The I3doc class — experimental*

The IWTEX Project team!
Released 2026-01-19

Contents

1 Introduction 1

2 Features of other packages 2
2.1 The hypdoc package L Lo o 2
2.2 Thedocmfp package 2
2.3 Thexdoc2 package 2
2.4 The gmdocpackage 3

3 Problems & Todo 3

4 Documentation 3
4.1 Configuration L e 3
4.2 Class options e 4
4.3 Partitioning documentation and implementation 4
4.4 General text markup oL Lo 5
4.5 Describing functions in the documentation 6
4.6 Describing functions in the implementation 7
4.7 Keeping things consistent Lo oo oL, 8
4.8 Documenting templates o Lo 8

Index 9

1 Introduction

Code and documentation for this class have been written prior to the change of doc from
version 2 to version 3, which already shows how far behind this class currently is. So
take the following warning seriously please:

It is much less stable than the main expl3 packages.
Use at own risk!

*On popular request we now distribute the document for this experimental class. However, please
note that it is by no means in final state and is likely to undergo modifications, even incompatible ones!
Thus, using it might therefore require you to do updates, if the class changes.

Thttps://www.latex-project.org/latex3/

https://www.latex-project.org/latex3/

This is an ad-hoc class for documenting the expl3 bundle, a collection of modules or
packages that make up IXTEX3’s programming environment. Eventually it will replace
the Itxdoc class for A TEX3, but not before the good ideas in hypdoc, xdoc2, docmfp, and
gmdoc are incorporated.

It is written as a “self-contained” docstrip file: executing latex 13doc.dtx generates
the 13doc.cls file and typesets this documentation; execute tex 13doc.dtx to only
generate 13doc.cls.

2 Features of other packages

This class builds on the ltxdoc class and the doc package, but in the time since they were
originally written some improvements and replacements have appeared that we would
like to use as inspiration.

These packages or classes are hypdoc, docmfp, gmdoc, and xdoc. I have summarized
them below in order to work out what sort of features we should aim at a minimum for

|13doc.

2.1 The hypdoc package

This package provides hyperlink support for the doc package. I have included it in this
list to remind me that cross-referencing between documentation and implementation of
methods is not very good. (FE.g., it would be nice to be able to automatically hyperlink
the documentation for a function from its implementation and vice-versa.)

2.2 The docmfp package

o Provides \DescribeRoutine and the routine environment (etc.) for MetaFont
and MetaPost code.

o Provides \DescribeVariable and the variable environment (etc.) for more gen-
eral code.

o Provides \Describe and the Code environment (etc.) as a generalization of the
above two instantiations.

e Small tweaks to the DocStrip system to aid non-IXTEX use.

2.3 The xdoc2 package
e Two-sided printing.

e \NewMacroEnvironment, \NewDescribeEnvironment; similar idea to docmfp but
more comprehensive.

e Tons of small improvements.

2.4 The gmdoc package

Radical re-implementation of doc as a package or class.
¢ Requires no \begin{macrocode} blocks!
e Automatically inserts \begin{macro} blocks!

e And a whole bunch of other little things.

3 Problems & Todo

Problems at the moment: (1) not flexible in the types of things that can be documented;
(2) no obvious link between the \begin{function} environment for documenting things
to the \begin{macro} function that’s used analogously in the implementation.

The macro should probably be renamed to function when it is used within an
implementation section. But they should have the same syntax before that happens!

Furthermore, we need another “layer” of documentation commands to account for
“user-macro” as opposed to “code-functions”; the expl3 functions should be documented
differently, probably, to the ltcmd user macros (at least in terms of indexing).

In no particular order, a list of things to do:

e Rename function/macro environments to better describe their use.

o Generalize function/macro for documenting “other things”, such as environment
names, package options, even keyval options.

o New function like \part but for files (remove awkward “File” as \partname).

o Something better to replace \StopEventually; I'm thinking two environments
documentation and implementation that can conditionally typeset/ignore their
material. (This has been implemented but needs further consideration.)

o Hyperlink documentation and implementation of macros (see the DTX file of svn-
multi v2 as an example). This is partially done, now, but should be improved.

