
The latex-lab-table package
Changes related to the tagging of tables

Frank & Ulrike, LATEX Project∗

v0.85s 2026-01-16

Abstract

The following code implements a first draft for the tagging of tables. It still has a
large number of limitations and restrictions!

Contents
1 Documentation 2

1.1 Loading . 2
1.2 Untagged and presentation tables . 3
1.3 Header rows and columns . 3
1.4 Spanning of cells . 3

2 Limitations 4

3 Introduction 5

4 Technical details and problems 5
4.1 TODOs . 5

5 Implementation 5
5.1 Variables . 5
5.2 Tagging support sockets . 6
5.3 Environments . 15
5.4 Interfaces to tagging . 15

5.4.1 Tagging helper commands . 15
5.4.2 Disabling/enabling . 15
5.4.3 Header support . 17

5.5 Multirow support . 19
5.6 Misc stuff . 21
5.7 longtable . 22

∗Initial implementation done by Frank Mittelbach

1

1 Documentation
In LATEX the word table is used as the name of the float environment that can contain a
data table1 along with a caption and some additional text. The environments for actual
data tables have various names like tabular, tabular*, tabularx and longtable—the
last should not be used inside a float and supports its own caption command.

In this documentation “ table” always means such data tables and not the float
environment.

Tagging of tables is on one side doesn’t look very difficult: one only has to surround
rows and cells by TR and TH or TD structures. But there are difficulties:

• One is that over the years various packages related to tables have been written that
all change some of the internals. Inserting the tagging commands and testing all
the variants and various nestings is not trivial.

• The other difficulty is that most of the existing environments to create tables do
not know the concept of headers as a semantic structures.

• Headers are only produced through visual formatting, e.g., by making them bold
or by underlying some color. But accessible tables need headers (and the PDF/UA
standards requires them) and this means that additional syntax to declare headers
(when they can’t be guessed) must be developed. This is still an area for research.

Right now, this module therefore does implement only some basic support for the
tagging of tables. A list of the known limitations is shown below.

1.1 Loading
The module is not loaded automatically (i.e., not yet integrated into any phase-XX) and
by itself it doesn’t activate tagging. For experimenting with table tagging it is therefore
best to load it in combination with phase-III in \DocumentMetadata, i.e.:

\DocumentMetadata{testphase={phase-III,table}}

It will then automatically tag all table environments it already supports with the
exception of tables in the header and footer of the page (where tagging is disabled). Such
tables can be nested.

Inside cells the automatic tagging of paragraphs is disabled with the exception of
p/m/b-type cells.

Rows do not need to contain a full number of &, missing cells are automatically
added with an empty TD-structure.

You should not insert meaningful text with !{...} or @{...} or \noalign between
the rows or columns of the table. With pdflatex such text will be unmarked, with lualatex
it will be marked as artifact. Either case means that it will be currently ignored in the
structure.2

As mentioned below the colortbl doesn’t work fully with the tagging, but when it
does, colors inside the table are currently ignored. If such a color has a semantic meaning
(like “ important value”) this meaning will be lost.

1But it does not really have to, you can put other material into such environments.
2While it is theoretically possible to collect such text and move it into a structure it would require

manual markup from the author to clarify where this text belongs too.

2

1.2 Untagged and presentation tables
If a table should not be tagged as table, for example because it is merely used as a layout to
ensure that the content is properly aligned or because it is a not yet (fully) supported ta­
ble structure, the tagging can be disabled with \tagpdfsetup{table/tagging=false} or
changed with \tagpdfsetup{table/tagging=presentation} or \tagpdfsetup{table/tagging=div}
3 The first option disables the table tagging code and the content of the tabular is then
treated more or less like running text. This works ok for simple tables using only hmode-
cells (l/c/r) with normal text content, but fails if the table uses vmode-cells (p/m/b).
In such cases the second option works better: it keeps the tagging code active, but adds
an ARIA-role as attribute to indicate that this is a presentation table. When deriving
to html this gives the best result as it keeps the layout. The last option changes the
tag names and creates simply a number of DIV structures. Both options also (re)set the
table/header-rows and table/header-columns keys to empty.

To reset to the normal tagging in the current group (e.g. inside a presentation table)
one can use \tagpdfsetup{table/tagging=true} (and if needed reenable the headers).

1.3 Header rows and columns
There is some basic support4 for headers. With5

\tagpdfsetup{table/header-rows={⟨list of row numbers⟩}}
\tagpdfsetup{table/header-columns={⟨list of column numbers⟩}}

you can declare which (absolute) row and column numbers should be tagged as header
rows and header columns. It applies to all tables until it is changed to a different list of row
or columns numbers or undone by setting the keys to ⟨empty⟩. A row or column number
can be negative, then the counting starts from the end of the table. In a longtable the
code will currently use the \endhead or \endfirsthead rows as header if one of these
commands has been used and in that case the code ignores a table/header-rows setting.

1.4 Spanning of cells
\multicolumn is supported out of the box and will create a structure with a suitable
ColSpan attribute6

For cells spanning rows some preliminary support exists7: If you add

\tagpdfsetup{table/multirow={⟨number of rows⟩}

to a cell the code will add the suitable RowSpan attribute and suppress the tagging of af­
fected cells in the following rows. This will also work if the current cell is a \multicolumn,
then the cell will span both rows and columns. It is the duty of the author to ensure
that all cells below and covered by a RowSpan are empty! The code neither checks that
nor does it tries to suppress content.

Feedback and problems with the code can be reported at https://github.com/
latex3/tagging-project either in form of explicit issues or as a “ discussion topic”,
whatever works best.

3The key has been renamed. The old name ‘table-tagging‘ still works but is deprecated. The value
presentation refers to the ARIA role “ presentation”.

4This is not meant to be the final interface, though.
5The old key name table-header-rows still works but is deprecated.
6The code uses actually an attribute class. The validator PAC doesn’t handle this correctly currently

and complains about a missing attribute.
7The interface is bound to change!

3

https://github.com/latex3/tagging-project
https://github.com/latex3/tagging-project

2 Limitations
• The code loads the array package and so does not work without it (that is not really

a limitation, but can affect existing tables).

• It supports only a restricted number of tables types. Currently tabular, tabular*,
tabularx, and longtable.

• the array environment is assumed to be part of math and tagging as a table is
disabled for it.

• Row spans can only be added manually (the multirow package is untested).

• The colortbl package breaks tagging if there are nested tables.

• The tabularray package use a completed different method to create tables and will
not be supported by this code.

• The nicematrix package is currently incompatible.

