prooftrees
Version v0.9.2 (SVN Rev: 11540)

Clea F. Rees*
2026/01/19

Abstract

prooftrees is a IATEX 2¢ package, based on forest, designed to support the typesetting of logical tableaux —
‘proof trees’ or ‘truth trees’ — in styles sometimes used in teaching introductory logic courses, especially
those aimed at students without a strong background in mathematics. One textbook which uses proofs of
this kind is Hodges (1991). Like forest, prooftrees supports memoize out-of-the-box. prooftrees uses forest-ext
to support tagged PDFs out-of-the-box.

Note that this package requires version 2.1 (2016/12/04) of forest (Zivanovié 2016). It will not
work with versions prior to 2.1.

Versions 0.9.2 and later require forest-ext (Rees 2026).

I would like to thank Zivanovié both for developing forest and for considerable patience in answering my questions,
addressing my confusions and correcting my mistakes. The many remaining errors are, of course, entirely my
own. This package’s deficiencies would be considerably greater and more numerous were it not for his assistance.

*Bug tracker: codeberg.org/cfr/prooftrees/issues | Code: codeberg.org/cfr/prooftrees | Mirror: github.com/cfr42/
prooftrees

S -T. T+ -RizF S+ R (F2)((Vy)(Py = (x = y)) - Px) |z~ (32)(Vy)(Py & (v = y))
1. S+ -T Vv pr. 1. (32)((Vy)(Py = (x=y)) - Px) vd pr.
2. T+ RV pr. 2. ~(3z)(Vy)(Py < (x = y)) \d - conc.
3. (S R) Vv — conc. 3. (Vy)(Py = (d=vy))- Pd v 13E
T 4. (Vy)(Py = (d=1y)) \c 3-E
4. s -9 1oE - Pd 3B
5. T v 1 &E 6. ~(Vy)(Py < (d=y)) v 2 ~3E
/\ /\ 7. ~(Pece (d=c)) v 6 ~VE
6. 2+ E T
7. ﬂR ﬂﬂR/ ﬁR ﬂﬁR/ 2 - E S- jz ;PC ;“4¢g
& . c =c ~ &
5,6 ,/\V A ‘) .) 10. | Pc 5,9 =
8. =S S =S T 3 E b5 -—E 11. Pec = () v ® AVE
9. R -R R -R & 3+ E 8,10
10. ® R ® ® 68 7--E N
48 @ 7,9 4,8 12. ~Pe d=c 11 =E
9,10 13. ® d#d 9,12 =
8,12 ®
13

—1of 34 —

https://codeberg.org/cfr/prooftrees/issues
codeberg.org/cfr/prooftrees/issues
https://codeberg.org/cfr/prooftrees
codeberg.org/cfr/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees
https://github.com/cfr42/prooftrees
github.com/cfr42/prooftrees

1 Raison d’étre CONTENTS

Contents
1 Raison d’étre 2
2 Assumptions & Limitations 6
3 Typesetting a Tableau 6
4 Loading the Package 15
5 Invocation 15
6 Tableau Anatomy 15
7 Options 16
7.1 Global Options 16
7.1.1 Dimensions Lo e e e 18
7.1.2 Line Numbers. o 18
7.1.3 Proof Statement 19
7.1.4 Format e e 19
7.2 Local Options e 21
7.21 Annotations L e e 22
7.2.2 Moving e e 23
7.2.3 Format: wff, justification & line numbero oL 24
8 Macros 25
9 Extras 25
9.1 Steps 25
9.2 Fit . . . e 25
10 Advanced Configuration 26
11 Memoization 27
12 Tagging 28
12.1 Global Tagging Options oot e e 28
12.2 Local Tagging Options 0 o e 29
13 Typesetting Process 29
14 Compatibility 31

1 Raison d’étre
Suppose that we wish to typeset a typical tableau demonstrating the following entailment

{PV(QV-R),P—-R,Q——-R}--R

We start by typesetting the tree using forest’s default settings (box 1) and find our solution has several
advantages: the proof is specified concisely and the code reflects the structure of the tree. It is relatively
straightforward to specify a proof using forest’s bracket notation, and the spacing of nodes and branches is
automatically calculated.

Despite this, the results are not quite what we might have hoped for in a tableau. The assumptions should
certainly be grouped more closely together and no edges (lines) should be drawn between them because these
are not steps in the proof — they do not represent inferences. Preferably, edges should start from a common
point in the case of branching inferences, rather than there being a gap.

—2of 8} —

1 Raison d’étre

Moreover, tableaux are often compacted so that non-branching inferences are grouped together, like assumptions,
without explicitly drawn edges. Although explicit edges to represent non-branching inferences are useful when
introducing students to tableaux, more complex proofs grow unwieldy and the more compact presentation
becomes essential.