4 Documentation

4.1 Configuration

Before class options are processed, 13doc loads a configuration file 13doc.cfg if it ex-
ists, allowing you to customize the behavior of the class without having to change the
documentation source files.

For example, to produce documentation on letter-sized paper instead of the default
A4 size, create 13doc.cfg and include the line

\PassOptionsToClass{letterpaper}{13doc}

By default, 13doc selects the T1 font encoding and loads the Latin Modern fonts. To
prevent this, use the class option cm-default.

full
onlydoc

1m-default

kernel

check

checktest

show-notes
hide-notes
cs-break
cs-break-nohyphen

4.2 Class options

The class recognizes a number of options, some of which are generally useful and some
of which are aimed squarely at use by the kernel team only.

When the full option is set (the standard setting), both the documentation and
implementation parts of the source are typeset. If on the other hand the onlydoc option
is set, only the documentation part is typeset.

Selects whether the standard font set up is Latin Modern in the T1 encoding (the
standard setting) or leaves the font setup unchanged.

Determines whether [3doc treats internal functions and variables belonging to kernel
module as allowable in code, for instance __kernel_tl_to_str:w, \c__kernel_expl_-
date_tl1, and \1__kernel_expl_bool. In general, no internal material from outside the
current module is allowed. However, for bootstrapping the expl3 kernel, a small number of
cross-module functions are needed. To suppress the error message that would otherwise
arise, the class option kernel may be given.

When the check option is given, the class will record all commands defined and
documented in a (name).cmds file. This will show which are both documented and
defined, which are only documented and which are only defined. (Here, “defined” means
listed using a macro or variable environment in the implementation part of the source
file).

When checktest is given as an option, the class will check that each function entry
in the implementation part of the source is marked using \UnitTest.

These complementary options determine if the information given using the \NB and
\NOTE commands is printed.

The commands \cmd and \cs allow hyphenation of control sequences after (most)
underscores. By default, a hyphen is used to mark the hyphenation, but this can be
changed with the cs-break-nohyphen class option. To disable hyphenation of control
sequences entirely, use cs-break = false.

By default, class options

full , check = false , checktest = false , 1Im-default

are set.

4.3 Partitioning documentation and implementation

doc uses the \OnlyDocumentation/\AlsoImplementation macros to guide the use of
\StopEventually{}, which is intended to be placed to partition the documentation and
implementation within a single .dtx file.

This isn’t very flexible, since it assumes that we always want to print the documen-
tation. For the expl3 sources, I wanted to be able to input .dtx files in two modes: only
displaying the documentation, and only displaying the implementation. For example:

\DisableImplementation
\DocInput{1l3basics,13prg,...}
\EnableImplementation
\DisableDocumentation
\DocInputAgain

\cmd
\cs

The idea being that the entire expl3 bundle can be documented, with the implemen-
tation included at the back. Now, this isn’t perfect, but it’s a start.

Use \begin{documentation}...\end{documentation} around the documentation,
and \begin{implementation}...\end{implementation} around the implementation.
The \EnableDocumentation/\EnableImplementation causes them to be typeset when
the .dtx file is \DocInput; use \DisableDocumentation/\DisableImplementation to
omit the contents of those environments.

Note that \DocInput now takes comma-separated arguments, and \DocInputAgain
can be used to re-input all .dtx files previously input in this way.

4.4 General text markup

Many of the commands in this section come from ltxdoc with some improvements.

\cmd [{(options)] (control sequence)

\cs [(options)] {(csname)}

These commands are provided to typeset control sequences. \cmd\foo produces “\foo”
and \cs{foo} produces the same. In general, \cs is more robust since it doesn’t rely on
catcodes being “correct” and is therefore recommended.

