@_gpoint:n { col - #i###1 }
\dim_gset_eq:NN \g_00@_tmpc_dim \pgf@x
\@@_gpoint:n { col - \int_eval:n { ####1 + 1 } }
\dim_gset:Nn \g_0@_tmpd_dim { \pgf@x - \g_0@_tmpc_dim }
\dim_gset_eq:NN \g_00@_tmpe_dim \pgf@x
\bool_if:NTF \1_@@_in_code_after_bool
{ \endpgfpicture }
{ \end { pgfpicture } }
\fp_set:Nn \1_tmpa_fp
{

\fp_min:nn

228

9901 {

9902 \fp_min:nn

9903 { \dim_ratio:nn \g_0@_tmpd_dim { \box_wd:N \1_tmpa_box } }
9904 { \dim_ratio:nn \g_tmpb_dim { \box_ht_plus_dp:N \1_tmpa_box } }
9905 }

9906 {1.0}%}

9907 }

9908 \box_scale:Nnn \1_tmpa_box { \fp_use:N \1_tmpa_fp } { \fp_use:N \1_tmpa_fp }
9909 \pgfpicture

9910 \pgfrememberpicturepositiononpagetrue

9911 \pgf@relevantforpicturesizefalse

9912 \pgftransformshift

9913 {

9914 \pgfpoint

9915 { 0.5 x (\g_0@_tmpc_dim + \g_00@_tmpe_dim) }

9916 { \dim_use:N \g_tmpa_dim }

9917 }

9918 \pgfnode

9919 { rectangle }

9920 { center }

9921 { \box_use:N \1_tmpa_box }

9922 { }

9923 {7

9924 \endpgfpicture

9925 }

9926 }

0027}

39 We process the options at package loading

We process the options when the package is loaded (with \usepackage) but we recommend to use
\NiceMatrixOptions instead.

We must process these options after the definition of the environment {NiceMatrix} because the
option renew-matrix executes the code \cs_set_eq:NN \env@matrix \NiceMatrix.

Of course, the command \NiceMatrix must be defined before such an instruction is executed.

The boolean \g_0@_footnotehyper_bool will indicate if the option footnotehyper is used.
028 \bool_new:N \g_0@_footnotehyper_bool

The boolean \g_0@_footnote_bool will indicate if the option footnote is used, but quickly, it will
also be set to true if the option footnotehyper is used.

020 \bool_new:N \g_0@_footnote_bool

9030 \msg_new:nnnn { nicematrix } { Unknown~key~for~package }

9931 {

9932 You~have~used~the~key~' \1l_keys_key_str '~when~loading~nicematrix~
9933 but~that~key~is~unknown. \\

9934 It~will~be~ignored. \\

9935 For~a~list~of~the~available~keys, ~type~H~<return>.
9936 }

9937 {

9938 The~available~keys~are~(in~alphabetic~order) : ~

9939 footnote, ~

9940 footnotehyper, ~

9941 messages-for-Overleaf, ~

9942 renew-dots~and~

9943 renew-matrix.

9044}

o025 \keys_define:nn { nicematrix }
9946 {
9947 renew-dots .bool_set:N = \1_@@_renew_dots_bool ,

229

9948

9949

9950

9951

9952

9953

9954

9955

9956

9957

9958

9959

9960

9961

9962

9963

9964

9965

9966

9967

9968

9969

9970

9971

9972

9973

9974

9975

9976

The class beamer has its own system to extract footnotes and that’s why we have nothing to do i

}

renew—dots .value_forbidden:n = true ,

renew-matrix .code:n = \@@_renew_matrix: ,

renew-matrix .value_forbidden:n = true ,

messages-for-Overleaf .bool_set:N = \g_Q@_messages_for_0Overleaf_bool ,
footnote .bool_set:N = \g_Q@_footnote_bool ,

footnotehyper .bool_set:N = \g_0@_footnotehyper_bool ,

unknown .code:n = \Q@@_error:n { Unknown~key~for~package }

\ProcessKeyOptions

\ea@_.

{

}

\ee_

{

}

msg_new:nn { footnote~with~footnotehyper~package }

You~can't~use~the~option~'footnote'~because~the~package~
footnotehyper~has~already~been~loaded. ~

If~you~want, ~you~can~use~the~option~'footnotehyper'~and~the~footnotes~
within~the~environments~of~nicematrix~will~be~extracted~with~the~tools~
of ~the~package~footnotehyper.\\

The~package~footnote~won't~be~loaded.

msg_new:nn { footnotehyper~with~footnote~package }

You~can't~use~the~option~'footnotehyper'~because~the~package~
footnote~has~already~been~loaded. ~

If~you~want, ~you~can~use~the~option~'footnote'~and~the~footnotes~
within~the~environments~of~nicematrix~will~be~extracted~with~the~tools~
of ~the~package~footnote.\\

The~package~footnotehyper~won't~be~loaded.

\bool_if:NT \g_0@_footnote_bool

{

beamer is used.

9977

9978

9979

9980

9981

9982

9983

9984

9985

9986

}

\IfClassLoadedTF { beamer }
{ \bool_set_false:N \g_0@_footnote_bool }

{
\IfPackageLoadedTF { footnotehyper }
{ \@@_error:n { footnote~with~footnotehyper~package } }
{ \usepackage { footnote } }
}

\bool_if:NT \g_0@_footnotehyper_bool

{

The class beamer has its own system to extract footnotes and that’s why we have nothing to do if
beamer is used.

9987

9988

9989

9990

9991

9992

9993

9994

9995

}

\IfClassLoadedTF { beamer }
{ \bool_set_false:N \g_0@_footnote_bool }

{
\IfPackageLoadedTF { footnote }
{ \@@_error:n { footnotehyper~with~footnote~package } }
{ \usepackage { footnotehyper } }
}

\bool_set_true:N \g_0@_footnote_bool

The flag \g_0@_footnote_bool is raised and so, we will only have to test \g_@@_footnote_bool in
order to know if we have to insert an environment {savenotes}.

230

40 About the package underscore

If the user loads the package underscore, it must be loaded before the package nicematrix. If it is
loaded after, we raise an error.

9906 \bool_new:N \1_@@_underscore_loaded_bool
o007 \IfPackageLoadedT { underscore }
903 { \bool_set_true:N \1_@@_underscore_loaded_bool }

w00 \hook_gput_code:nnn { begindocument } { . }

10000 {

10001 \bool_if:NF \1_@@_underscore_loaded_bool

10002 {

10003 \IfPackageLoadedT { underscore }

10004 { \@@_error:n { underscore~after~nicematrix } }
10005 }

10006 }

41 Error messages of the package

When there is a unknown key, maybe the user has tried to use an inexistent “additive syntax” for
that key. Of course, in that case, the last character of the name of the key is +.
#1 is a clist of names of sets of keys and #2 is the error message to send.

10007 \cs_new_protected:Npn \@@_unknown_key:nn #1 #2

10008 {

10009 \str_if_eq:eeTF

10010 { \str_item:Nn \1_keys_key_str { \str_count:N \1_keys_key_str } }
10011 {+3}

10012 {

10013 \str_set:Ne \1_tmpa_str

10014 { \str_range:Nnn \1_keys_key_str { 1 } { \str_count:N \1_keys_key_str - 1 } }
10015 \bool_set_false:N \1_tmpa_bool

10016 \clist_map_inline:nn { #1 }

10017 {

10018 \keys_if_exist:neT { ##1 } { \1_tmpa_str }

10019 {

10020 \@@_error:n { key~without~+~exists }

10021 \bool_set_true:N \1_tmpa_bool

10022 \clist_map_break:

10023 }

10024 }

10025 \bool_if:NF \1_tmpa_bool

10026 {

10027 \str_set:Ne \1_keys_key_str { \tl_trim_right_spaces:V \1_tmpa_str }
10028 \@@_unknown_key_i:nn { #1 } { #2 }

10029 }

10030 }

10031 { \@@_unknown_key_i:nn { #1 } { #2 } }

10032 }

We try a normalisation of the name of the key, and, when that normal form exists, we add that
information in the error message.

The normal form is the lower case form of the key, with all the spaces replaced by hyphens (there is
never spaces in the keys of nicematrix).

#1 is a clist of names of sets of keys and #2 is the error message to send.