Furthermore, it is useful to have the option of annotating tableaux by numbering the lines of the proof on the
left and entering the justification for each line on the right.

forest is a powerful and flexible package capable of all this and, indeed, a good deal more. It is not enormously
difficult to customise particular trees to meet most of our desiderata. However, it is difficult to get things
perfectly aligned even in simple cases, requires the insertion of ‘phantom’ nodes and management of several
sub-trees in parallel (one for line numbers, one for the proof and one for the justifications). The process
requires a good deal of manual intervention, trial-and-error and hard-coding of things it would be better to
have IWTEX 2¢ manage for us, such as keeping count of lines and line references.

prooftrees aims to make it as easy to specify tableaux as it was to specify our initial tree using forest’s default
settings. The package supports a small number of options which can be configured to customise the output.
The code for a prooftrees tableau is shown in box 2, together with the output obtained using the default settings.

More extensive configuration can be achieved by utilising forest (Zivanovié¢ 2016) and/or TikZ (Tantau 2015)
directly. A sample of supported tableau styles are shown in box 3. The package is not intended for the
typesetting of tableaux which differ significantly in structure.

forest: default settings

\begin{forest}
[$P \vee (Q \vee \1not R)$
[$P \1if \1not R$
[$Q \1if \lnot R$ PV(QV-R)
[$\lnot\lnot R$ \
[P P—-R
[$\1not P$] ‘
] [$\1not R$] QR
[$Q \vee \lnot R$ ‘
[$\1not Q$]
[$\1not R$] / \
] P QV-R

/N /N

-P -R Q -R

/\

[$\1not R$]
]
]
]
]
]
\end{forest}

[Q | R

1 Raison d’étre

prooftrees: default settings

\begin{tableau}
{

to prove={\{P \vee (Q \vee \lnot R), P \1lif

\lnot R, Q \1if \1not R\} \sststile{}{} \1lnot
R}
}
[P \vee (Q \vee \lnot R), just=Ass, checked
[P \1if \1not R, just=Ass, checked
[Q \1if \1not R, just=Ass, checked,
name=last premise
[\Inot\1lnot R, just={$\1lnot$ Conc},
name=not conc
[P, just={\vee Elim: 'uuuu}
[\1not P, close={:'u,'c}]
[\1not R, close={:not conc,!c},
just={$\1if$ Elim: 'uuuu}]]
[Q \vee \1lnot R
[Q, move by=1
[\1not Q, close={:'u,!c}]
[\lnot R, close={:not conc,!c},
just={$\1if$ Elim:last premisel}]]
[\1not R, close={:not conc,!c},
move by=1, just={\vee Elim:!u}1]1]11]]
\end{tableau}

{PV(QV-R),P—-R,Q——-R}--R

1.

2.
3.
4

&

Pv(QV-R)V
P—-RV
Q—-RV

||R
P QV-R
N A
® 2 Q -R
5,6 4,6 ®
PN 8
® ®
7,8 4,8

Ass
Ass
Ass
- Conc

1 v Elim

2 — Elim
5 VvV Elim

3 — Elim

— 4 0f 34 —

prooftrees: sample output

{PV(QV-R),P—-R,Q——-R}--R

1. Pv(QV-R)V Ass
2. P—-RV Ass
3. Q—-RV Ass
4. R Neg conc
5. P QV-Rv 1V Elim
6. =P -R A 2 — Elim
7. 0® ® Q -R 5V Elim
5,6 4,6 ®
/\ 2 .
8. -Q -R 3 — Elim
® ®
7,8 4,8
v PV(QV-R) Ass
v P—-R Ass
v Q——-R Ass
-—R Neg conc
P v QV-R V Elm
-P -R — Elim
X X
Q -R V Elim
/\ b 4
-@Q R — Elim
b 4 b 4

(3z)(Lx vV Mx) l— (3z)Lx v (Fx)Mz

1 (Fz)(Lx vV Mz) va Ass
2. =((3z)Lx Vv (3z)Mz) v Neg Conc
3. LaV Ma v 13E
4. —(3z)Lx \a 2 -VE
5 —(Fz)Mzx \a
6 -La 4 -3E
7 -Ma 5 -3JE
N
8. La Ma 3VE
02y &
68 7,8

1) Pv(QV~R)V Ass
2) PO>~RV Ass
3) QDO~RV Ass
4) ~~R Neg conc
5) P QV~RY 1V Elim
6) ~P ~R 2 D Elim
7)) % * Q ~R 5V Elim
56 4,6 *
4,7 .