These commands are aware of the @@ DocStrip syntax and replace such instances
correctly in the typeset documentation. This only happens after a %<@@=(module)>
declaration.

Additionally, commands can be used in the argument of \cs. For instance,
\cs{\meta{name}:\meta{signature}} produces \(name):(signature).

The (options) are a key—value list which can contain the following keys:

o index=(name): the (csname) is indexed as if one had written \cs{(name)}.
o no-index: the (csname) is not indexed.

o module=(module): the (csname) is indexed in the list of commands from the
(module); the (module) can in particular be TeX for “TEX and IWTEX2:” com-
mands, or empty for commands which should be placed in the main index. By
default, the (module) is deduced automatically from the command name.

o replace is a boolean key (true by default) which indicates whether to replace @@
as DocStrip does.

These commands allow hyphenation of control sequences after (most) underscores. By
default, a hyphen is used to mark the hyphenation, but this can be changed with the
cs-break-nohyphen class option. To disable hyphenation of control sequences entirely,
use cs-break = false.

\tn [{options)] {(csname)}

Analogous to \cs but intended for “traditional” TEX or KTEX 2: commands; they are
indexed accordingly. This is in fact equivalent to \cs [module=TeX, replace=false,
(options)] {(csname)}.

\meta \meta {(name)}

\meta typesets the (name) italicized in (angle brackets). Within a function environ-

ment or similar, angle brackets <...> are set up to be a shorthand for \meta{...}.
This function has additional functionality over its ltxdoc versions; underscores can

be used to subscript material as in math mode. For example, \meta{arg_{xy}} produces

« <argmy> ”

\Arg \Arg {(name)}

t:zig Typesets the (name) as for \meta and wraps it in braces.
\parg The \marg/\oarg/\parg versions follow from Itxdoc in being used for “mandatory”

or “optional” or “picture” brackets as per BTEX 2¢ syntax.

\file \pkg {(name)}

teiv These all take one argument and are intended to be used as semantic commands for
\I;lg representing files, environments, package names, and class names, respectively.

\NB \NB {(tag)} {(comments)}
\NOTE \begin{NOTE} {(tag)}

(comments)
\end{NOTE}
Make notes in the source that are not typeset by default. When the show-notes class
option is active, the comments are typeset in a detokenized and verbatim mode, respec-
tively.

4.5 Describing functions in the documentation

function (env.) Two heavily-used environments are defined to describe expl3 functions and variables. If

variable (env.) describing a variable, use the latter environment; it behaves identically to the function

syntax (env.) environment. Both of the above environments are typically combined with the syntax
environment, to describe their syntax.

\begin{function}{\package_function_one:N, \package_function_two:n}
\begin{syntax}
\cs{package_function_one:N} \meta{cs}
\cs{package_function_two:n} \marg{Argument}
\end{syntax}
Descriptive text here ...
\end{function}

\package_function_one:N \package_function_one:N (cs)
\package_function_two:n \package_function_two:n {(Argument)}

Descriptive text here . ..

Function environments take an optional argument to indicate whether the function(s)
it describes are expandable (use EXP) or restricted-expandable (use rEXP) or defined in

texnote (env.)

macro (env.)

conditional forms (use TF, pTF, or noTF). Note that pTF implies EXP since predicates
must always be expandable, and that noTF means that the function without TF should
be documented in addition to TF. For the conditional forms TF and pTF, the argument of
the function environment is not in fact a command that exists: in the example below,
\tl_if_empty:N does not exist, but its conditional forms \t1_if_empty:NT, \tl_if_-
empty:NF, \t1_if_empty:NTF and predicate form \t1l_if_empty_p:N exist:

\begin{function} [pTF]{\tl_if_empty:N, \tl_if_empty:c}
\begin{syntax}
\cs{tl_if_empty_p:N} \meta{tl~var}
\cs{tl_if_empty:NTF} \meta{tl~var} \Arg{true code} \Arg{false code}
\end{syntax}
Tests if the \meta{tl~var} is entirely empty
(i.e., contains no tokens at all).
\end{function}

\tl_if_empty_p:N * \tl_if_empty_p:N (tl var)

\tl_if_empty_p:c x \tl_if_empty:NTF (t1 var) {(true code)}
\tl_if_empty:NTF * {(false code)}
*

ML if enptyieIF % egts if the (t1 var) is entirely empty

(i.e., contains no tokens at all).