10033 \cs_new_protected:Npn \@Q_unknown_key_i:nn #1 #2

231

10034 {

10035 \str_set_eq:NN \1_tmpa_str \1_keys_key_str

10036 \str_replace_all:Nnn \1_tmpa_str { ~ } { - }

10037 \str_set:Ne \1_tmpa_str { \str_lowercase:f { \1_tmpa_str } }
10038 \bool_set_false:N \1_tmpa_bool

10039 \clist_map_inline:nn { #1 }

10040 {

10041 \keys_if_exist:neT { ##1 } { \1_tmpa_str }

10042 {

10043 \@@_error:n { key~with~normal~form~exists }
10044 \bool_set_true:N \1_tmpa_bool

10045 \clist_map_break:

10046 }

10047 }

10048 \bool_if:NF \1_tmpa_bool { \@@_error:n { #2 } }

10049 }

wos0 \@@_msg_new:nn { key~without~+~exists }

10051 {

10052 The~key~'\tl_trim_right_spaces:V \1_tmpa_str'~exists~but~does~not~accept~an~
10053 additive~syntax~(with~+=).\\

10054 It~will~be~ignored.\\

10055 }

1056 \@@_msg_new:nn { key~with~normal~form-~exists }

10057 {

10058 The~key~'\1_keys_key_str'~does~not~exists.\\

10059 It~will~be~ignored.\\

10060 Maybe~you~want~to~use~the~key~'\1l_tmpa_str'.

10061 }

woe2 \str_const:Ne \c_0@_available_keys_str

10063 {

10064 \bool_if:nT { ! \g_0@_messages_for_0verleaf_bool }

10065 { For~a~list~of~the~available~keys,~type~H~<return>. }
10066 }

1057 \seq_new:N \g_00@_types_of_matrix_seq
woes \seq_gset_from_clist:Nn \g_0@@_types_of_matrix_seq

10069 {

10070 NiceMatrix ,

10071 pNiceMatrix , bNiceMatrix , vNiceMatrix, BNiceMatrix, VNiceMatrix
10072 }

w073 \seq_gset_map_e:NNn \g_QQ@_types_of_matrix_seq \g_00_types_of_matrix_seq
10074 { \tl_to_str:n { #1 } }

If the user uses too much columns, the command \@@_err_too_many_cols: is triggered. This com-
mand raises an error but also tries to give the best information to the user in the error message. The
command \seq_if_in:NoF is not expandable and that’s why we can’t put it in the error message
itself. We have to do the test before the \@@_fatal:n.

10075 \cs_new_protected:Npn \@@_err_too_many_cols:

10076 {

10077 \seq_if_in:NoF \g_0@_types_of_matrix_seq \g_0Q@_name_env_str
10078 { \@@_fatal:nn { too~many~cols~for~array 1} }

10079 \int_compare:nNnT { \1_@@_last_col_int } = { -2 }

10080 { \@e@_fatal:n { too~many~cols~for~matrix } }

10081 \int_compare:nNnT { \1_@@_last_col_int } = { -1 }

10082 { \@@_fatal:n { too~many~cols~for~matrix } }

10083 \bool_if:NF \1_@@_last_col_without_value_bool

10084 { \@@_fatal:n { too~many~cols~for~matrix~with~last~col } }
10085 }

The following command must not be protected since it’s used in an error message.

woss \cs_new:Npn \@@_message_hdotsfor:

10087 {

232

10088

10089

10090

10091

10092

10093

10094

10095

10096

10097

10098

10099

10100

10101

10102

10103

10104

10105

10106

10107

10108

10109

10110

10111

10112

10113

10114

10115

10116

10117

10118

10119

10120

10121

10122

10123

10124

10125

10126

10127

10128

10129

10130

10131

10132

10133

10134

10135

10136

10137

10138

10139

10140

10141

10142

10143

10144

10145

10146

\cs_

{

\@a_

{

}

\ea@_.

{

}

\@@_

{

}

\ee_

{

}

\ee_

{

}

\ee_

{

}

\ee_

{

}

\ea@_.

{

}

\ea@_.

{

\tl_if_empty:oF \g_0@_HVdotsfor_lines_tl
{ ~Maybe~your~use~of~ \token_to_str:N \Hdotsfor \ or~
\token_to_str:N \Hbrace \ is~incorrect. }

new_protected:Npn \@0_Hline_in_cell:
\@@_fatal:n { Misuse~of~Hline } }

msg_new:nn { Misuse~of~Hline }

Misuse~of~Hline. \\

Error~in~your~row~ \int_eval:n { \c@iRow }. \\

\token_to_str:N \Hline\ must~be~used~only~at~the~beginning~of~a~row.\\
That~error~is~fatal.

msg_new:nn { hvlines,~rounded-corners~and~corners }

Incompatible~options.\\
You~should~not~use~'hvlines',~'rounded-corners'~and~'corners'~at~the~same~time.\\
The~output~will~not~be~reliable.

msg_new:nn { Body~alone }

\token_to_str:N \Body\ alone. \\
You~have~used~\token_to_str:N \Body\ without~\token_to_str:N \CodeBefore.\\
That~error~is~fatal.

msg_new:nn { cellcolor~in~Block }

Bad~use~of~\token_to_str:N \cellcolor \\
You~can't~use~\token_to_str:N \cellcolor\ in~\token_to_str:N \Block\
(except~in~a~sub-block).\\

That~command~will~be~ignored.

msg_new:nn { rowcolor~in~Block }
Bad~use~of~\token_to_str:N \rowcolor \\

You~can't~use~\token_to_str:N \rowcolor\ in~\token_to_str:N \Block.\\
That~command~will~be~ignored.

msg_new:nn { key~color-inside }
Deleted~key.\\
The~key~'color-inside'~(and~its~alias~'colortbl-like')~has~been~deleted~in

~'nicematrix'~and~must~not~be~used.\\
This~error~is~fatal.

msg_new:nn { invalid-~weight }

Unknown~key.\\
The~key~' \1_keys_key_str '~of~your~column~X~is~unknown~and~will~be~ignored.

msg_new:nn { last~col~not~used }
Column~not~used.\\
The~key~'last-col'~is~in~force~but~you~have~not~used~that~last~column~

in~your~\@@_full_name_env: .~
However, ~you~can~go~on.

msg_new:nn { too~many~cols~for~matrix~with~last~col }

233

10147 Too~many~columns.\\

10148 In~the~row~ \int_eval:n { \c@iRow },~

10149 you~try~to~use~more~columns~

10150 than~allowed~by~your~ \@Q_full_name_env:

10151 \@@_message_hdotsfor: \

10152 The~maximal~number~of~columns~is~ \int_eval:n { \1_@@_last_col_int - 1 }~
10153 (plus~the~exterior~columns) .~This~error~is~fatal.

10154 3

10155 \@@_msg_new:nn { too~many~cols~for~matrix }

10156 {

10157 Too~many~columns.\\

10158 In~the~row~ \int_eval:n { \c@iRow } ,~

10159 you~try~to~use~more~columns~than~allowed~by~your~ \@@_full_name_env:

10160 \@@_message_hdotsfor: \

10161 Recall~that~the~maximal~number~of~columns~for~a~matrix~

10162 (excepted~the~potential~exterior~columns)~is~fixed~by~the~

10163 LaTeX~counter~'MaxMatrixCols'.~

10164 Its~current~value~is~ \int_use:N \c@MaxMatrixCols \

10165 (use~ \token_to_str:N \setcounter \ to~change~that~value).-~

10166 This~error~is~fatal.

10167 3

10165 \@@_msg_new:nn { too~many~cols~for~array }

10169 {

10170 Too~many~columns. \\

10171 In~the~row~ \int_eval:n { \c@iRow } ,~

10172 ~you~try~to~use~more~columns~than~allowed~by~your~

10173 \@@_full_name_env: . \@@_message_hdotsfor: \ The~maximal~number~of~columns~is~
10174 \int_use:N \g_0@_static_num_of_col_int \

10175 \bool_if:nT

10176 { \int_compare_p:n { \1_@@_first_col_int = 0 } || \g_0@_last_col_found_bool }
10177 { (plus~the~exterior~ones)~}

10178 since~the~preamble~is~' \g_@@_user_preamble_tl '.\\

10179 This~error~is~fatal.

10180 }

w0151 \@@_msg_new:nn { columns~not~used }

10182 {

10183 Columns~not~used.\\

10184 The~preamble~of~your~ \@Q_full_name_env: \ is~' \g_QQ@_user_preamble_tl '.~
10185 It~announces~ \int_use:N \g_0@_static_num_of_col_int \