• Most other packages related to tables in LATEX are not fully tested, that includes
packages that change rules like booktabs, hhline, arydshln, hvdashln. Some problems
have been resolved, either in the packages or through a firstaid which can be loaded
the testphase=firstaid.

• longtable currently only works with lualatex. With other engines it breaks as its
output routine clashes with the code which closes open MC-chunks at pagebreaks
and if this is resolved there will probably be problems with the head and foot boxes
(but this can’t be tested currently).

• Not every table should be tagged as a Table structure, often they are only used as
layout help, e.g. to align authors in a title pages. In such uses the tagging of the
table must be deactivated with \tagpdfsetup{table/tagging=false} or changed
with \tagpdfsetup{table/tagging=presentation} or \tagpdfsetup{table/tagging=div}.

• Only simple header rows and columns are currently supported. Complex headers
with subheaders will be handled later as that needs some syntax changes. Tables
with more than one header row or column are probably not pdf/UA as the headers
array in the cells is missing.

• A longtable \caption is currently simply formatted as a multicolumn and not
tagged as a Caption structure.

• The caption package will quite probably break the longtable caption.

• The setup for longtable requires lots of patches to internal longtable commands and
so can easily break if other packages try to patch longtable too.

• The longtable environment supports footnotes in p-type columns, but it hasn’t
been tested yet if this works also with the tagging code.

• Vertical boxes (\parbox, minipage, …) inside cells can be problematic.

• The code is quite noisy and fills the log with lots of messages.8
8Helpful for us at this stage.

4

3 Introduction

4 Technical details and problems
The implementation has to take care of various details.

4.1 TODOs
• Test array-006-longtable.lvt and array-007-longtable.lvt have errors with

pdftex (para tagging)

• Instead of before/after hooks we should add sockets directly into the code.

• Debugging code and messages must be improved.

• Cells need an Headers array.

• Row spans should be supported (but perhaps need syntax support)

• Longtable captions should be properly supported.

• More packages must be tested.

5 Implementation
 1 ⟨@@=tbl⟩
 2 ⟨∗package⟩

 3 \ProvidesExplPackage {latex-lab-testphase-table} {\ltlabtbldate} {\ltlabtblversion}
 4 {Code related to the tagging of tables}

This builds on array so we load it by default:
 5 \RequirePackage{array}

5.1 Variables
\l__tbl_celltag_tl \l__tbl_pcelltag_tl

\l__tbl_rowtag_tl
\l__tbl_table_tl

\l__tbl_cellattribute_tl
\l__tbl_rowattribute_tl

\l__tbl_tmpa_clist
\l__tbl_tmpa_tl
\l__tbl_tmpa_str

This is for the celltag, e.g. TD or TH:
 6 \tl_new:N \l__tbl_celltag_tl
 7 \tl_set:Nn \l__tbl_celltag_tl {TD}
 8 \tl_new:N \l__tbl_pcelltag_tl
 9 \tl_set:Nn \l__tbl_pcelltag_tl {TD}

For the rowtag, probably always TR:
 10 \tl_new:N \l__tbl_rowtag_tl
 11 \tl_set:Nn \l__tbl_rowtag_tl {TR}

For the tabletag, probably always Table:
 12 \tl_new:N \l__tbl_tabletag_tl
 13 \tl_set:Nn \l__tbl_tabletag_tl {Table}

And here cell and row attributes:
 14 \tl_new:N \l__tbl_cellattribute_tl
 15 \tl_set:Nn \l__tbl_cellattribute_tl {}
 16 \tl_new:N \l__tbl_rowattribute_tl
 17 \tl_set:Nn \l__tbl_rowattribute_tl {}

5

Variable to store cell info like which cell must be skipped when tagging multirows.
 18 \prop_new:N\g__tbl_untagged_cells_prop
 19 \prop_new:N\l__tbl_saved_untagged_cells_prop

Temp variables
 20 \clist_new:N \l__tbl_tmpa_clist
 21 \tl_new:N \l__tbl_tmpa_tl
 22 \str_new:N \l__tbl_tmpa_str
(End of definition for \l__tbl_celltag_tl \l__tbl_pcelltag_tl and others.)

5.2 Tagging support sockets
This are the standard plugs for tagging of cells and rows.

The following two sockets are defined in lttagging, but we check for their existence
until the release 11/2024.
 23 \socket_if_exist:nF {tagsupport/tbl/init/celldata}
 24 {
 25 \NewTaggingSocket{tbl/init/celldata}{0}
 26 \NewTaggingSocket{tbl/restore/celldata}{0}
 27 }

default (plug) This socket is used inside \tbl_init_cell_data_for_table for the case that this a
nested table in a cell.
 28 \NewTaggingSocketPlug{tbl/init/celldata}{default}
 29 {
 30 \prop_set_eq:NN\l__tbl_saved_untagged_cells_prop \g__tbl_untagged_cells_prop
 31 \prop_gclear:N \g__tbl_untagged_cells_prop
 32 }
 33 \AssignTaggingSocketPlug{tbl/init/celldata}{default}

default (plug) This socket is used inside \tbl_restore_outer_cell_data: and restores values when
a nested table is ended.
 34 \NewTaggingSocketPlug{tbl/restore/celldata}{default}
 35 {
 36 \prop_gset_eq:NN\g__tbl_untagged_cells_prop \l__tbl_saved_untagged_cells_prop
 37 }
 38 \AssignTaggingSocketPlug{tbl/restore/celldata}{default}

TD (plug)
 39 \NewTaggingSocketPlug{tbl/cell/begin}{TD}
 40 {

Next line was previously outside of the plug, so if we want to execute it always even if
the noop plug is in force this needs a different solution.
 41 __tbl_show_curr_cell_data:

We test if the cell should be tagged at all.
 42 __tbl_if_tag_cell:nnT {\g__tbl_row_int } { \g__tbl_col_int }
 43 {

6

this sets row headers
 44 \clist_if_in:NVT \l__tbl_header_columns_clist\g__tbl_col_int
 45 {
 46 \tl_set:Nn \l__tbl_celltag_tl {TH}
 47 \tl_set:Ne \l__tbl_cellattribute_tl {\l__tbl_cellattribute_tl,TH-row}
 48 }