8) ~@Q ~R 3 D Elim

* *

7,8 4,8

{PV(QV-R),P—-R,Q—-R} - —-R

1. PVv(QV-R)V Ass
2. P—-RV Ass
3. Q—-RV Ass
4. R Neg conc
5. P QV-Rv 1V Elm
6. Q —-R 5V Elim
/\ X
7. -Q -r “° 3 Flim
8. =P —-R X X 2 — Elim
% « 6,7 47
5,8 4,8

Either Alice saw nobody
or she didn’t see nobody.

Alice saw nobody. \Jones VE

Alice didn’t see Jones. VE

Alice didn’t see nobody. VE
Alice saw somebody. v’ Jones ——E
Alice saw Jones. JE

— 5of 8 —

3 Typesetting a Tableau

2 Assumptions & Limitations

prooftrees makes certain assumptions about the nature of the proof system, £, on which proofs are based.

o All derivation rules yield equal numbers of wff's on all branches.

wff wff wff wff
N N /N N
wff wff wff wff wff wff wff wff
v owff wff v wff X wff X

If £ fails to satisfy this condition, prooftrees is likely to violate the requirements of affected derivation
rules by splitting branches ‘mid-inference’.

e No derivation rule yields wff's on more than two branches.

e All derivation rules proceed in a downwards direction at an angle of -90° i.e. from north to south.
o Any justifications are set on the far right of the tableau.

e Any line numbers are set on the far left of the tableau.

« Justifications can refer only to earlier lines in the proof. prooftrees can typeset proofs if £ violates
this condition, but the cross-referencing system explained in section 7.2 cannot be used for affected
justifications.

prooftrees does not support the automatic breaking of tableaux across pages'. Tableaux can be manually broken
by using line no shift with an appropriate value for parts after the first (section 7.1). However, horizontal
alignment across page breaks will not be consistent in this case.

In addition, prooftrees almost certainly relies on additional assumptions not articulated above and certainly
depends on a feature of forest which its author classifies as experimental (do dynamics).

3 Typesetting a Tableau

After loading prooftrees in the document preamble:

% in document's preamble
\usepackage{prooftrees}

the prooftree environment is available for typesetting tableaux. This takes an argument used to specify a
(tree preamble), with the body of the environment consisting of a (tree specification) in forest’s notation. The
(tree preamble) can be as simple as an empty argument — {} — or much more complex.

Customisation options and further details concerning loading and invocation are explained in section 4, section 5,
section 6, section 7 and section 8. In this section, we begin by looking at a simple example using the default
settings.

Suppose that we wish to typeset the tableau for

(F2)((Vy)(Py — z = y) A Pz) = (32)(Vy) (Py > = = y)

and we would like to typeset the entailment established by our proof at the top of the tree. Then we should
begin like this:

\begin{tableau}
{
to prove={(\exists x)((\forall y) (Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \liff x = y)}
}
\end{tableau}

11t is possible to persuade prooftrees to do this automatically or semi-automatically. However, the code is not in a state I would
wish to inflict on an unsuspecting public. The perilously inquisitive may search TeX Stack Exchange at their own risk.

—6of 34 —

3 Typesetting a Tableau

E Nested structure of tableau

(Fz)((Vy)(Py = x =y) A Px) (Fz)(Vy)(Py > x =y)

1. (3)(Yy)(Py—x =y) A Px) Va Pr.

2. —(Fx)(Vy)(Py+ 2z =y) \a Conc. neg.
3. (Vu)(Py—a=y) AN Pa v 13E

4. ‘v’y)(Py—>a— y) \b 3 AE

5. 3ANE

6. —|V1/)(Pu<—>afu) v'b 2 -3E
7. ~(Pbsa=1b) v 6 —VE
8. 7T+ E

9. 8§ <+ E
10. 59=FE
11. 4VE

12. 1 —-E
13. 9,12 =E

That is all the preamble we want, so we move onto consider the (tree specification). forest uses square brackets
to specify trees’ structures. To typeset a proof, think of it as consisting of nested trees, trunks upwards, and
work from the outside in and the trunks down (box 4).

Starting with the outermost tree o and the topmost trunk, we replace the () with square brackets and
enter the first wff inside, adding just=Pr. for the justification on the right and checked=a so that the line
will be marked as discharged with a substituted for z. We also use forest’s name to label the line for ease of
reference later. (Technically, it is the node rather than the line which is named, but, for our purposes, this
doesn’t matter. forest will create a name if we don’t specify one, but it will not necessarily be one we would
have chosen for ease of use!)

\begin{tableau}

¢ to prove={(\exists x) ((\forall y) (Py \1if x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \1liff x = y)}

}[{(\exists x) ((\forall y)(Py \lif x = y) \land Px)}, checked=a, just=Pr., name=pr
\eid{tableau}

We can refer to this line later as pr.