10186 columns~but~you~only~used~ \int_use:N \c@jCol .\\

10187 The~columns~you~did~not~used~won't~be~created.\\

10188 You~won't~have~similar~warning~till~the~end~of~the~document.

10189 }

10100 \@@_msg_new:nn { empty~preamble }

10191 {

10192 Empty~preamble.\\

10193 The~preamble~of~your~ \@@_full_name_env: \ is~empty.\\

10104 This~error~is~fatal.

10195 i

10196 \@@_msg_new:nn { in~first~col }

10197 {

10198 Erroneous~use.\\

10199 You~can't~use~the~command~#1 in~the~first~column~(number~0)~of~the~array.\\
10200 That~command~will~be~ignored.

10201 }

10202 \@@_msg_new:nn { in~last~col }

10203 {

10204 Erroneous~use.\\

10205 You~can't~use~the~command~#1 in~the~last~column~(exterior)~of~the~array.\\
10206 That~command~will~be~ignored.

10207 ¥

234

10208

10209

10210

10211

10212

10213

10214

10215

10216

10217

10218

10219

10220

10221

10222

10223

10224

10225

10233

10234

10235

10236

10237

10238

10239

10240

10241

10242

10243

10244

10245

10246

10247

10248

10249

10250

10251

10253

10254

10255

10256

10257

10258

10259

10260

10261

10262

10263

10264

\ee_

{

}

\ea@_.

{

}

\ea@_.

{

}

\@@_:

{

}

\ea@_

{

}

\e@_.

{

}

\ee_

{

}

\ea@_.

{

}

\ea@_.

{

}

\@@_:

{

msg_new:nn { in~first~row }
Erroneous~use.\\

You~can't~use~the~command~#1 in~the~first~row~(number~0)~of~the~array.\\
That~command~will~be~ignored.

msg_new:nn { in~last~row }
Erroneous~use.\\

You~can't~use~the~command~#1 in~the~last~row~(exterior)~of~the~array.\\
That~command~will~be~ignored.

msg_new:nn { TopRule~without~booktabs }

Erroneous~use.\\
You~can't~use~the~command~ #1 because~'booktabs'~is~not~loaded.\\
That~command~will~be~ignored.

msg_new:nn{ rotate~in~p~col }
\token_to_str:N \rotate\ forbidden.\\
You~should~not~use~\token_to_str:N \rotate\ in~a~column~of~type~'p',~

'p',~'m'\IfPackageloadedTF { varwidth } { ,~'X'~or~'V' } { ~or~'X'}.~
If~you~go~on, ~maybe~you~won't~have~the~expected~output.

msg_new:nn { TopRule~without~tikz }
Erroneous~use.\\

You~can't~use~the~command~ #1 because~'tikz'~is~not~loaded.\\
That~command~will~be~ignored.

msg_new:nn { caption~outside~float }
Key~caption~forbidden.\\

You~can't~use~the~key~'caption'~because~you~are~not~in~a~floating~
environment~ (such~as~\{table\}).~This~key~will~be~ignored.

msg_new:nn { short-caption~without~caption }

You~should~not~use~the~key~'short-caption'~without~'caption'.~
However, ~your~'short-caption'~will~be~used~as~'caption'.

msg_new:nn { double~closing~delimiter }
Double~delimiter.\\

You~can't~put~a~second~closing~delimiter~"#1"~just~after~a~first~closing-~
delimiter.~This~delimiter~will~be~ignored.

msg_new:nn { delimiter~after~opening }
Double~delimiter.\\

You~can't~put~a~second~delimiter~"#1"~just~after~a~first~opening-~
delimiter.~That~delimiter~will~be~ignored.

msg_new:nn { bad~option~for~line-style }
Bad~line~style.\\

Since~you~haven't~loaded~TikZ,~the~only~value~you~can~give~to~'line-style'~
is~'standard'.~That~key~will~be~ignored.

235

10265 \@@_msg_new:nn { corners~with~no-cell-nodes }

10269 {

10270 Incompatible~keys.\\

10271 You~can't~use~the~key~'corners'~here~because~the~key~'no-cell-nodes'~
10272 is~in~force.\\

10273 If~you~go~on,~that~key~will~be~ignored.

10274 }

10275 \@@_msg_new:nn { extra-nodes~with~no-cell-nodes }

10276 {

10277 Incompatible~keys.\\

10278 You~can't~create~'extra~nodes'~here~because~the~key~'no-cell-nodes'~
10279 is~in~force.\\

10280 If~you~go~on, ~those~extra~nodes~won't~be~created.

10281 }

10262 \@@_msg_new:nn { Identical~notes~in~caption }

10283 {

10284 Identical~tabular~notes.\\

10285 You~can't~put~several~notes~with~the~same~content~in~

10286 \token_to_str:N \caption \ (but~you~can~in~the~main~tabular).\\
10287 If~you~go~on,~the~output~will~probably~be~erroneous.

10288 }

1260 \@@_msg_new:nn { tabularnote~below~the~tabular }

10290 {

10201 \token_to_str:N \tabularnote \ forbidden\\

10202 You~can't~use~ \token_to_str:N \tabularnote \ in~the~caption~
10293 of~your~tabular~because~the~caption~will~be~composed~below~

10294 the~tabular.~If~you~want~the~caption~above~the~tabular~use~the~
10295 key~'caption-above'~in~ \token_to_str:N \NiceMatrixOptions .\\
10296 Your~ \token_to_str:N \tabularnote \ will~be~discarded~and~

10207 no~similar~error~will~raised~in~this~document.

10298 }

10200 \@@_msg_new:nn { Unknown~key~for~rules }

10300 {

10301 Unknown~key.\\

10302 There~is~only~two~keys~available~here:~width~and~color.\\

10303 Your~key~' \1_keys_key_str '~will~be~ignored.

10304 }

10305 \@@_msg_new:nn { Unknown~key~for~Hbrace }

10306 {

10307 Unknown-~key. \\

10308 You~have~used~the~key~' \1_keys_key_str '~but~the~only~
10309 keys~allowed~for~the~commands~ \token_to_str:N \Hbrace \
10310 and~ \token_to_str:N \Vbrace \ are:~'brace-shift(+)',~'color',~
10311 'horizontal-label(s)',~'shorten'~'shorten-end'~

10312 and~'shorten-start'.\\

10313 That~error~is~fatal.

10314 }

10315 \@@_msg_new:nn { Unknown~key~for~TikzEveryCell }

10316 {

10317 Unknown~key.\\

10318 There~is~only~two~keys~available~here:~

10319 'empty' ~and~'not-empty'.\\

10320 Your~key~' \1l_keys_key_str '~will~be~ignored.

10321 3

1032 \@@_msg_new:nn { Unknown-~key~for-~rotate }

10323 {

10324 Unknown~key.\\

10325 The~only~key~available~here~is~'c'.\\

10326 Your~key~' \1l_keys_key_str '~will~be~ignored.

10327 }

236

10328 \@@_msg_new:nnn { Unknown~key~for~custom-line }

10329 {

10330 Unknown~key.\\

10331 The~key~' \1_keys_key_str '~is~unknown~in~a~'custom-line'.~
10332 It~you~go~on, ~you~will~probably~have~other~errors. \\

10333 \c_0@_available_keys_str

10334 }

10335 {

10336 The~available~keys~are~(in~alphabetic~order):~

10337 ccommand, ~

10338 color,~

10339 command, ~

10340 dotted, ~

10341 letter,~

10342 multiplicity,~

10343 sep-color, ~

10344 tikz,~and~total-width.

10345 }

10346 \@@_msg_new:nnn { Unknown-~key~for~xdots }

10347 {

10348 Unknown~key.\\

10349 The~key~' \1_keys_key_str '~is~unknown~for~a~command~for~drawing~dotted~rules.\\
10350 \c_0@_available_keys_str

10351 }

10352 {

10353 The~available~keys~are~(in~alphabetic~order):~

10354 'color',~

10355 'horizontal(s)-labels"',~

10356 'inter',~

10357 'line-style',~

10358 'nullify’',~

10359 'radius’',~

10360 'shorten',~

10361 'shorten-end'~and~'shorten-start'.