Here we handle negative value for row headers:
 49 \tl_set:Ne \l__tbl_tmpa_tl
 50 {\int_eval:n { \g__tbl_col_int - 1 - \g__tbl_table_cols_tl }}
 51 \clist_if_in:NoT \l__tbl_header_columns_clist { \l__tbl_tmpa_tl }
 52 {
 53 \tl_set:Nn \l__tbl_celltag_tl {TH}
 54 \tl_set:Ne \l__tbl_cellattribute_tl {\l__tbl_cellattribute_tl,TH-row}
 55 }
 56 \tag_struct_begin:n
 57 {
 58 tag =\l__tbl_celltag_tl,
 59 attribute-class ={\l__tbl_cellattribute_tl}
 60 }
 61 \seq_gput_right:Ne \g__tbl_struct_cur_seq { \tag_get:n {struct_num} }

we store the cells of multicolumns as negative number. This allow to skip them or to use
them as needed.
 62 \int_step_inline:nn { \g__tbl_span_tl - 1 }
 63 {
 64 \seq_gput_right:Ne \g__tbl_struct_cur_seq { -\tag_get:n {struct_num} }
 65 }
 66 \tag_mc_begin:n{}
 67 }
 68 }

TD (plug)
 69 \NewTaggingSocketPlug{tbl/cell/end}{TD}
 70 {
 71 __tbl_if_tag_cell:nnT {\g__tbl_row_int } { \g__tbl_col_int }
 72 {
 73 \tag_mc_end:
 74 \tag_struct_end:
 75 }
 76 }

In p-columns we need a slightly different plug which reactivates the paragraph tag­
ging.

TDpbox (plug)
 77 \NewTaggingSocketPlug{tbl/pcell/begin}{TDpbox}
 78 {
 79 __tbl_show_curr_cell_data:
 80 __tbl_if_tag_cell:nnT {\g__tbl_row_int } { \g__tbl_col_int }
 81 {
 82 \clist_if_in:NVT \l__tbl_header_columns_clist\g__tbl_col_int
 83 {
 84 \tl_set:Nn \l__tbl_pcelltag_tl {TH}

7

 85 \tl_set:Ne \l__tbl_cellattribute_tl {\l__tbl_cellattribute_tl,TH-row}
 86 }
 87 \tag_struct_begin:n
 88 {
 89 tag =\l__tbl_pcelltag_tl,
 90 attribute-class ={\l__tbl_cellattribute_tl}
 91 }
 92 \seq_gput_right:Ne \g__tbl_struct_cur_seq { \tag_get:n {struct_num} }
 93 \int_step_inline:nn { \g__tbl_span_tl - 1 }
 94 {
 95 \seq_gput_right:Ne \g__tbl_struct_cur_seq { -\tag_get:n {struct_num} }
 96 }
 97 \tagpdfparaOn
 98 \tl_set:Nn \l__tag_para_main_tag_tl {Div}
 99 }
100 }

TDpbox (plug)
101 \NewTaggingSocketPlug{tbl/pcell/end}{TDpbox}
102 {
103 __tbl_if_tag_cell:nnT {\g__tbl_row_int } { \g__tbl_col_int }
104 {
105 \tag_struct_end:
106 \legacy_if:nT {@endpe}{\par}
107 \mode_if_vertical:T{ \tagpdfparaOff }
108 }
109 }

TR (plug)
110 \NewTaggingSocketPlug{tbl/row/begin}{TR}
111 {
112 \seq_gclear:N \g__tbl_struct_cur_seq
113 \tag_struct_begin:n
114 {
115 tag =\l__tbl_rowtag_tl,
116 attribute-class=\l__tbl_rowattribute_tl
117 }
118 \seq_gput_right:Ne \g__tbl_struct_rows_seq { \tag_get:n {struct_num} }
119 }

TR (plug)
120 \NewTaggingSocketPlug{tbl/row/end}{TR}
121 {
122 __tbl_add_missing_cells:
123 \seq_gput_right:Ne \g__tbl_struct_cells_seq
124 {
125 \seq_use:Nn \g__tbl_struct_cur_seq {,}
126 }
127 \int_compare:nNnTF { \g__tbl_row_int } =
128 { \seq_count:N \g__tbl_struct_cells_seq }
129 {
130 __tbl_trace:n
131 {==>~
132 structure~stored~for~row~\int_use:N\g__tbl_row_int :~

8

133 \seq_use:Nn \g__tbl_struct_cur_seq {,}
134 }
135 }
136 { \ERRORtbl/row } % should not happen ...
137 \tag_struct_end:
138 }

And the plugs for the table as whole. The code can be different for normal tables
which can also be used inline and nested and “ vmode” tables like longtable.

\l__tag_block_flattened_level_int Count the levels of nested blockenvs starting with the first that is “ flattened”. The counter
is defined in lttagging.dtx, but until the next release 11/24 we set it up here too so that
we can use it in the following socket
139 \int_if_exist:NF \l__tag_block_flattened_level_int
140 {
141 \int_new:N \l__tag_block_flattened_level_int
142 }
(End of definition for \l__tag_block_flattened_level_int.)

Table (plug) Inside a TD or TR Part is not allowed as child. For structures that restore paragraph
settings we therefore need a special plug that adjust the settings. Currently we set the
para main tag to Div. This leads to double Div-structures but flattening the paragraph
doesn’t work, it errors if there is a list inside.
143 \NewTaggingSocketPlug{para/restore}{Table}
144 {
145 \tl_set:Nn \l__tag_para_main_tag_tl {Div}
146 \tl_set_eq:NN \l__tag_para_tag_tl\l__tag_para_tag_default_tl
147 \bool_set_true:N \l__tag_para_bool
148 \bool_set_false:N \l__tag_para_flattened_bool
149 \int_zero:N \l__tag_block_flattened_level_int
150 }

Table (plug) Inside a table we currently only disable paratagging. We assume that these sockets are
called in a group, so there is no need to reenable paratagging.
151 \NewTaggingSocketPlug{tbl/init}{Table}
152 {
153 \bool_set_false:N \l__tag_para_bool
154 \AssignTaggingSocketPlug{para/restore}{Table}

We also initialize the structure data variables a this point.
155 __tbl_init_struct_data:
156 }

Table (plug) This plug will fine tune the structure.
157 \NewTaggingSocketPlug{tbl/finalize}{Table}
158 {
159 __tbl_set_header_rows:

Similarly, we restore the outer values of the structure data when we leave the table.
160 __tbl_restore_struct_data:
161 }

9

Table (plug) This plug will initialize the structure in longtable.
162 \NewTaggingSocketPlug{tbl/longtable/init}{Table}
163 {
164 \seq_gclear:N\g__tbl_struct_rows_seq
165 \seq_gclear:N\g__tbl_struct_cells_seq
166 \seq_gclear:N\g__tbl_struct_cur_seq
167 \seq_gclear:N\g__tbl_LT@firsthead_rows_seq
168 \seq_gclear:N\g__tbl_LT@head_rows_seq
169 \seq_gclear:N\g__tbl_LT@lastfoot_rows_seq
170 \seq_gclear:N\g__tbl_LT@foot_rows_seq
171 }