We then consider the next tree 9 CTts (O goes inside that for G , so the square brackets containing

the next wff go inside those we used for o . Again, we add the justification with just, but we use subs=a
rather than checked=a as we want to mark substitution of a for x without discharging the line. Again, we use

— 7T of 34 —

3 Typesetting a Tableau

name so that we can refer to the line later as neg conc.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}} (\exists x) (\forall y) (
Py \1liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1if x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\1not (\exists x)(\forall y)(Py \1iff x = y)}, subs=a, just=Conc.~neg., name=neg conc
]
]
\end{tableau}

Turning to tree e , we again note that its () is nested within the previous two, so the square brackets for
its wff need to be nested within those for the previous wffs. This time, we want to mark the line as discharged
without substitution, so we simply use checked without a value. Since the justification for this line includes
mathematics, we need to ensure that the relevant part of the justification is surrounded by $...$ or \(...\).
This justification also refers to an earlier line in the proof. We could write this as just=1 $\exists\elim$,
but instead we use the name we assigned earlier with the referencing feature provided by prooftrees. To
do this, we put the reference, pr after the rest of the justification, separating the two parts by a colon
i.e. $\exists\elim$:pr and allow prooftrees to figure out the correct number.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}{} (\exists x)(\forall y)(
Py \liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1lif x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\lnot (\exists x) (\forall y)(Py \1liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y) (Py \1if a = y) \land Pa}, checked, just=$\exists\elim$:pr
]
]
]
\end{tableau}

Continuing in the same way, we surround each of the wffs for e , e , 6 and o within square
brackets nested within those surrounding the previous wff since each of the trees is nested within the previous
one. Where necessary, we use name to label lines we wish to refer to later, but we also use forest’s relative
naming system when this seems easier. For example, in the next line we add, we specify the justification as
just=$\land\elim$: !u. ! tells forest that the reference specifies a relationship between the current line and
the referenced one, rather than referring to the other line by name. !'u refers to the current line’s parent line
— in this case, {(\forall y) (Py \1if a = y) \land Pa}, checked, just=$\exists\elim$:pr. 'uu refers
to the current line’s parent line’s parent line and so on.

\begin{tableau}
{
to prove={(\exists x)((\forall y) (Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \1liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1if x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\1not (\exists x)(\forall y)(Py \1iff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y) (Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \1lif a = y)}, subs=b, just=$\land\elim$:'u, name=mark
[Pa, just=$\land\elim$:!'uu, name=simple
[{\1not (\forall y) (Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \1liff a = b)}, checked, just=$\lnot\foralllelim$:!'u
]
]
]
]

— 8of 34 —

3 Typesetting a Tableau

]
]
]
\end{tableau}

Reaching g , things get a little more complex since we now have not one, but two () nested within 0 .
This means that we need two sets of square brackets for e — one for each of its two trees. Again, both
of these should be nested within the square brackets for e but neither should be nested within the other

because the trees for the two branches at e are distinct.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1lif x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\lnot (\exists x) (\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y) (Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \1if a = y)}, subs=b, just=$\land\elim$:'u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple
[{\1not (\forall y)(Py \1iff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \1liff a = b)}, checked, just=$\lnot\forall\elim$:!u
[Pb, just=$\1liff\elim$:!u, name=to Pb or not to Pb

]
[\lnot Pb
]
]
1
]
]
]
]
]
\end{tableau}

At this point, we need to work separately or in parallel on each of our two branches since each constitutes its
own tree. Turning to trees o , each needs to be nested within the relevant tree e , since each) is

nested within the applicable branch’s tree. Hence, we nest square brackets for each of the wffs at 9 within
the previous set.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \1liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1lif x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\1not (\exists x)(\forall y)(Py \1iff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y) (Py \lif a = y) \land Pal}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \1lif a = y)}, subs=b, just=$\land\elim$:'!'u, name=mark
[Pa, just=$\land\elim$:'!uu, name=simple
[{\1not (\forall y) (Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \1liff a = b)}, checked, just=$\lnot\forall\elim$:!u
[Pb, just=$\1liffl\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!'!u

]

]

[\1not Pb
[{a = b}
]