This environment is used to call out sections within function and similar environ-
ments that are only of interest to seasoned TEX developers.

4.6 Describing functions in the implementation

The well-used environment from KTEX2c for marking up the implementation of
macros/functions remains the macro environment. Some changes in |3doc: it now ac-
cepts comma-separated lists of functions, to avoid a very large number of consecutive
\end{macro} statements. Spaces and new lines are ignored (the option [verb] prevents
this).

% \begin{macro}{\foo:N, \foo:c}
% \begin{macrocode}
. code for \foo:N and \foo:c ...
% \end{macrocode}
% \end{macro}

If you are documenting an auxiliary macro, it’s generally not necessary to highlight it as
much and you also don’t need to check it for, say, having a test function and having a
documentation chunk earlier in a function environment. 13doc will pick up these cases
from the presence of __ in the name, or you may force marking as internal by using
\begin{macro}[int] to mark it as such. The margin call-out is then printed in grey for
such cases.

For documenting expl3-type conditionals, you may also pass this environment a TF
option (and omit it from the function name) to denote that the function is provided with
T, F, and TF suffixes. A similar pTF option prints both TF and _p predicate forms. An

\TestFiles

\UnitTested

\TestMissing

variable (env.)

arguments (env.)

option noTF prints both the TF forms and a form with neither T nor F, to document
functions such as \prop_get:NN which also have conditional forms (\prop_get :NNTF).

In a very small number of cases, there is no user documentation for a “public”
function. In these rare cases, the option no-user-doc may be added to suppress the
undefined reference that would otherwise then arises.

\TestFiles{(list of files)} is used to indicate which test files are used for the current
code; they are printed in the documentation.

Within a macro environment, it is a good idea to mark whether a unit test has been
created for the commands it defines. This is indicated by writing \UnitTested anywhere
within \begin{macro} ...\end{macro}.

If the class option checktest is enabled, then it is an error to have a macro environ-
ment without a call to Testfiles. This is intended for large packages such as expl3 that
should have absolutely comprehensive tests suites and whose authors may not always be
as sharp at adding new tests with new code as they should be.

If a function is missing a test, this may be flagged by writing (as many times as
needed) \TestMissing {(explanation of test required)}. These missing tests are summa-
rized in the listing printed at the end of the compilation run.

When documenting variable definitions, use the variable environment instead. Here
it behaves identically to the macro environment, except that if the class option checktest
is enabled, variables are not required to have a test file.

Within a macro environment, you may use the arguments environment to describe
the arguments taken by the function(s). It behaves like a modified enumerate environ-
ment.

% \begin{macro}{\foo:nn, \foo:VV}
% \begin{arguments}
% \item Name of froozle to be frazzled
% \item Name of muble to be jubled
% \end{arguments}
% \begin{macrocode}
. code for \foo:nn and \foo:VV ...
% \end{macrocode}
% \end{macro}

4.7 Keeping things consistent

Whenever a function is either documented or defined with function and macro respec-
tively, its name is stored in a sequence for later processing.

At the end of the document (i.e., after the .dtx file has finished processing), the list
of names is analyzed to check whether all defined functions have been documented and
vice versa. The results are printed in the console output.

If you need to do more serious work with these lists of names, take a look at the im-
plementation for the data structures and methods used to store and access them directly.