Table (plug) This plug will fine tune the structure in longtable.
172 \NewTaggingSocketPlug{tbl/longtable/finalize}{Table}
173 {

If neither \endhead nor \endfirsthead has been used we use the standard header com­
mand:
174 \bool_lazy_and:nnTF
175 { \seq_if_empty_p:N \g__tbl_LT@head_rows_seq }
176 { \seq_if_empty_p:N \g__tbl_LT@firsthead_rows_seq }
177 { __tbl_set_header_rows: }

Otherwise, if firsthead has not been used we use head. For this we simple retrieve the
row numbers and then call the header command.
178 {
179 \seq_if_empty:NTF \g__tbl_LT@firsthead_rows_seq
180 {
181 \clist_set:Ne \l__tbl_header_rows_clist
182 {\seq_use:Nn \g__tbl_LT@head_rows_seq {,}}
183 __tbl_set_header_rows:
184 }

In the other case we use firsthead.
185 {
186 \clist_set:Ne \l__tbl_header_rows_clist
187 { \seq_use:Nn \g__tbl_LT@firsthead_rows_seq {,} }
188 __tbl_set_header_rows:

Additionally we have to remove the head to avoid duplication. The one option here is to
remove the rows from the kid sequence of the table (which will lead to orphaned structure
elements), the other to make them artifact. For now we use the first option for pdf 1.7
and the second for pdf 2.0.
189 \pdf_version_compare:NnTF < {2.0}
190 {
191 \seq_map_inline:Nn \g__tbl_LT@head_rows_seq
192 {
193 \seq_gset_item:cnn
194 {g__tag_struct_kids_ \g__tbl_struct_table_tl _seq}
195 { ##1 }
196 {}

Not sure if needed, but if needed we can remove also the P tag. This is currently disabled
as it produce warnings. TODO: This needs also a tagpdf command which takes care of
debug code.
197 \tl_set:Ne \l__tbl_tmpa_tl

10

198 { \seq_item:Nn\g__tbl_struct_rows_seq {##1} }
199 \prop_if_exist:cT
200 { g__tag_struct_ \l__tbl_tmpa_tl _prop }
201 {
202 %\prop_gremove:cn {g__tag_struct_ \l__tbl_tmpa_tl _prop} {P}
203 }
204 }
205 }
206 {
207 \seq_map_inline:Nn \g__tbl_LT@head_rows_seq
208 {
209 \tl_set:Ne \l__tbl_tmpa_tl
210 { \seq_item:Nn\g__tbl_struct_rows_seq {##1} }
211 \prop_if_exist:cT
212 { g__tag_struct_ \l__tbl_tmpa_tl _prop }
213 {
214 __tag_struct_prop_gput:onn { \l__tbl_tmpa_tl } {S}{/Artifact}
215 }
216 }
217 }
218 }
219 }

The foot is handled similar, the difference is that we have to move it to the end one of
them is not empty, but do nothing if they aren’t there.
220 \bool_lazy_and:nnF
221 { \seq_if_empty_p:N \g__tbl_LT@foot_rows_seq }
222 { \seq_if_empty_p:N \g__tbl_LT@lastfoot_rows_seq }
223 {

If lastfoot is empty move foot to the end.
224 \seq_if_empty:NTF \g__tbl_LT@lastfoot_rows_seq
225 {
226 \seq_map_inline:Nn \g__tbl_LT@foot_rows_seq
227 {
228 \tl_set:Ne \l__tbl_tmpa_tl
229 {
230 \seq_item:cn
231 {g__tag_struct_kids_ \g__tbl_struct_table_tl _seq}
232 {##1}
233 }
234 \seq_gset_item:cnn
235 {g__tag_struct_kids_ \g__tbl_struct_table_tl _seq}
236 { ##1 }
237 {}
238 \seq_gput_right:cV
239 {g__tag_struct_kids_ \g__tbl_struct_table_tl _seq}
240 \l__tbl_tmpa_tl
241 }
242 }

If lastfoot is not empty we move that.
243 {
244 \seq_map_inline:Nn \g__tbl_LT@lastfoot_rows_seq
245 {

11

246 \tl_set:Ne \l__tbl_tmpa_tl
247 {
248 \seq_item:cn
249 {g__tag_struct_kids_ \g__tbl_struct_table_tl _seq}
250 {##1}
251 }
252 \seq_gset_item:cnn
253 {g__tag_struct_kids_ \g__tbl_struct_table_tl _seq}
254 { ##1 }
255 {}
256 \seq_gput_right:cV
257 {g__tag_struct_kids_ \g__tbl_struct_table_tl _seq}
258 \l__tbl_tmpa_tl
259 }

and we hide foot
260 \pdf_version_compare:NnTF < {2.0}
261 {
262 \seq_map_inline:Nn \g__tbl_LT@foot_rows_seq
263 {
264 \seq_gset_item:cnn
265 {g__tag_struct_kids_ \g__tbl_struct_table_tl _seq}
266 { ##1 }
267 {}

Not sure if needed, but if needed we can remove also the P tag. This is currently disabled
as it produce warnings. TODO: This needs also a tagpdf command which takes care of
debug code.
268 \tl_set:Ne \l__tbl_tmpa_tl
269 { \seq_item:Nn\g__tbl_struct_rows_seq {##1} }
270 \prop_if_exist:cT
271 { g__tag_struct_ \l__tbl_tmpa_tl _prop }
272 {
273 %\prop_gremove:cn {g__tag_struct_ \l__tbl_tmpa_tl _prop} {P}
274 }
275 }
276 }
277 {
278 \seq_map_inline:Nn \g__tbl_LT@foot_rows_seq
279 {
280 \tl_set:Ne \l__tbl_tmpa_tl
281 { \seq_item:Nn\g__tbl_struct_rows_seq {##1} }
282 \prop_if_exist:cT
283 { g__tag_struct_ \l__tbl_tmpa_tl _prop }
284 {
285 __tag_struct_prop_gput:onn {\l__tbl_tmpa_tl} {S}{/Artifact}
286 }
287 }
288 }
289 }
290 }
291 }

Table (plug)

12

We must avoid that the reuse of the header foot box leads to duplicated content, thus
reset attribute of the box:
292 \NewTaggingSocketPlug{tbl/longtable/head}{Table}
293 {
294 \tagmcbegin{artifact}
295 \tag_mc_reset_box:N\LT@head
296 \tagmcend
297 }