10362 }

10363 \@@_msg_new:nn { Unknown-key~for~rowcolors }

10364 {

10365 Unknown~key.\\

10366 As~for~now,~there~is~only~two~keys~available~here:~'cols'~and~'respect-blocks'~
10367 (and~you~try~to~use~' \1l_keys_key_str ')\\

10368 That~key~will~be~ignored.

10369 }

10370 \@@_msg_new:nn { label~without~caption }

10371 {

10372 You~can't~use~the~key~'label'~in~your~\{NiceTabular\}~because~
10373 you~have~not~used~the~key~'caption'.~The~key~'label'~will~be~ignored.
10374 3

10375 \@@_msg_new:nn { W~warning }

10376 {

10377 Line~ \msg_line_number: .~The~cell~is~too~wide~for~your~column~'W'~
10378 (row~ \int_use:N \c@iRow).

10379 ¥

10350 \@@_msg_new:nn { Construct~too~large }

10381 {

10382 Construct~too~large.\\

10383 Your~command~ \token_to_str:N #1

10384 can't~be~drawn~because~your~matrix~is~too~small.\\
10385 That~command~will~be~ignored.

10386 }

10357 \@@_msg_new:nn { underscore~after~nicematrix }

10388 {

237

10389 Problem~with~'underscore'.\\

10390 The~package~'underscore'~should~be~loaded~before~'nicematrix'.~
10391 You~can~go~on~but~you~won't~be~able~to~write~something~such~as:\\
10392 ' \token_to_str:N \Cdots \token_to_str:N _

10303 \{ n \token_to_str:N \text \{ ~times \} \}'.

10394 }

10305 \@@_msg_new:nn { ampersand~in~light-syntax }

10396 {

10397 Ampersand~forbidden.\\

10398 You~can't~use~an~ampersand~(\token_to_str:N &)~to~separate~columns~because~
10399 ~the~key~'light-syntax'~is~in~force.~This~error~is~fatal.

10400 }

10401 \@@_msg_new:nn { double-backslash~in~light-syntax }

10402 {

10403 Double~backslash~forbidden.\\

10404 You~can't~use~ \token_to_str:N \\

10405 ~to~separate~rows~because~the~key~'light-syntax'~

10406 is~in~force.~You~must~use~the~character~' \1_@@_end_of_row_tl '~
10407 (set~by~the~key~'end-of-row') .~This~error~is~fatal.

10408 }

10400 \@@_msg_new:nn { hlines~with~color }

10410 {

10411 Incompatible~keys.\\

10412 You~can't~use~the~keys~'hlines',~'vlines'~or~'hvlines'~for~a~

10413 \token_to_str:N \Block \ when~the~key~'color'~or~'draw'~is~used.\\
10414 However, ~you~can~put~several~commands~ \token_to_str:N \Block.\\
10415 Your~key~will~be~discarded.

10416 }

10417 \@@_msg_new:nn { bad~value~for~baseline }

10418 {

10419 Bad~value~for~baseline.\\

10420 The~value~given~to~'baseline'~(\int_use:N \1_tmpa_int)~is~not~
10421 valid.~The~value~must~be~between~\int_use:N \1_@@_first_row_int\ and~
10422 \int_use:N \g_0@@_row_total_int \ or~equal~to~'t',~'c'~or~'b'~or~of~
10423 the~form~'line-i'.\\

10424 A~value~of~1~will~be~used.

10425 ¥

10426 \@@_msg_new:nn { bad~value~for~baseline-line }

10427 {

10428 Bad~value~for~baseline~with~line.\\

10429 The~value~given~to~'baseline'~(\int_use:N \1_tmpa_int)~is~not~
10430 valid.~The~number~of~the~line~must~be~between~1l~and~

10431 \int_eval:n { \c@iRow + 1 } \\

10432 A~value~of~'line-1'~will~be~used.

10433 T

1043 \@@_msg_new:nn { detection~of~empty~cells }

10435 {

10436 Problem~with~'not-empty'\\

10437 For~technical~reasons, ~you~must~activate~

10438 'create-cell-nodes'~in~ \token_to_str:N \CodeBefore \
10439 in~order~to~use~the~key~' \1_keys_key_str '.\\

10440 That~key~will~be~ignored.

10441 }

1042 \@@_msg_new:nn { siunitx~not~loaded }

10443 {

10444 siunitx~not~loaded\\

10445 You~can't~use~the~columns~'S'~because~'siunitx'~is~not~loaded.\\
10446 That~error~is~fatal.

10447 }

ms \@@_msg_new:nn { Invalid~name }

238

10449 {

10450 Invalid~name.\\

10451 You~can't~give~the~name~' \1_keys_value_tl '~to~a~ \token_to_str:N
10452 \SubMatrix \ of~your~ \@@_full_name_env: .\\

10453 A-~name~must~be~accepted~by~the~regular~expression~[A-Za-z] [A-Za-z0-9]*.\\
10454 This~key~will~be~ignored.

10455 i

10456 \@@_msg_new:nn { Hbrace~not~allowed }

10457 {

10458 Command-~not~allowed.\\

10459 You~can't~use~the~command~ \token_to_str:N #1

10460 because~you~have~not~loaded~

10461 \IfPackageLoadedTF { tikz }

10462 { the~TikZ~library~'decorations.pathreplacing'.~Use~ }

10463 { TikZ.~ Use:~ \token_to_str:N \usepackage \{tikz\}~and~ }

10464 \token_to_str:N \usetikzlibrary \{decorations.pathreplacing\}. \\
10465 That~command~will~be~ignored.

10466 }

10467 \@@_msg_new:nn { Vbrace~not~allowed }

10468 {

10469 Command-~not~allowed.\\

10470 You~can't~use~the~command~ \token_to_str:N \Vbrace \

10471 because~you~have~not~loaded~TikZ~

10472 and~the~TikZ~library~'decorations.pathreplacing'.\\

10473 Use: ~\token_to_str:N \usepackage \{tikz\}~

10474 \token_to_str:N \usetikzlibrary \{decorations.pathreplacing\} \\
10475 That~command~will~be~ignored.

10476 }

10477 \@@_msg_new:nn { Wrong~line~in~SubMatrix }

10478 {

10479 Wrong~line.\\

10480 You~try~to~draw~a~#l~line~of ~number~'#2'~in~a~

10481 \token_to_str:N \SubMatrix \ of~your~ \@@_full_name_env: \ but~that~
10482 number~is~not~valid.~It~will~be~ignored.

10483 3

1046 \@@_msg_new:nn { Impossible~delimiter }

10485 {

10486 Impossible~delimiter.\\

10487 It's~impossible~to~draw~the~#1l~delimiter~of~your~

10488 \token_to_str:N \SubMatrix \ because~all~the~cells~are~empty~
10489 in~that~column.

10490 \bool_if:NT \1_@@_submatrix_slim_bool

10491 { ~Maybe~you~should~try~without~the~key~'slim'. } \\

10492 This~ \token_to_str:N \SubMatrix \ will~be~ignored.

10493 }

1040 \@@_msg_new:nnn { width~without~X~columns }

10495 {

10496 You~have~used~the~key~'width'~but~you~have~put~no~'X'~column~in~
10497 the~preamble~(' \g_0@_user_preamble_tl ')~of~your~ \@@_full_name_env: .\\
10498 That~key~will~be~ignored.

10499 }

10500 {

10501 This~message~is~the~message~'width~without~X~columns'~

10502 of~the~module~'nicematrix'.~

10503 The~experimented~users~can~disable~that~message~with~

10504 \token_to_str:N \msg_redirect_name:nnn .\\

10505 T

10506

10507 \@@_msg_new:nn { key~multiplicity~with~dotted }
10508 {
10500 Incompatible~keys. \\

239

10512

10513

10514

10515

10516

10517

10518

10519

10520

10521

&

1052

N

10523

10524

10525

10526

10527

10528

10529

10534

10535

10536

10537

10538

10539

10540

10541

10542

10543

10544

10545

10546

10547

10548

10549

10554

10555

10556

10557

10558

10559

10560

10561

10562

10563

10564

10565

10566

10567

10568

10569

}

\ea@_.

{

}

\e@_.

{

}

\@@_

{

}

\ee_

{

}

\ea_

{

}

\ea@_.

{

}

\ea@_.