4.8 Documenting templates

The following macros are provided for documenting templates; might end up being some-
thing completely different but who knows.

\begin{TemplateInterfaceDescription} {(template type name)}

\TemplateArgument{none}{---}
OR ONE OR MORE OF THESE:

\TemplateArgument {{arg no)} {(meaning)}

AND
\TemplateSemantics

(text describing the template type semantics)
\end{TemplateInterfaceDescription}

\begin{TemplateDescription} {(template type name)} {(name)}

ONE OR MORE OF THESE:

\TemplateKey {(key name)} {(type of key)}

{(textual description of meaning)}

{{default value if any)}
AND
\TemplateSemantics

(text describing special additional semantics of the template)

\end{TemplateDescription}

\begin{InstanceDescription} [(text to specify key column width (optional))]
{{template type name)}{ (instance name)}{{template name)}

ONE OR MORE OF THESE:

\InstanceKey {(key name)} {{value)}

AND
\InstanceSemantics

(text describing the result of this instance)

\end{InstanceDescription}

Index

The italic numbers denote the pages where the corresponding entry is described, numbers
underlined point to the definition, all others indicate the places where it is used.

A
\AlsoImplementation 4
\Arg . 0
arguments (€nv.) 8

C
check (option) 4
checktest (option) 4
\els .o 6
Nemd .. 4, 5
NCS o 4, 5
cs-break (option) 4
cs-break-nohyphen (option) 4

D
\Describe 2

\DescribeRoutine

\DescribeVariable 2
\DisableDocumentation 5
\DisableImplementation 5
\DocInputc.ociuino... 5
\DocInputAgain 5
E
\EnableDocumentation 5
\EnableImplementation 5
NenV . ..t 6
environments:
arguments 8
function, . 6
MACTO .t v v et ittt 7
syntax, 0
texnote 7
variable 6, 8

\file ... 6
NFOO « ot)
full (option) 4
function (env.) 6
H
hide-notes (option) 4
K
kernel (option) 4
kernel internal commands:
\1__kernel_expl_bool 4
\c__kernel_expl_date_tl 4
__kernel_tl_to_str:w 4
L
lm-default (option) 4
M
macro (ENV.) 7
\Margiiii 6
\META © vt e 6
N
\NB . 4, 6
\NewDescribeEnvironment 2
\NewMacroEnvironment 2
ANOTE . . .ot 4, 6
O
Noarg 6
onlydoc (option) 4
\OnlyDocumentation 4
options:
check 4
checktest 4
cs-break, 4
cs-break-nohyphen 4
FULL oo et J

10

hide-notes 4
kernel, 4
Im-default 4
onlydoCc, 4
show-notes 4
P
package commands:
\package_function_one:N 6
\package_function_two:n 0
\Parg . . oo 6
\PKE « e 6
S
show-notes (option) 4
\StopEventually 3, 4
syntax (env.) 6
T
\TestFiles 8
\TestFilesc........ 8
\TestMissing 8
\TestMissing 8
TEX and ETEX 2 commands:
\Part ... 3
\partname 3
texnote (env.) 7
tl commands:
\tl_if_empty:NTF 7
\tl_if_empty_p:N 7
7 5
U
\UnitTest, 4
\UnitTested 8
\UnitTested 8
\%
variable (env.) 6, 8

	Contents
	1 Introduction
	2 Features of other packages
	2.1 The hypdoc package
	2.2 The docmfp package
	2.3 The xdoc2 package
	2.4 The gmdoc package

	3 Problems & Todo
	4 Documentation
	4.1 Configuration
	4.2 Class options
	4.3 Partitioning documentation and implementation
	4.4 General text markup
	4.5 Describing functions in the documentation
	4.6 Describing functions in the implementation
	4.7 Keeping things consistent
	4.8 Documenting templates

	Index
	A
	C
	D
	E
	F
	H
	K
	L
	M
	N
	O
	P
	S
	T
	U
	V