Table (plug)
298 \NewTaggingSocketPlug{tbl/longtable/foot}{Table}
299 {
300 \tagmcbegin{artifact}
301 \tag_mc_reset_box:N \LT@foot
302 \tagmcend
303 }

Table (plug)
304 \NewTaggingSocketPlug{tbl/hmode/begin}{Table}
305 {
306 \tag_mc_end_push:

Close the P-chunk. This assumes that para-tagging is active. For nested tables that is
not necessarily true, so we test for it.
307 \bool_lazy_and:nnT
308 { \bool_if_exist_p:N \l__tag_para_bool } { \l__tag_para_bool }
309 { \tag_struct_end:n { text } }
310 \tag_struct_begin:n {tag=\l__tbl_tabletag_tl}
311 \tl_gset:Ne \g__tbl_struct_table_tl { \tag_get:n {struct_num} }
312 }

LayoutTable (plug) This plug is meant for presentation tables, it sets the ARIA role.
313 \NewTaggingSocketPlug{tbl/hmode/begin}{LayoutTable}
314 {
315 \tag_mc_end_push:

Close the P-chunk. This assumes that para-tagging is active. For nested tables that is
not necessarily true, so we test for it.
316 \bool_lazy_and:nnT
317 { \bool_if_exist_p:N \l__tag_para_bool } { \l__tag_para_bool }
318 { \tag_struct_end:n { text } }
319 \tag_struct_begin:n {tag=\l__tbl_tabletag_tl,attribute-class=ARIA-role-presentation}
320 \tl_gset:Ne \g__tbl_struct_table_tl { \tag_get:n {struct_num} }
321 }

Table (plug)
322 \NewTaggingSocketPlug{tbl/hmode/end}{Table}
323 {
324 \tag_struct_end:

reopen the P-chunk. This assumes that para-tagging is active. For nested tables that is
not necessarily true, so we test for it.
325 \bool_lazy_and:nnT
326 { \bool_if_exist_p:N \l__tag_para_bool } { \l__tag_para_bool }

13

327 { \tag_struct_begin:n { tag=\l__tag_para_tag_tl } }
328 \tag_mc_begin_pop:n{}
329 }

Table (plug)
330 \NewTaggingSocketPlug{tbl/vmode/begin}{Table}
331 {
332 \tag_struct_begin:n {tag=\l__tbl_tabletag_tl}
333 \tl_gset:Ne \g__tbl_struct_table_tl { \tag_get:n {struct_num} }
334 }

Table (plug)
335 \NewTaggingSocketPlug{tbl/vmode/begin}{LayoutTable}
336 {
337 \tag_struct_begin:n {tag=\l__tbl_tabletag_tl,attribute-class=ARIA-role-presentation}
338 \tl_gset:Ne \g__tbl_struct_table_tl { \tag_get:n {struct_num} }
339 }

Table (plug)
340 \NewTaggingSocketPlug{tbl/vmode/end}{Table}
341 {
342 \tag_struct_end:
343 \par
344 }

code (plug) This socket takes a number, checks if is larger than one, checks if the colspan at­
tribute already exists (we can’t predefine an arbitrary number), and updates \l__tbl_­
cellattribute_tl.
345 \NewTaggingSocketPlug{tbl/colspan}{code}
346 {
347 \int_compare:nNnT {#1}>{1}
348 {
349 \prop_get:NeNF \g__tag_attr_entries_prop
350 {colspan-\int_eval:n{#1}}
351 \l__tbl_tmpa_tl
352 {
353 __tag_attr_new_entry:ee
354 {colspan-\int_eval:n{#1}}
355 {/O /Table /ColSpan~\int_eval:n{#1}}
356 }
357 \tl_set:Ne \l__tbl_cellattribute_tl
358 {\l__tbl_cellattribute_tl,colspan-\int_eval:n{#1}}
359 }
360 }

code (plug) The sockets will be in lttagging.dtx, but that may only happen in the next main release,
so for now we test if they are in the format and if not define them now.
361 \str_if_exist:cF { l__socket_tagsupport/tbl/leaders/end_plug_str }
362 {
363 \NewTaggingSocket{tbl/leaders/begin}{0}
364 \NewTaggingSocket{tbl/leaders/end}{0}
365 }

14

366 \NewTaggingSocketPlug{tbl/leaders/begin}{code}
367 { \tag_mc_begin:n{artifact} }
368 \NewTaggingSocketPlug{tbl/leaders/end}{code}
369 { \tag_mc_end: }

5.3 Environments
Currently we support only tabular, tabular*, tabularx and longtable (and possibly envi­
ronments build directly on top of them).

The array environment is math. So we disable table tagging for now. We use the
command hook to catch also cases where \array is used directly in other environments
like matrix environments. Perhaps table tagging should be disable for math generally,
but then we have to handle text insertions.
370 \AddToHook{cmd/array/before}{__tag_tbl_disable:}

5.4 Interfaces to tagging
5.4.1 Tagging helper commands

5.4.2 Disabling/enabling

For now we have only the option true/false but this will probably be extended to allow
different setups like first row header etc.

__tag_tbl_disable:

371 \cs_new_protected:Npn __tag_tbl_disable:
372 {
373 \AssignTaggingSocketPlug{tbl/cell/begin}{noop}
374 \AssignTaggingSocketPlug{tbl/cell/end}{noop}
375 \AssignTaggingSocketPlug{tbl/pcell/begin}{noop}
376 \AssignTaggingSocketPlug{tbl/pcell/end}{noop}
377 \AssignTaggingSocketPlug{tbl/row/begin}{noop}
378 \AssignTaggingSocketPlug{tbl/row/end}{noop}
379 \AssignTaggingSocketPlug{tbl/init}{noop}
380 \AssignTaggingSocketPlug{tbl/finalize}{noop}
381 \AssignTaggingSocketPlug{tbl/longtable/init}{noop}
382 \AssignTaggingSocketPlug{tbl/longtable/head}{noop}
383 \AssignTaggingSocketPlug{tbl/longtable/foot}{noop}
384 \AssignTaggingSocketPlug{tbl/longtable/finalize}{noop}
385 \AssignTaggingSocketPlug{tbl/hmode/begin}{noop}
386 \AssignTaggingSocketPlug{tbl/hmode/end}{noop}
387 \AssignTaggingSocketPlug{tbl/vmode/begin}{noop}
388 \AssignTaggingSocketPlug{tbl/vmode/end}{noop}
389 \AssignTaggingSocketPlug{tbl/colspan}{noop}
390 \AssignTaggingSocketPlug{tbl/leaders/begin}{noop}
391 \AssignTaggingSocketPlug{tbl/leaders/end}{noop}
392 }

(End of definition for __tag_tbl_disable:.)