{

}
{

}

You~have~used~the~key~'multiplicity'~with~the~key~'dotted'~
in~a~'custom-line'.~They~are~incompatible. \\
The~key~'multiplicity'~will~be~discarded.

msg_new:nn { empty~environment }

Empty~environment.\\
Your~ \@@_full_name_env: \ is~empty.~This~error~is~fatal.

msg_new:nn { No~letter~and~no~command }

Erroneous~use.\\
Your~use~of~'custom-line'~is~no-op~since~you~don't~have~used~the~
key~'letter'~(for~a~letter~for~vertical~rules)~nor~the~keys~'command'~or~
~'ccommand '~ (to~draw~horizontal~rules).\\

However, ~you~can~go~on.

msg_new:nn { Forbidden~letter }

Forbidden~letter.\\
You~can't~use~the~letter~'#1'~for~a~customized~line.~
It~will~be~ignored.\\
The~forbidden~letters~are:~\c_0@_forbidden_letters_str

msg_new:nn { Several~letters }

Wrong~name.\\
You~must~use~only~one~letter~as~value~for~the~key~'letter'~(and~you~
have~used~' \1_0@_letter_str ').\\

It~will~be~ignored.

msg_new:nn { Delimiter~with~small }

Delimiter~forbidden.\\
You~can't~put~a~delimiter~in~the~preamble~of~your~
\@@_full_name_env: \
because~the~key~'small'~is~in~force.\\
This~error~is~fatal.

msg_new:nn { unknown~cell~for~line~in~CodeAfter }

Unknown~cell.\\

Your~command~ \token_to_str:N \line \{ #1 \} \{ #2 \}~in~

the~ \token_to_str:N \CodeAfter \ of~your~ \@@_full_name_env: \
can't~be~executed~because~a~cell~doesn't~exist.\\

This~command~ \token_to_str:N \line \ will~be~ignored.

msg_new:nnn { Duplicate~name~for~SubMatrix }

Duplicate~name.\\
The~name~'#1'~is~already~used~for~a~ \token_to_str:N \SubMatrix \
in~this~ \@@_full_name_env: .\\
This~key~will~be~ignored.\\
\bool_if:NF \g_0@_messages_for_Overleaf_bool
{ For~a~list~of~the~names~already~used, ~type~H~<return>. }

The~names~already~defined~in~this~ \@Q_full_name_env: \ are:~
\seq_use:Nnnn \g_@@_submatrix_names_seq { ~and~ } { ,~ } { ~and~ } .

240

10578

10579

10580

10581

10582

10583

10584

10585

10586

10587

10588

10589

10590

10591

10592

10593

10594

10595

10596

10597

10598

10599

10600

10601

10602

10603

10604

10605

10606

10607

10608

10609

10610

10611

10612

10613

10614

10615

10616

10617

10618

10619

10620

10621

10622

10623

10624

10625

10626

10627

10628

10629

10630

\ee_

{

}

\ee_

{

}

\ee_

{

}

\ee_

{

}

\ee_

{

}

\ee_

{

}

\ee_

{

}

\ea@_.

{

msg_new:nn { r~or~l~with~preamble }

Erroneous~use.\\

You~can't~use~the~key~' \1l_keys_key_str '~in~your~ \@@_full_name_env: .-~
You~must~specify~the~alignment~of~your~columns~with~the~preamble~of~
your~ \@@_full_name_env: .\\

This~key~will~be~ignored.

msg_new:nn { Hdotsfor~in~col~0 }

Erroneous~use.\\

You~can't~use~ \token_to_str:N \Hdotsfor\ or~\token_to_str:N \Hbrace\
in~an~exterior~column~of~

the~array.~This~error~is~fatal.

msg_new:nn { bad~corner }

Bad~corner.\\
#1~is~an~incorrect~specification~for~a~corner~(in~the~key~
'corners').~The~available~values~are:~NW,~SW,~NE~and~SE.\\
This~specification~of~corner~will~be~ignored.

msg_new:nn { bad~border }

Bad~border.\\
\1_keys_key_str \space ~is~an~incorrect~specification~for~a~border~
(in~the~key~'borders' ~of~the~command~ \token_to_str:N \Block).~
The~available~values~are:~left,~right,~top~and~bottom~(and~you~can~
also~use~the~key~'tikz'
\IfPackageloadedF { tikz }

{ ~if~you~load~the~LaTeX~package~'tikz' }).\\
This~specification~of~border~will~be~ignored.

msg_new:nn { TikzEveryCell~without~tikz }

TikZ~not~loaded.\\

You~can't~use~ \token_to_str:N \TikzEveryCell \
because~you~have~not~loaded~tikz.~
This~command~will~be~ignored.

msg_new:nn { tikz~key~without~tikz }

TikZ~not~loaded.\\
You~can't~use~the~key~'tikz'~for~the~command~' \token_to_str:N
\Block '~because~you~have~not~loaded~tikz.~
This~key~will~be~ignored.

msg_new:nn { Bad~argument~for~Block }

Bad~argument.\\

The~first~mandatory~argument~of~\token_to_str:N \Block\ must~
be~of~the~form~'i-j'~(or~completely~empty)~and~you~have~used:~
#1\\

If~you~go~on,~the~\token_to_str:N \Block\ will~be~mono-cell~(as~if~
the~argument~was~empty) .

msg_new:nn { last-col~non~empty~for~NiceArray }
Erroneous~use.\\

In~the~ \@@_full_name_env: ,~you~must~use~the~key~
'last-col'~without~value.\\

241

10631 However, ~you~can~go~on~for~this~time~
10632 (the~value~' \1_keys_value_tl '~will~be~ignored).

10633 }

1063« \@@_msg_new:nn { last-col~non~empty~for~NiceMatrixOptions }

10635 {

10636 Erroneous~use. \\

10637 In~\token_to_str:N \NiceMatrixOptions ,~you~must-~use~the~key~
10638 'last-col'~without~value. \\

10639 However, ~you~can~go~on~for~this~time~

10640 (the~value~' \1_keys_value_tl '~will~be~ignored).

10641 }

1062 \@@_msg_new:nn { Block~too~large~1 }

10643 {

10644 Block~too~large. \\

10645 You~try~to~draw~a~block~in~the~cell~#1-#2~of ~your~matrix~but~the~matrix~is~
10646 too~small~for~that~block. \\

10647 This~block~and~maybe~others~will~be~ignored.

10648 3

w06s0 \@@_msg_new:nn { Block~too~large~2 }

10650 {

10651 Block~too~large. \\

10652 The~preamble~of~your~ \@@_full_name_env: \ announces~ \int_use:N
10653 \g_00_static_num_of_col_int \

10654 columns~but~you~use~only~ \int_use:N \c@jCol \ and~that's~why~a~block~
10655 specified~in~the~cell~#1-#2~can't~be~drawn.~You~should~add~some~ampersands~
10656 (&) ~at~the~end~of~the~first~row~of~your~ \@Q@_full_name_env: . \\
10657 This~block~and~maybe~others~will~be~ignored.

10658 }

10650 \@@_msg_new:nn { unknown~column~type }

10660 {

10661 Bad~column~type. \\

10662 The~column~type~'#1'~in~your~ \@@_full_name_env: \

10663 is~unknown. \\

10664 This~error~is~fatal.

10665 }

10666 \@@_msg_new:nn { unknown~column~type~multicolumn }

10667 {

10668 Bad~column~type. \\

10669 The~column~type~'#1'~in~the~command~\token_to_str:N \multicolumn \
10670 ~of~your~ \@@_full_name_env: \

10671 is~unknown. \\

10672 This~error~is~fatal.

10673 3

10674 \@@_msg_new:nn { unknown~column~type~S }

10675 {

10676 Bad~column~type. \\

10677 The~column~type~'S'~in~your~ \@@_full_name_env: \ is~unknown. \\
10678 If~you~want~to~use~the~column~type~'S'~of~siunitx,~you~should~
10679 load~that~package. \\

10680 This~error~is~fatal.

10681 }

1062 \@@_msg_new:nn { unknown~column~type~S~multicolumn }

10683 {

10684 Bad~column~type. \\

10685 The~column~type~'S'~in~the~command~\token_to_str:N \multicolumn \
10686 of ~your~ \Q@0_full_name_env: \ is~unknown. \\

10687 If~you~want~to~use~the~column~type~'S'~of~siunitx,~you~should~
10688 load~that~package. \\

10689 This~error~is~fatal.

10690 }

242

10691

10692

10693

10694

10695

10696

10697

10698

10699

10700

10701

10702

10703

10704

10705

10706

10707

10708

10709

10710

10711

10712

10713

10714

10715

10716

10717

10718

10724

10725

10726

10727

10728

10729

10730

10731

10732

10733

10734

10735

10736

10737

10738

10739

10740

10741

10742

10743

10744

10745

10746

10747

10748

10749

10750

10751

\ee_

{

}

\e@_.