— 9of 34 —

3 Typesetting a Tableau

\end{tableau}

We only have one tree @ as there is no corresponding tree in the left-hand branch. This isn’t a problem: we

just need to ensure that we nest it within the appropriate tree 9 . There are two additional complications
here. The first is that the justification contains a comma, so we need to surround the argument we give just
with curly brackets. That is, we must write just={5,9 $=\elim$} or just={$=\elim$:{simple, !ul}. The
second is that we wish to close this branch with an indication of the line numbers containing inconsistent wffs.
We can use close={8,10} for this or we can use the same referencing system we used to reference lines when
specifying justifications and write close={:to Pb or not to Pb,!c}. In either case, we again surrounding
the argument with curly brackets to protect the comma. !c refers to the current line — something useful in
many close annotations, but not helpful in specifying non-circular justifications.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}} (\exists x) (\forall y) (
Py \liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1if x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\lnot (\exists x) (\forall y)(Py \1liff x = y)}, subs=a, just=Conc.-~neg., name=neg conc
[{(\forall y)(Py \1if a = y) \land Pa}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:!uu, name=simple
[{\1not (\forall y)(Py \1iff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\foralllelim$:!u
[Pb, just=$\1liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\1lifflelim$:!u

1
]
[\lnot Pb
[{a = b}
[Pb, just={$=\elim$:{simple,'u}t}, close={:to Pb or not to Pb,!c}
]
1
]
]
1
]
]
]
]
1
\end{tableau}

This completes the main right-hand branch of the tree and we can focus solely on the remaining left-hand one.
Tree @ is straightforward — we just need to nest it within the left-hand tree g .

i\begin{tableau}
Ao

}

|
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y) (‘
|
[{(\exists x) ((\forall y)(Py \1lif x = y) \land Px)}, checked=a, just=Pr., name=pr

|
Py \liff x = y)}
|
|

— 10 of 34 —

3 Typesetting a Tableau

[{\1not (\exists x) (\forall y)(Py \liff x = y)}, subs=a, just=Conc.-~neg., name=neg conc

[{(\forall y) (Py \lif a = y) \land Pa}, checked, just=$\exists\elim$:pr

[{(\forall y)(Py \1lif a = y)}, subs=b, just=$\land\elim$:!'u, name=mark
[Pa, just=$\land\elim$:'uu, name=simple

[{\1not (\forall y) (Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \1liff a = b)}, checked, just=$\lnot\forall\elim$:!u
[Pb, just=$\liffl\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\liff\elim$:!'!u
[{Pb \1if a = b}, checked, just=\foralllelim:mark’,, move by=1

1
]
]
[\1not Pb
[{a = b}
[Pb, just={$=\elim$:{simple,!u}t}, close={:to Pb or not to Pb,!c}
1
]
]
1
1
]
]
]
]
1
\end{tableau}

At this point, the main left-hand branch itself branches, so we have two trees @ . Treating this in the

same way as the earlier branch at @ , we use two sets of square brackets nested within those for tree @ ,
but with neither nested within the other. Since we also want to mark the leftmost branch as closed, we add
close={:to Pb or not to Pb,!c} in the same way as before.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}} (\exists x) (\forall y) (
Py \liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1if x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\1not (\exists x)(\forall y)(Py \1iff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \1if a = y) \land Pa}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:'uu, name=simple
[{\1not (\forall y)(Py \1iff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \liff a = b)}, checked, just=$\lnot\foralllelim$:!u
[Pb, just=$\liffl\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\1lifflelim$:!u
[{Pb \1if a = b}, checked, just=4 \foralllelim
[\lnot Pb, close={:to Pb or not to Pb,!c}, just=\liflelim:!u

]
[{a = b}
]
1
]
]
[\1not Pb
[{a = b}
[Pb, just={$=\elim$:{simple,!u}}, close={:to Pb or not to Pb,!c}
1
]

— 1l of 8 —

3 Typesetting a Tableau

\end{tableau}

We complete our initial specification by nesting @ within the appropriate tree @ , again marking closure
appropriately.

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}{} (\exists x) (\forall y)(
Py \liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1lif x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\lnot (\exists x) (\forall y)(Py \liff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y) (Py \lif a = y) \land Pal}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \1if a = y)}, subs=b, just=$\land\elim$:'u, name=mark
[Pa, just=$\land\elim$:!'uu, name=simple
[{\Inot (\forall y) (Py \liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\1not (Pb \1liff a = b)}, checked, just=$\lnot\forall\elim$:!u
[Pb, just=$\1liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\1lifflelim$:!u
[{Pb \1if a = b}, checked, just=4 \foralllelim
[\1not Pb, close={:to Pb or not to Pb,!c}, just=$\lif\elim$:!'u

]
[{a = b}
[a \neq a, close={:!c}, just={$=\elim$:{'uuu, 'u}l}
]
]
1
]
]
[\1not Pb
[{a = b}
[Pb, just={$=\elim$:{simple,!u}t}, close={:to Pb or not to Pb,!c}
1
1
]
]
]
1
]
]
1
1
\end{tableau}

Compiling our code, we find that the line numbering is not quite right:

— 12 of 84 —

3 Typesetting a Tableau

(32)((v9)(Py = & = y) A Px) |= (32)(vy)(Py > 7 = y)
1. (3z)(Yy)(Py =z =y) APz) va Pr.
2. =(3z)(Vy)(Py <z =y) \a Conc. neg.
3. (Vy)(Py - a=y) AN Pa v 13E
4. (Vy)(Py —a=1y) \b 3NE
d. Pa 3ANE
6. (Vy)(Py<ra=y) Vb 2 -3E
7. —(Pb<>a=1b) v 6 -VE
TN
8. Pb -Pb 7+ E
9. a#b a=1b 8 < E
10. Pb—a=bv Pb 4VE;5,9=E
N8
1. ~Pb a=b 10 - E
12. ® aa 9,11=E
8,11 ®
12

prooftrees warns us about this:

Package prooftrees Warning: Merging conflicting justifications for line 10! Please examine the output
carefully and use "move by" to move lines later in the proof if required. Details of how to do this
are included in the documentation.

We would like line 10 in the left-hand branch to be moved down by one line, so we add move by=1 to the
relevant line of our proof. That is, we replace the line

[{Pb \1if a = b}, checked, just=4 \foralllelim

[{Pb \1if a = b}, checked, just=$\foralll\elim$:mark, move by=1

giving us the following code:

\begin{tableau}
{
to prove={(\exists x) ((\forall y)(Py \1lif x = y) \land Px) \sststile{}} (\exists x) (\forall y) (
Py \1liff x = y)}
}
[{(\exists x) ((\forall y)(Py \1if x = y) \land Px)}, checked=a, just=Pr., name=pr
[{\1not (\exists x)(\forall y)(Py \1iff x = y)}, subs=a, just=Conc.~neg., name=neg conc
[{(\forall y)(Py \1if a = y) \land Pa}, checked, just=$\exists\elim$:pr
[{(\forall y)(Py \lif a = y)}, subs=b, just=$\land\elim$:!u, name=mark
[Pa, just=$\land\elim$:'uu, name=simple
[{\1not (\forall y)(Py \1liff a = y)}, checked=b, just=$\lnot\exists\elim$:neg conc
[{\lnot (Pb \liff a = b)}, checked, just=$\lnot\foralllelim$:!u
[Pb, just=$\liff\elim$:!u, name=to Pb or not to Pb
[a \neq b, just=$\1lifflelim$:!u
[{Pb \1if a = b}, checked, just=\foralllelim:mark, move by=1
[\lnot Pb, close={:to Pb or not to Pb,!c}, just=$\1lif\elim$:'u

]
[{a = b}
[a \neq a, close={:!c}, just={$=\elim$:{!uuu, 'u}t}
]
]
]
]
]

— 13 0f 84 —

3 Typesetting a Tableau

[\lnot Pb
[{a = b}
[Pb, just={$=\elim$:{simple,!u}t}, close={:to Pb or not to Pb,!c}

\end{tableau}

which produces our desired result:

(F2)((Vy)(Py — = = y) A Pz) |- (32)(Vy) (Py > z = y)

1 (3z)(Yy)(Py =z =y) APz) va Pr.
2 =(3z)(Vy)(Py <z =y) \a Conc. neg.
3 (Vy)(Py - a=y) AN Pa v 13E
4. (Vy)(Py —a=1y) \b 3NE
5 Pa 3ANE
6 -(Yy)(Py<a=y) Vb 2 -3E
7 “(Pb<ra=0b) v 6 -VE
TN
8. Pb -Pb 7+ E
9. a#b a=1b 8 < E
10. | Pb 5,9=F
11. Pb—a=bv 4VE
A 8,10
12. -Pb a=b 11 —-E
13. ® a#a 9,12 = E
8,12 ®

13

— 1) of 34 —

6 Tableau Anatomy

prooftree
environment

tableau
environment

4 Loading the Package

To load the package simply add the following to your document’s preamble.

[
‘ \usepackage{prooftrees}
L

prooftrees will load forest automatically.

The only option currently supported is tableaux. If this option is specified, the prooftree
environment will be called tableau instead.

Example: \usepackage[tableaux]prooftrees

would cause the tableau environment to be defined rather than prooftree.
Any other options given will be passed to forest.

Example: \usepackage [debug] prooftrees

would enable forest’s debugging.

If one or more of forest’s libraries are to be loaded, it is recommended that these be loaded
separately and their defaults applied, if applicable, within a local TEX group so that they do not
interfere with prooftrees’s environment.

5 Invocation

\begin{prooftree}{(tree preamble)}(tree specification)\end{prooftree}

The (tree preamble) is used to specify any non-default options which should be applied to the
tree. It may contain any code valid in the preamble of a regular forest tree, in addition to
setting prooftree options. The preamble may be empty, but the argument is required®>. The (tree
specification) specifies the tree in the bracket notation parsed by forest.