__tag_tbl_enable:

393 \cs_new_protected:Npn __tag_tbl_enable:
394 {
395 \AssignTaggingSocketPlug{tbl/cell/begin}{TD}

15

396 \AssignTaggingSocketPlug{tbl/cell/end}{TD}
397 \AssignTaggingSocketPlug{tbl/pcell/begin}{TDpbox}
398 \AssignTaggingSocketPlug{tbl/pcell/end}{TDpbox}
399 \AssignTaggingSocketPlug{tbl/row/begin}{TR}
400 \AssignTaggingSocketPlug{tbl/row/end}{TR}
401 \AssignTaggingSocketPlug{tbl/init}{Table}
402 \AssignTaggingSocketPlug{tbl/finalize}{Table}
403 \AssignTaggingSocketPlug{tbl/longtable/head}{Table}
404 \AssignTaggingSocketPlug{tbl/longtable/foot}{Table}
405 \AssignTaggingSocketPlug{tbl/longtable/init}{Table}
406 \AssignTaggingSocketPlug{tbl/longtable/finalize}{Table}
407 \AssignTaggingSocketPlug{tbl/hmode/begin}{Table}
408 \AssignTaggingSocketPlug{tbl/hmode/end}{Table}
409 \AssignTaggingSocketPlug{tbl/vmode/begin}{Table}
410 \AssignTaggingSocketPlug{tbl/vmode/end}{Table}
411 \AssignTaggingSocketPlug{tbl/colspan}{code}
412 \AssignTaggingSocketPlug{tbl/leaders/begin}{code}
413 \AssignTaggingSocketPlug{tbl/leaders/end}{code}
414 }

(End of definition for __tag_tbl_enable:.)

__tbl_init_tagnames_default:
__tbl_init_tagnames_div:

These commands are used to switch the tagnames.
415 \cs_new_protected:Npn__tbl_init_tagnames_default:
416 {
417 \tl_set:Nn\l__tbl_rowtag_tl {TR}
418 \tl_set:Nn\l__tbl_pcelltag_tl {TD}
419 \tl_set:Nn\l__tbl_celltag_tl {TD}
420 \tl_set:Nn\l__tbl_tabletag_tl {Table}
421 }
422
423 \cs_new_protected:Npn__tbl_init_tagnames_div:
424 {
425 \tl_set:Nn\l__tbl_rowtag_tl {NonStruct}
426 \tl_set:Nn\l__tbl_pcelltag_tl {NonStruct}
427 \tl_set:Nn\l__tbl_celltag_tl {text}
428 \tl_set:Nn\l__tbl_tabletag_tl {Div}
429 }
(End of definition for __tbl_init_tagnames_default: and __tbl_init_tagnames_div:.)

430 % See tagpdfsetup-keys.md in tagpdf/doc for the naming scheme.
431 \keys_define:nn { __tag / setup }
432 {
433 table/tagging .choices:nn = { true, on }
434 {
435 __tag_tbl_enable:
436 __tbl_init_tagnames_default:
437 },
438 table/tagging .choices:nn = { false, off }
439 { __tag_tbl_disable: },
440 table/tagging .choice:,
441 table/tagging / presentation .code:n =
442 {
443 __tag_tbl_enable:
444 __tbl_init_tagnames_default:

16

445 \AssignTaggingSocketPlug{tbl/hmode/begin}{LayoutTable}
446 \AssignTaggingSocketPlug{tbl/vmode/begin}{LayoutTable}
447 \clist_clear:N \l__tbl_header_rows_clist
448 \clist_clear:N \l__tbl_header_columns_clist
449 },
450 table/tagging / div .code:n =
451 {
452 __tag_tbl_enable:
453 __tbl_init_tagnames_div:
454 \AssignTaggingSocketPlug{tbl/hmode/begin}{LayoutTable}
455 \AssignTaggingSocketPlug{tbl/vmode/begin}{LayoutTable}
456 \clist_clear:N \l__tbl_header_rows_clist
457 \clist_clear:N \l__tbl_header_columns_clist
458 },
459 table/tagging .default:n = true,
460 table/tagging .initial:n = true
461 }

This are the old key names kept for now for compatibility. They will got at some time.
462 \keys_define:nn { __tag / setup }
463 {
464 table-tagging .meta:n = {table/tagging={#1}}
465 }

5.4.3 Header support

Accessible table must have header cells declaring the meaning of the data in a row or
column. To allow a data cell to find it header cell(s) a number of things must be done:

• every cell meant as a header should use the tag TH.

• header cells should have a Scope attribute with the value Column, Row or Both.
This is not needed in the first row or column of a table.

• For more complex cases both TD and TH cell can contain a Headers attribute, that
is an array of IDs of TH cell.

For now we support only header rows.
At first we define attributes for the three standard cases:

466 \AddToHook{begindocument}
467 {
468 \tagpdfsetup
469 {
470 role/new-attribute =
471 {TH-col}{/O /Table /Scope /Column},
472 role/new-attribute =
473 {TH-row}{/O /Table /Scope /Row},
474 role/new-attribute =
475 {TH-both}{/O /Table /Scope /Both},
476 role/new-attribute =
477 {ARIA-role-presentation}{/O /ARIA-1.1/role (presentation)}
478 }

17

And we put all three into the class map (perhaps the next tagpdf should do that
directly with role/new-attribute):
479 \seq_gput_left:Ne\g__tag_attr_class_used_seq
480 {\pdf_name_from_unicode_e:n{TH-col}}
481 \seq_gput_left:Ne\g__tag_attr_class_used_seq
482 {\pdf_name_from_unicode_e:n{TH-row}}
483 \seq_gput_left:Ne\g__tag_attr_class_used_seq
484 {\pdf_name_from_unicode_e:n{TH-both}}
485 }

\l__tbl_header_rows_clist
\l__tbl_header_columns_clist

This holds the numbers of the header rows and columns. Negative numbers are possible
and count from the last column backwards.
486 \clist_new:N \l__tbl_header_rows_clist
487 \clist_new:N \l__tbl_header_columns_clist