{

}

\ee_

{

}

\ee_

{

}

\ee_

{

}

\ee_

{

}

\ee_

{

}

\ee_

{

}

msg_new:nn { tabularnote~forbidden }

Forbidden~command. \\

You~can't~use~the~command~ \token_to_str:N \tabularnote \
~here.~This~command~is~available~only~in~

\{NiceTabular\}, ~\{NiceTabular*\}~and~\{NiceTabularX\}~or~in~
the~argument~of~a~command~\token_to_str:N \caption \ included~
in~an~environment~\{table\}. \\

This~command~will~be~ignored.

msg_new:nn { borders~forbidden }

Forbidden~key.\\

You~can't~use~the~key~'borders'~of~the~command~ \token_to_str:N \Block \
because~the~option~'rounded-corners'~
is~in~force~with~a~non-zero~value.\\

This~key~will~be~ignored.

msg_new:nn { bottomrule~without~booktabs }

booktabs~not~loaded.\\
You~can't~use~the~key~'tabular/bottomrule'~because~you~haven't~
loaded~'booktabs'.\\

This~key~will~be~ignored.

msg_new:nn { enumitem~not~loaded }

enumitem~not~loaded. \\

You~can't~use~the~command~ \token_to_str:N \tabularnote \
~because~you~haven't~loaded~'enumitem'. \\
All~the~commands~ \token_to_str:N \tabularnote \ will~be~
ignored~in~the~document.

msg_new:nn { tikz~without~tikz }

TikZ~not~loaded. \\
You~can't~use~the~key~'tikz'~here~because~TikZ~is~not~
loaded.~If~you~go~on,~that~key~will~be~ignored.

msg_new:nn { tikz~in~custom-line~without~tikz }

TikZ~not~loaded. \\
You~have~used~the~key~'tikz'~in~the~definition~of~a~
customized~line~(with~'custom-line')~but~TikZ~is~not~loaded.~
You~can~go~on~but~you~will~have~another~error~if~you~actually~
use~that~custom~line.

msg_new:nn { tikz~in~borders~without~tikz }

TikZ~not~loaded. \\
You~have~used~the~key~'tikz'~in~a~key~'borders'~(of~a~
command~' \token_to_str:N \Block ')~but~TikZ~is~not~loaded.~
That~key~will~be~ignored.

msg_new:nn { color~in~custom-line~with~tikz }

Erroneous~use.\\
In~a~'custom-line',~you~have~used~both~'tikz'~and~'color',~
which~is~forbidden~(you~should~use~'color'~inside~the~key~'tikz') .~
The~key~'color'~will~be~discarded.

243

10759

10760

10761

10762

10763

10764

10765

10766

10767

10770

10771

10772

10773

10774

10782

10783

10784

10785

10786

10787

10788

10789

10790

10791

10792

10793

10794

10795

10796

10797

10798

10799

10800

10801

10802

10803

10804

10805

10806

10807

10808

10809

10810

10811

10812

\ee_

{

}

\e@_.

{

}

768 \QQ@_

{

}

\@a_

{

}

\ee_

{

}

\ee_

{

}

\ee_

{

}

\ee_

{

}
{

msg_new:nn { Wrong~last~row }

Wrong~number.\\

You~have~used~'last-row= \int_use:N \1_0@_last_row_int '~but~your~
\@@_full_name_env: \ seems~to~have~ \int_use:N \c@iRow \ rows.~
If~you~go~on,~the~value~of~ \int_use:N \c@iRow \ will~be~used~for~
last~row~but~you~should~correct~your~code.~You~can~avoid~this~
problem~by~using~'last-row'~without~value~(more~compilations~
might~be~necessary) .

msg_new:nn { Yet~in~env }

Nested~environments.\\
Environments~of~nicematrix~can't~be~nested.\\
This~error~is~fatal.

msg_new:nn { Outside~math~mode }

Outside~math~mode.\\

The~\@@_full_name_env: \ can~be~used~only~in~math~mode~
(and~not~in~ \token_to_str:N \vcenter).\\
This~error~is~fatal.

msg_new:nn { One~letter~allowed }

Bad~name.\\

The~value~of~key~' \1_keys_key_str '~must~be~of~length~1~and~
you~have~used~' \1l_keys_value_tl '.\\

It~will~be~ignored.

msg_new:nn { TabularNote~in~CodeAfter }

Environment~\{TabularNote\}~forbidden.\\
You~must~use~\{TabularNote\}~at~the~end~of~your~\{NiceTabular\}~
but~*beforex~the~ \token_to_str:N \CodeAfter . \\
This~environment~\{TabularNote\}~will~be~ignored.

msg_new:nn { varwidth~not~loaded }

varwidth~not~loaded.\\
You~can't~use~the~column~type~'V'~because~'varwidth'~is~not~
loaded.\\

Your~column~will~behave~like~'p'.

msg_new:nn { varwidth~not~loaded~in~X }

varwidth~not~loaded.\\
You~can't~use~the~key~'V'~in~your~column~'X"~
because~'varwidth'~is~not~loaded.\\
It~will~be~ignored. \\

msg_new:nnn { Unknown~key~for~RulesBis }

Unknown~key.\\
Your~key~' \1l_keys_key_str '~is~unknown~for~a~rule.\\
\c_0@_available_keys_str

The~available~keys~are~(in~alphabetic~order) :~
color,~
dotted, ~

244

10813

10814

10815

10816

10817

10818

10819

10820

10821

10822

10823

10824

10825

10826

10827

10828

10829

10830

10831

10832

10833

10834

10835

10836

10837

10838

10839

10840

10841

10842

10843

10844

10845

10846

10847

10848

10849

10850

10851

10852

10853

10854

10855

10856

10857

10858

10859

10860

10861

10862

10863

10864

10865

10866

10867

10868

10869

10870

10871

10872

10873

10874

}

\ea@_.

{

}
{

}

\ee_

{

}
{

}

\e@_.

{

}
{

}

\ea_.

{

}
{

}

\ea@_.

{

multiplicity,~
sep-color, ~
tikz,~and~total-width.

msg_new:nnn { Unknown~key~for~Block }

Unknown~key. \\

The~key~' \1_keys_key_str '~is~unknown~for~the~command~
\token_to_str:N \Block . \\

It~will~be~ignored. \\

\c_0@_available_keys_str

The~available~keys~are~(in~alphabetic~order) : ~&-in-blocks, ~ampersand-in-blocks, ~
b,~B,~borders,~c,~draw,~fill,~hlines,~hvlines,~1,~1line-width, ~name, ~
opacity,~rounded-corners,~r,~respect-arraystretch,~t,~T,~tikz,~transparent~
and~vlines.

msg_new:nnn { Unknown~key~for~Brace }

Unknown~key.\\

The~key~' \1l_keys_key_str '~is~unknown~for~the~commands-~
\token_to_str:N \UnderBrace \ and~ \token_to_str:N \OverBrace . \\
It~will~be~ignored. \\

\c_00@_available_keys_str

The~available~keys~are~(in~alphabetic~order) :~color,~left-shorten,~
right-shorten, ~shorten~(which~fixes~both~left-shorten~and~
right-shorten) ~and~yshift.

msg_new:nnn { Unknown~key~for~CodeAfter }

Unknown~key.\\

The~key~' \1_keys_key_str '~is~unknown.\\
It~will~be~ignored. \\
\c_00@_available_keys_str

The~available~keys~are~(in~alphabetic~order) :~
delimiters/color, ~
rules~(with~the~subkeys~'color'~and~'width'),~
sub-matrix~ (several~subkeys) ~
and~xdots~(several~subkeys) .~
The~latter~is~for~the~command~ \token_to_str:N \line

msg_new:nnn { Unknown-~key~for~CodeBefore }

Unknown~key.\\

The~key~' \1_keys_key_str '~is~unknown.\\
It~will~be~ignored. \\
\c_00@_available_keys_str