Users of forest should note that the environments prooftree and forest differ in
important ways.

e prooftree’s argument is mandatory.

o The tree’s preamble cannot be given in the body of the environment.

o \end{prooftree} must follow the (tree specification) immediately.
\begin{tableau}{(tree preamble)}(tree specification)\end{tableau}

A substitute for prooftree, defined instead of prooftree if the package option tableaux is
specified or a \prooftree macro is already defined when prooftrees is loaded. See section 4 for
details and section 14 for this option’s raison d’étre.

6 Tableau Anatomy

The following diagram provides an overview of the configuration and anatomy of a prooftrees
proof tree. Detailed documentation is provided in section 7 and section 8.

2Failure to specify a required argument does not always yield a compilation error in the case of environments.
However, failure to specify required arguments to environments often fails to achieve the best consequences, even
when it does not result in compilation failures, and will, therefore, be avoided by the prudent.

— 15 of 8 —

7 Options

—e THEOREM /ENTAILMENT

« specified with to prove

o named proof statement

specification)

e check right

proof statement

o format controlled by proof statement format

= DISCHARGE & SUBSTITUTION
o location & annotation content controlled by checked and subs within the (tree

o discharge & substitution symbols controlled by check with & subs with

& subs right control relative location

— JUSTIFICATIONS
o location automatic
o existence controlled implicitly or with

e 0

wff
wif
wff\a.b
/\
wff wff
wff wff

oo_wt—‘]

& =

wff
NN

7. wff wff wﬁ wﬁ
8.
i’p wif

WFFS
o from (tree specification)
o global format controlled by
wff format
o local format controlled by
highlight wff & wff options
e highlight line and line
options control the format of
the current wff’s proof line

—e LINE NUMBERS
content & location automatic
existence controlled by line numbering

named line no n for proof line n

7 Options

- c o justifications
JUStlﬁca’tlon « content specified with just

justiﬁcation « cross-references supported

. . . o global format controlled by just format &
JHStlﬁca’tlon just refs left

o local format controlled by highlight just &
just options

justiﬁcation o named just n for proof line n
justification
ANATOMY & ONTOLOGY

o forest trees consist of (TikZ) nodes
justification o prooftrees places wffs, line numbers, justi-
fications & proof statements into nodes

o the content & location of each node de-
justiﬁcatjon pends on its type: line number, wff, justific-
justiﬁcation ation or proof statement

. . . e the proof’s structure & appearance is
justification determined by the (tree preamble) & (tree

justification | specification)

- « node content, existence & location is con-
trolled by one or both of these, depending
on the node type

MEANING & REFERENCE

¢ nodes for the proof statement, justifications & line num-
bers are given standard names for ease of reference

¢ the proof statement node is the root

¢ wff nodes may be named as required

e a cross-referencing system supports annotations in justific-
ations and closures

CLOSURE
¢ closure symbol & optional annotation
o location & annotation content controlled by close
within the (tree specification)
« annotations support cross-references
e closure symbol controlled by close with and close
with format
o global annotation format controlled by close format
& close sep

global format controlled by line no format & \linenumberstyle
local format controlled by highlight line no & line no options

Most configuration uses the standard key/value interface provided by TikZ and extended by
forest. These are divided into those which determine the overall appearance of the proof as a

whole and those with more local effects.

7.1 Global Options

See section 10 for advanced customisation.

The following options affect the global style of the tree and should typically be set in the tree’s
preamble if non-default values are desired. The default values for the document can be set outside
the prooftree environment using \forestset{(settings)}. If only tableaux will be typeset, a
default style can be configured using forest’s default preamble.

— 16 of 34 —

7 Options

7.1 Global Options

auto move
not auto move
Forest boolean register

true|false

Default: true

Determines whether prooftrees will move lines automatically, where possible, to avoid combining
different justifications when different branches are treated differently. The default is to avoid
conflicts automatically where possible. Turning this off permits finer-grained control of what gets
moved using move by. The following are equivalent to the default setting:

auto move
auto move=true

Either of the following will turn auto move off:

not auto move
auto move=false

line numbering

not line numbering
Forest boolean register

true|false

Default: true

This determines whether lines should be numbered. The default is to number lines. The following
are equivalent to the default setting:

line numbering
line numbering=true

Either of the following will turn line numbering off:

not line numbering
line numbering=false

justifications
not justifications
Forest boolean register

true|false

This determines whether justifications for lines of the proof should be typeset to the right of
the tree. It is rarely necessary to set this option explicitly as it will be automatically enabled
if required. The only exception concerns a proof for which a line should be moved but no
justifications are specified. In this case either of the following should be used to activate the
option:

justifications
justifications=true

single branches
not single branches
Forest boolean register

This is not necessary if just is used for any line of the proof.