__tbl_set_header_rows:

488 \cs_new_protected:Npn __tbl_set_header_rows:
489 {
490 \clist_map_inline:Nn \l__tbl_header_rows_clist
491 {
492 \clist_set:Ne\l__tbl_tmpa_clist
493 {
494 \seq_item:Nn \g__tbl_struct_cells_seq {##1}
495 }
496 \clist_map_inline:Nn \l__tbl_tmpa_clist
497 {

We can have negative numbers in the list from the multicolumn.
498 \prop_if_exist:cT { g__tag_struct_####1_prop }
499 {
500 __tag_struct_prop_gput:nnn{ ####1 }{S}{/TH}

This sets the scope class. If the header has already a row attribute we replace by TH-both.
501 \prop_get:cnNTF
502 { g__tag_struct_####1_prop }
503 { C }
504 \l__tbl_tmpa_tl
505 {
506 \str_set:Ne \l__tbl_tmpa_str {\l__tbl_tmpa_tl}
507 \str_remove_once:Nn \l__tbl_tmpa_str {[}
508 \str_remove_once:Nn \l__tbl_tmpa_str {]}
509 \str_if_in:NnTF\l__tbl_tmpa_str{/TH-row}
510 {
511 \str_replace_once:Nnn \l__tbl_tmpa_str {/TH-row}{/TH-both}
512 __tag_struct_prop_gput:nne{ ####1 }{C}{[\l__tbl_tmpa_str]}
513 }
514 {
515 __tag_struct_prop_gput:nne{ ####1 }{C}{[/TH-col~\l__tbl_tmpa_str]}
516 }
517 }

18

518 {__tag_struct_prop_gput:nnn{ ####1 }{C}{/TH-col}}
519 }
520 }
521 }
522 }
(End of definition for __tbl_set_header_rows:.)

And some key support: (See tagpdfsetup-keys.md for the naming scheme.)
523 \keys_define:nn { __tag / setup }
524 {
525 table/header-rows .clist_set:N = \l__tbl_header_rows_clist,
526 table/header-columns .clist_set:N = \l__tbl_header_columns_clist,

obsolete older name:
527 table-header-rows .meta:n = {table/header-rows={#1}}
528 }

5.5 Multirow support
__tbl_multirow:n This command makes the current cell into a multirow cell: it creates, if needed, an

RowSpan-attribute, adds it to the attributes of the cell structure, and marks all following
cells spanned by the multirow as cells that should not be tagged. The argument is the
number of spanned row (including the current row).
529 \cs_if_exist:NT __tag_struct_prop_gput:nnn
530 {
531 \cs_generate_variant:Nn __tag_struct_prop_gput:nnn {one}
532 }
533 \cs_new_protected:Npn __tbl_multirow:n #1
534 {

Create an attribute if needed:
535 \prop_get:NeNF \g__tag_attr_entries_prop
536 {rowspan-\int_eval:n{#1}}
537 \l__tbl_tmpa_tl
538 {
539 __tag_attr_new_entry:ee
540 {rowspan-\int_eval:n{#1}}
541 {/O /Table /RowSpan~\int_eval:n{#1}}
542 }

ensure that the attribute is marked as used:
543 \seq_gput_left:Ne\g__tag_attr_class_used_seq
544 {\pdf_name_from_unicode_e:n{rowspan-\int_eval:n{#1}}}

Get the structure number of the current cell
545 \seq_get_right:NN\g__tbl_struct_cur_seq \l__tbl_tmpb_tl

If we are in a multicolumn the number can be negative and this must be changed
546 \tl_set:Ne \l__tbl_tmpb_tl { \int_abs:n{\l__tbl_tmpb_tl} }

no we must update an existing attribute. TODO: simplify this ... (see also colspan
handling).
547 \prop_get:cnNTF
548 { g__tag_struct_\l__tbl_tmpb_tl _prop }
549 { C }

19

550 \l__tbl_tmpa_tl
551 {
552 \tl_remove_once:Nn \l__tbl_tmpa_tl {[}
553 \tl_remove_once:Nn \l__tbl_tmpa_tl {]}
554 __tag_struct_prop_gput:one{ \l__tbl_tmpb_tl }
555 {C}
556 {[/rowspan-\int_eval:n{#1}~\l__tbl_tmpa_tl]}
557 }
558 {
559 __tag_struct_prop_gput:one{ \l__tbl_tmpb_tl }
560 {C}
561 {[/rowspan-\int_eval:n{#1}]}
562 }

Now mark the spanned cells that should be ignored.
563 __tbl_gset_untagged_row_cells:nn {#1-1}{\g__tbl_span_tl}
564 }
(End of definition for __tbl_multirow:n.)

565 \keys_define:nn{ __tag / setup }
566 { table/multirow .code:n = {__tbl_multirow:n {#1} }
567 ,table/multirow .default:n = 1
568 }

__tbl_gset_untagged_row_cells:nn This command stores the row and column numbers of the cells in the following row(s)
that should not be tagged as they are a part of a rowspan.
569 \cs_new_protected:Npn __tbl_gset_untagged_row_cells:nn #1 #2
570 % #1 number of rows, #2 number of columns
571 {
572 \int_step_inline:nn {#1}
573 {
574 \int_step_inline:nn {#2}
575 {
576 \prop_gput:Nee \g__tbl_untagged_cells_prop
577 {
578 \int_eval:n {\g__tbl_row_int + ##1},
579 \int_eval:n{\g__tbl_col_int + ####1 -1 }
580 }{}
581 }
582 }
583 }
(End of definition for __tbl_gset_untagged_row_cells:nn.)

__tbl_if_tag_cell:nn We must be able to detect if a cell should be tagged. For this we define a conditional —
if more options are needed it can be extended.
584 \prg_new_protected_conditional:Npnn__tbl_if_tag_cell:nn #1 #2 %#1 row, #2 col
585 { T,TF }
586 {
587 \prop_get:NeNTF \g__tbl_untagged_cells_prop
588 {\int_eval:n{#1},\int_eval:n{#2}}\l__tbl_tmpa_tl
589 { \prg_return_false:}
590 { \prg_return_true: }
591 }
(End of definition for __tbl_if_tag_cell:nn.)

20

5.6 Misc stuff
__tbl_show_curr_cell_data: Show the row/column index and span count for current table cell for debugging.

592 \cs_new_protected:Npn __tbl_show_curr_cell_data: {
593 __tbl_trace:n { ==>~ current~cell~data:~
594 \int_use:N \g__tbl_row_int ,
595 \int_use:N \g__tbl_col_int ,
596 \g__tbl_span_tl
597 }
598 }
(End of definition for __tbl_show_curr_cell_data:.)