The~available~keys~are~(in~alphabetic~order) :~
create-cell-nodes, ~

delimiters/color~and~
sub-matrix~(several~subkeys) .

msg_new:nnn { Unknown~key~for~SubMatrix }

245

10875 Unknown~key.\\

10876 The~key~"' \1_keys_key_str '~is~unknown.\\

10877 That~key~will~be~ignored. \\

10878 \c_00_available_keys_str

10879 }

10880 {

10881 The~available~keys~are~(in~alphabetic~order) : ~
10882 'delimiters/color',~

10883 'extra-height',~

10884 'hlines',~

10885 'hvlines',~

10886 'left-xshift',~

10887 'name’' , ~

10888 'right-xshift',~

10889 'rules'~(with~the~subkeys~'color'~and~'width'),~
10890 'slim',~

10891 'vlines'~and~'xshift'~(which~sets~both~'left-xshift'~
10892 and~'right-xshift').\\

10893 }

1080 \@@_msg_new:nnn { Unknown~key~for~notes }

10895 {

10896 Unknown~key.\\

10897 The~key~' \1_keys_key_str '~is~unknown.\\
10898 That~key~will~be~ignored. \\

10899 \c_00_available_keys_str

10900 }

10901 {

10902 The~available~keys~are~(in~alphabetic~order) : ~
10003 bottomrule, ~

10004 code-after, ~

10905 code-before(+) ,~

10906 detect-duplicates,~

10907 enumitem-keys, ~

10008 enumitem-keys-para, ~

10909 para,~

10010 label-in-list,~

10011 label-in-tabular~and~

10012 style.

10913 }

10012 \@@_msg_new:nnn { Unknown~key~for~RowStyle }

10915 {

10916 Unknown~key.\\

10017 The~key~"' \1_keys_key_str '~is~unknown~for~the~command~
10018 \token_to_str:N \RowStyle . \\

10919 That~key~will~be~ignored. \\

10920 \c_0@_available_keys_str

10921 }

10922 {

10023 The~available~keys~are~(in~alphabetic~order) :~
10024 bold, ~

10925 cell-space-top-limit(+),~

10926 cell-space-bottom-limit (+),~

10927 cell-space-limits(+),~

10028 color,~

10029 fill~(alias:~rowcolor),~

10030 nb-rows, ~

10031 opacity~and~

10032 rounded-corners.

10933 }

1003¢ \@@_msg_new:nnn { Unknown~key~for~NiceMatrixOptions }

10935 {

10936 Unknown~key.\\

10037 The~key~' \1_keys_key_str '~is~unknown~for~the~command~

246

10038 \token_to_str:N \NiceMatrixOptions . \\

10039 That~key~will~be~ignored. \\
10040 \c_0@_available_keys_str

10941 T

10942 {

10043 The~available~keys~are~(in~alphabetic~order):~
10044 &-in-blocks,~

10045 allow-duplicate-names, ~

10046 ampersand-in-blocks, ~

10047 caption-above,~

10948 cell-space-bottom-limit(+),~
10949 cell-space-limits(+),~

10950 cell-space-top-limit(+),~
10951 code-for-first-col(+),~

10052 code-for-first-row(+),~

10053 code-for-last-col(+),~

10954 code-for-last-row(+),~

10055 corners, ~

10056 custom-key, ~

10957 create-extra-nodes, ~

10058 create-medium-nodes, ~

10059 create-large—-nodes, ~

10960 custom-line, ~

10961 delimiters~(several~subkeys),~
10962 end-of-row, ~

10963 first-col,~

10064 first-row,~

10065 hlines,~

10966 hvlines,~

10967 hvlines-except-borders,~

10068 last-col,~

10969 last-row, ~

10970 left-margin,~

10071 light-syntax, ~

10072 light-syntax-expanded, ~

10073 matrix/columns-type,~

10074 no-cell-nodes, ~

10075 notes~ (several~subkeys) ,~
10076 nullify-dots,~

10077 pgf-node-code, ~

10078 renew—-dots, ~

10079 renew-matrix, ~

10980 respect-arraystretch,~

10981 rounded-corners, ~

10082 right-margin, ~

10983 rules~(with~the~subkeys~'color'~and~'width'),~
10084 small,~

10985 sub-matrix~(several~subkeys) ,~
10086 vlines,~

10087 xdots~ (several~subkeys) .

10988 }

For ‘{NiceArray}‘, the set of keys is the same as for {NiceMatrix} excepted that there is no 1 and
T.

10050 \@@_msg_new:nnn { Unknown-~key~for-~NiceArray }

10990 {

10991 Unknown~key.\\

10992 The~key~' \1_keys_key_str '~is~unknown~for~the~environment~
10993 \{NiceArray\}. \\

10994 That~key~will~be~ignored. \\

10095 \c_0@_available_keys_str

10996 }

10997 {

10008 The~available~keys~are~(in~alphabetic~order) :~

247

10999 &-in-blocks, ~

11000 ampersand-in-blocks, ~
11001 b,~

11002 baseline, ~

11003 C,~

11004 cell-space-bottom-limit,~
11005 cell-space-limits,~

11006 cell-space-top-limit,~
11007 code-after, ~

11008 code-for-first-col(+),~
11009 code-for-first-row(+),~
11010 code-for-last-col(+),~
11011 code-for-last-row(+),~
11012 columns-width, ~

11013 corners, ~

11014 create-extra-nodes, ~
11015 create-medium-nodes, ~
11016 create-large-nodes, ~
11017 extra-left-margin, ~

11018 extra-right-margin, ~
11019 first-col,~

11020 first-row,~

11021 hlines,~

11022 hvlines,~

11023 hvlines-except-borders,~
11024 last-col,~

11025 last-row,~

11026 left-margin, ~

11027 light-syntax, ~

11028 light-syntax-expanded, ~
11029 name, ~

11030 no-cell-nodes &

11031 nullify-dots,~

11032 pgf-node-code, ~

11033 renew-dots, ~

11034 respect-arraystretch,~
11035 right-margin, ~

11036 rounded-corners, ~

11037 rules~(with~the~subkeys~'color'~and~'width'),~
11038 small,~

11039 t,~

11040 vlines, ~

11041 xdots/color, ~

11042 xdots/shorten-start(+),~
11043 xdots/shorten-end (+), ~
11044 xdots/shorten(+) ~and~
11045 xdots/line-style.

11046 }

This error message is used for the set of keys nicematrix/NiceMatrix and nicematrix/pNiceArray
(but not by nicematrix/NiceArray because, for this set of keys, there is no 1 and r).

11047 \@@_msg_new:nnn { Unknown~key~for~NiceMatrix }

11048 {

11049 Unknown~key.\\

11050 The~key~' \1l_keys_key_str '~is~unknown~for~the~
11051 \@@_full_name_env: . \\

11052 That~key~will~be~ignored. A\

11053 \c_00_available_keys_str

11054 T

11055 {

11056 The~available~keys~are~(in~alphabetic~order) : ~
11057 &-in-blocks, ~

11058 ampersand-in-blocks, ~

248

11059 b,~

11060 baseline, ~

11061 Cc,~

11062 cell-space-bottom-limit,~
11063 cell-space-limits,~

11064 cell-space-top-limit,~
11065 code-after,~

11066 code-for-first-col(+),~
11067 code-for-first-row(+),~
11068 code-for-last-col(+),~
11069 code-for-last-row(+),~
11070 columns-type, ~

11071 columns-width, ~

11072 corners, ~

11073 create-extra-nodes, ~
11074 create-medium-nodes, ~
11075 create-large-nodes, ~
11076 extra-left-margin, ~

11077 extra-right-margin, ~
11078 first-col,~

11079 first-row,~

11080 hlines,~

11081 hvlines,~

11082 hvlines-except-borders,~
11083 1,~

11084 last-col,~

11085 last-row,~

11086 left-margin, ~

11087 light-syntax, ~

11088 light-syntax-expanded, ~
11089 name, ~

11090 no-cell-nodes &

11001 nullify-dots,~

11092 pgf-node-code, ~

11093 r,~

11004 renew—-dots, ~

11095 respect-arraystretch,~
11096 right-margin, ~

11097 rounded-corners, ~

11098 rules~(with~the~subkeys~'color'~and~'width'),~
11099 small,~

11100 t,~

11101 vlines,~

11102 xdots/color, ~

11103 xdots/shorten-start (+),~
11104 xdots/shorten-end(+) ,~
11105 xdots/shorten(+)~and~
11106 xdots/line-style.

11107 }

11105 \@@_msg_new:nnn { Unknown~key~for~NiceTabular }

11109 {

11110 Unknown~key.\\

11111 The~key~' \1_keys_key_str '~is~unknown~for~the~environment-~
11112 \{NiceTabular\}. \\

11113 That~key~will~be~ignored. \\

11114 \c_00_available_keys_str

11115 ¥

11116 {

11117 The~available~keys~are~(in~alphabetic~order) : ~
11118 &-in-blocks, ~

11119 ampersand-in-blocks, ~

11120 b,~

11121 baseline, ~

249

11122

11123

11124

11125

11126

11127

11128

11129

11130

11131

11132

11133

11134

11135

11136

11137

11138

11139

11140

11141

11142

11143

11144

11145

11146

11147

11148

11149

11150

11151

11152

11153

11154

11155

11156

11157

11158

11159

11160

11161

11162

11163

11164

11165

11166

11167

11168

11169

11170

11171

11172

11173

11174

11175

11176

11177

11178

11179

11180

11181

11182

11183

11184

}

\ea@_

{

c,~
caption,~
cell-space-bottom-limit,~
cell-space-limits,~
cell-space-top-limit,~
code-after, ~
code-for-first-col(+),~
code-for-first-row(+),~
code-for-last-col(+),~
code-for-last-row(+),~
columns-width, ~
corners,~

custom-line,~
create-extra-nodes, ~
create-medium-nodes, ~
create-large-nodes, ~
extra-left-margin, ~
extra-right-margin, ~
first-col,~

first-row,~

hlines,~

hvlines,~
hvlines-except-borders, ~
label, ~

last-col,~

last-row,~

left-margin, ~
light-syntax, ~
light-syntax-expanded, ~
name, ~

no-cell-nodes, ~

notes~ (several~subkeys) ,~
nullify-dots,~
pgf-node-code, ~
renew-dots, ~
respect-arraystretch,~
right-margin, ~
rounded-corners, ~
rules~(with~the~subkeys~'color'~and~'width'),~
short-caption, ~

t,~

tabularnote, ~

vlines, ~

xdots/color, ~
xdots/shorten-start (+),~
xdots/shorten-end (+) ,~
xdots/shorten(+) ~and~
xdots/line-style.

msg_new:nnn { Duplicate~name }

Duplicate~name.\\
The~name~' \1_keys_value_tl '~is~already~used~and~you~shouldn't~use~
the~same~environment~name~twice.~You~can~go~on, ~but, ~
maybe, ~you~will~have~incorrect~results~especially~
if~you~use~'columns-width=auto'.~If~you~don't~want~to~see~this~
message~again, ~use~the~key~'allow-duplicate-names'~in~
' \token_to_str:N \NiceMatrixOptions '.\\
\bool_if:NF \g_0@_messages_for_Overleaf_bool

{ For~a~list~of~the~names~already~used,~type~H~<return>. }

The~names~already~defined~in~this~document~are:~

250

11185 \clist_use:Nnnn \g_@@_names_clist { ~and~ } { ,~ } { ~and~ } .

11186 }

11157 \@@_msg_new:nn { caption-above~in~env }

11188 {

11189 The~key~'caption-above'~must~be~used~in~\token_to_str:N \NiceMatrixOptions.\\
11190 That~key~will~be~ignored.

11191 3

11192 \@@_msg_new:nn { show-cell-names }

11103 {

11104 There~is~no~key~'show-cell-names'~in~nicematrix.\\

11105 You~should~use~the~command~\token_to_str:N \ShowCellNames\
11196 in~the~\token_to_str:N \CodeBefore\ or~the~\token_to_str:N
11197 \CodeAfter. \\

11198 That~key~will~be~ignored.

11199 }

11200 \@@_msg_new:nn { Option~auto~for~columns-width }

11201 {

11202 Erroneous~use.\\

11203 You~can't~give~the~value~'auto'~to~the~key~'columns-width'~here.~
11204 That~key~will~be~ignored.

11205 }

11200 \@@_msg_new:nn { NiceTabularX~without~X }

11207 {

11208 NiceTabularX~without~X.\\

11209 You~should~not~use~\{NiceTabularX\}~without~X~columns.\\
11210 However, ~you~can~go~on.

11211 }

1212 \@@_msg_new:nn { Preamble~forgotten }

11213 {

11214 Preamble~forgotten.\\

11215 You~have~probably~forgotten~the~preamble~of~your~

11216 \@@_full_name_env: . \\

11217 This~error~is~fatal.

11218 3

1219 \@@_msg_new:nn { Invalid~col~number }

11220 {

11221 Invalid~column~number.\\

11222 A~color~instruction~in~the~ \token_to_str:N \CodeBefore \
11223 specifies~a~column~which~is~outside~the~array.~It~will~be~ignored.
11224 }

11225 \@@_msg_new:nn { Invalid~row~number }

11226 {

11227 Invalid~row~number.\\

11228 A~color~instruction~in~the~ \token_to_str:N \CodeBefore \
11229 specifies~a~row~which~is~outside~the~array.~It~will~be~ignored.
11230 }

11231 \@@_define_com:NNN p (
11232 \@@_define_com:NNN b [
11233 \@@_define_com:NNN v |
11232 \@@_define_com:NNN V \| \|
11235 \@@_define_com:NNN B \{ \}

)
]
I

251

Contents

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Declaration of the package and packages loaded
Collecting options

Technical definitions

Parameters

The command \tabularnote

Command for creation of rectangle nodes

The options

Important code used by {NiceArrayWithDelims}
The \ CodeBefore

The environment {NiceArrayWithDelims}
Construction of the preamble of the array

The redefinition of \multicolumn

The environment {NiceMatrix} and its variants
{NiceTabular}, {NiceTabularX} and {NiceTabular*}
After the construction of the array

We draw the dotted lines

The actual instructions for drawing the dotted lines with TikZ
User commands available in the new environments
The command \line accessible in code-after

The command \RowStyle

Colors of cells, rows and columns

The vertical and horizontal rules

The empty corners

The environment {NiceMatrixBlock}

The extra nodes

The blocks

How to draw the dotted lines transparently
Automatic arrays

The redefinition of the command \dotfill

The command \diagbox

252

20

25

26

38

54

58

63

80

97

98

100

106

124

130

136

138

141

153

170

172

174

178

205

205

207

207

31

32

33

34

35

36

37

38

39

40

41

The keyword \ CodeAfter

The delimiters in the preamble

The command \SubMatrix

Les commandes \UnderBrace et \OverBrace
The commands HBrace et VBrace

The command TikzEveryCell

The command \CreateBlocksInColumn

The command \ShowCellNames

‘We process the options at package loading
About the package underscore

Error messages of the package

253

208

209

210

219

222

225

227

227

229

231

231

	1 Declaration of the package and packages loaded
	2 Collecting options
	3 Technical definitions
	4 Parameters
	5 The command \tabularnote
	6 Command for creation of rectangle nodes
	7 The options
	8 Important code used by {NiceArrayWithDelims}
	9 The \CodeBefore
	10 The environment {NiceArrayWithDelims}
	11 Construction of the preamble of the array
	12 The redefinition of \multicolumn
	13 The environment {NiceMatrix} and its variants
	14 {NiceTabular}, {NiceTabularX} and {NiceTabular*}
	15 After the construction of the array
	16 We draw the dotted lines
	17 The actual instructions for drawing the dotted lines with TikZ
	18 User commands available in the new environments
	19 The command \line accessible in code-after
	20 The command \RowStyle
	21 Colors of cells, rows and columns
	22 The vertical and horizontal rules
	23 The empty corners
	24 The environment {NiceMatrixBlock}
	25 The extra nodes
	26 The blocks
	27 How to draw the dotted lines transparently
	28 Automatic arrays
	29 The redefinition of the command \dotfill
	30 The command \diagbox
	31 The keyword \CodeAfter
	32 The delimiters in the preamble
	33 The command \SubMatrix
	34 Les commandes \UnderBrace et \OverBrace
	35 The commands HBrace et VBrace
	36 The command TikzEveryCell
	37 The command \CreateBlocksInColumn
	38 The command \ShowCellNames
	39 We process the options at package loading
	40 About the package underscore
	41 Error messages of the package
	Contents