__tbl_add_missing_cells: The storing and use of the number of missing cells must happen at different places as the
testing happens at the end of the last cell of a row, but still inside that cell, so we use
two commands. The one adding is used in the row/end socket.
599 \cs_new:Npn __tbl_add_missing_cells:
600 {

The TD-socket messages are issued after the message about the end-row socket, but the
structure is ok, so better issue a message for now to avoid confusion:
601 \int_compare:nNnT \g__tbl_missing_cells_int > 0
602 {
603 __tbl_trace:n {==>~
604 ~Inserting~\int_use:N \g__tbl_missing_cells_int \space
605 additional~cell(s)~into~previous~row:}
606 \int_step_inline:nn { \g__tbl_missing_cells_int }
607 {
608 \int_gincr:N\g__tbl_col_int
609 \UseTaggingSocket{tbl/cell/begin}
610 \UseTaggingSocket{tbl/cell/end}
611 }
612 }
613 }
(End of definition for __tbl_add_missing_cells:.)

\g__tbl_struct_table_tl
\l__tbl_saved_struct_table_tl

\g__tbl_struct_rows_seq
\l__tbl_saved_struct_rows_seq

\g__tbl_struct_cells_seq
\l__tbl_saved_struct_cells_seq

\g__tbl_struct_cur_seq
\l__tbl_saved_struct_cur_seq

We need to store the structure numbers for the fine tuning in the finalize socket. For now
we use a rather simple system: A sequence that hold the numbers for the row structures,
and one that holds comma lists for the cells.
\g__tbl_struct_table_tl will hold the structure number of the table, \g__tbl_­
struct_rows_seq will hold at index i the structure number of row i, \g__tbl_struct_­
cells_seq will hold at index i a comma list of the cell structure numbers of row i.
\g__tbl_struct_cur_seq is used as a temporary store for the cell structures of the
current row. We need also local version to store and restore the values.
614 \tl_new:N \g__tbl_struct_table_tl
615 \tl_new:N \l__tbl_saved_struct_table_tl
616 \seq_new:N \g__tbl_struct_rows_seq
617 \seq_new:N \l__tbl_saved_struct_rows_seq
618 \seq_new:N \g__tbl_struct_cells_seq
619 \seq_new:N \l__tbl_saved_struct_cells_seq
620 \seq_new:N \g__tbl_struct_cur_seq
621 \seq_new:N \l__tbl_saved_struct_cur_seq

(End of definition for \g__tbl_struct_table_tl and others.)

21

__tbl_init_struct_data: Save the global structure data variables locally so the we can restore them when the table
ends (important in case of nested tables).
This is also the right point to initialize them. \g__tbl_struct_table_tl is set elsewhere.
622 \cs_new_protected:Npn __tbl_init_struct_data: {
623 \tl_set_eq:NN \l__tbl_saved_struct_table_tl \g__tbl_struct_table_tl
624 \seq_set_eq:NN \l__tbl_saved_struct_rows_seq \g__tbl_struct_rows_seq
625 \seq_set_eq:NN \l__tbl_saved_struct_cells_seq \g__tbl_struct_cells_seq
626 \seq_set_eq:NN \l__tbl_saved_struct_cur_seq \g__tbl_struct_cur_seq
627 %
628 \seq_gclear:N\g__tbl_struct_rows_seq
629 \seq_gclear:N\g__tbl_struct_cells_seq
630 \seq_gclear:N\g__tbl_struct_cur_seq
631 }
(End of definition for __tbl_init_struct_data:.)

__tbl_restore_struct_data:

632 \cs_new_protected:Npn __tbl_restore_struct_data: {
633 \tl_gset_eq:NN \g__tbl_struct_table_tl \l__tbl_saved_struct_table_tl
634 \seq_gset_eq:NN \g__tbl_struct_rows_seq \l__tbl_saved_struct_rows_seq
635 \seq_gset_eq:NN \g__tbl_struct_cells_seq\l__tbl_saved_struct_cells_seq
636 \seq_gset_eq:NN \g__tbl_struct_cur_seq \l__tbl_saved_struct_cur_seq
637 }

(End of definition for __tbl_restore_struct_data:.)

5.7 longtable
__tbl_patch_\LT@makecaption This patch is quite similar to the one for LaTeX’s \@makecaption we also have to change

the parbox sockets.
638 \def__tbl_patch_LT@makecaption#1#2#3{%
639 \LT@mcol\LT@cols c{%
640 \AssignTaggingSocketPlug{parbox/before}{noop}
641 \AssignTaggingSocketPlug{parbox/after}{noop}
642 \hbox to\z@{\hss\parbox[t]\LTcapwidth{%
643 \reset@font
644 \tag_suspend:n{caption}
645 \sbox\@tempboxa{#1{#2:~}#3}%
646 \tag_resume:n{caption}
647 \ifdim\wd\@tempboxa>\hsize
648 #1{#2:~}#3%
649 \else
650 \hbox to\hsize{\hfil#1{#2:~}#3\hfil}%
651 \fi
652 \endgraf\vskip\baselineskip}%
653 \hss}}}
(End of definition for __tbl_patch_\LT@makecaption.)

Overwrite the longtable definition. That will probably break somewhere as they are
various package which patch too.
654 \AddToHook{package/longtable/after}
655 {
656 \cs_set_eq:NN \LT@makecaption__tbl_patch_LT@makecaption
657 }

22

658 ⟨/package⟩

659 ⟨∗latex-lab⟩
660 \ProvidesFile{table-latex-lab-testphase.ltx}
661 [\ltlabtbldate\space v\ltlabtblversion\space latex-lab wrapper table]
662 \RequirePackage{latex-lab-testphase-table}
663 ⟨/latex-lab⟩

664 ⟨∗latex-lab-alias⟩
665 \ProvidesFile{tabular-latex-lab-testphase.ltx}
666 [\ltlabtbldate\space v\ltlabtblversion\space latex-lab wrapper tabular]
667 \RequirePackage{latex-lab-testphase-table}
668 ⟨/latex-lab-alias⟩

23

	Contents
	1 Documentation
	1.1 Loading
	1.2 Untagged and presentation tables
	1.3 Header rows and columns
	1.4 Spanning of cells

	2 Limitations
	3 Introduction
	4 Technical details and problems
	4.1 TODOs

	5 Implementation
	5.1 Variables
	5.2 Tagging support sockets
	5.3 Environments
	5.4 Interfaces to tagging
	5.4.1 Tagging helper commands
	5.4.2 Disabling/enabling
	5.4.3 Header support

	5.5 Multirow support
	5.6 Misc stuff
	5.7 longtable