= true|false

Default: false

This determines whether inference steps which do not result in at least two branches should draw
and explicit branch. The default is to not draw single branches explicitly. The following are
equivalent to the default setting:

not single branches
single branches=false

Either of the following will turn line numbering off:

single branches
single branches=true

— 17 0f 34 —

7 Options

7.1 Global Options

line no width
Forest dimension register

just sep
Forest dimension register

line no sep
Forest dimension register

close sep
Forest dimension register

proof tree inner proof
width
Forest dimension register

proof tree inner proof
midpoint
Forest dimension register

line no shift
Forest count register

7.1.1 Dimensions
= (dimension)

The maximum width of line numbers. By default, this is set to the width of the formatted line
number 99.

Example: 1line no width=20pt

= (dimension)

Default: 1.5em

Amount by which to shift justifications away from the tree. A larger value will shift the
justifications further to the right, increasing their distance from the tree, while a smaller one will
decrease this distance. Note that a negative value ought never be given. Although this will not
cause an error, it may result in strange things happening. If you wish to decrease the distance
between the tree and the justifications further, please set just sep to zero and use the options
provided by forest and/or TikZ to make further negative adjustments.

Example: just sep=.5em

= (dimension)

Default: 1.5em

Amount by which to shift line numbers away from the tree. A larger value will shift the line
numbers further to the left, increasing their distance from the tree, while a smaller one will
decrease this distance. Note that a negative value ought never be given. Although this will not
cause an error, it may result in strange things happening. If you wish to decrease the distance
between the tree and the line numbers further, please set 1ine no sep to zero and use the options
provided by forest and/or TikZ to make further negative adjustments.

Example: 1line no sep=5pt

= (dimension)

Default: .75\baselineskip

Distance between the symbol marking branch closure and any following annotation. If the format
of such annotations is changed with close format, this dimension may require adjustment.

Example: close sep=\baselineskip

= (dimension)
Default: Opt
= (dimension)

Default: Opt

7.1.2 Line Numbers
= (integer)

Default: 0

This value increments or decrements the number used for the first line of the proof. By default,
line numbering starts at 1.

Example: 1ine no shift=3

would begin numbering the lines at 4.

— 18 of 34 —

7 Options

7.1 Global Options

zero start
Forest style

to prove
Forest style

check with
Forest toks register

check right

not check right
Forest boolean register

check left
Forest style

close with
Forest toks register

close with format
Forest keylist register

Start line numbering from 0 rather than 1. The following are equivalent:

zero start
line no shift=-1

7.1.3 Proof Statement
= (wff)

Statement of theorem or entailment to be typeset above the proof. In many cases, it will be
necessary to enclose the statement in curly brackets.

Example: to prove={\sststile{}{} P \1lif P}

By default, the content is expected to be suitable for typesetting in maths mode and should not,
therefore, be enclosed by dollar signs or equivalent.

7.1.4 Format

= (symbol)

Default: \ensuremath{\checkmark} (v')

Symbol with which to mark discharged lines.

Example: check with={\text{\ding{52}}}

Within the tree, checked is used to identify discharged lines.

= true|false

Default: true

Determines whether the symbol indicating that a line is discharged should be placed to the right
of the wff. The alternative is, unsurprisingly, to place it to the left of the wff. The following are
equivalent to the default setting:

[

‘ check right

‘ check right=true
L

Set check right=false. The following are equivalent ways to place the markers to the left:

check right=false
not check right
check left

= (symbol)

Default: \ensuremath{\otimes} (®)

Symbol with which to close branches.

Example: close with={\ensuremath{\ast}}

Within the tree, close is used to identify closed branches.

= (key-value list)

Additional TikZ keys to apply to the closure symbol. Empty by default.
Example: close with format={red, font=}

To replace a previously set value, rather than adding to it, use close with format' rather than
close with format.

— 19 of 34 —

7 Options

7.1 Global Options

close format
Forest keylist register

subs with
Forest toks register

subs right

not subs right
Forest boolean register

subs left
Forest style

just refs left
not just refs left
Forest boolean register

just refs right
Forest style

= (key-value list)

Default: font=\scriptsize
Additional TikZ keys to apply to any annotation following closure of a branch.
Example: close format={font=\footnotesize\sffamily, text=gray!75}

To replace the default value of close format, rather than adding to it, use close format'
rather than close format.

Example: close format'={text=red}

will produce red annotations in the default font size, whereas
Example: close format={text=red}

will produce red annotations in \scriptsize.

= (symbol)

Default: \ensuremath{\backslash} (\)

Symbol to indicate variable substitution.

Example: \text{:}

Within the tree, subs is used to indicate variable substitution.

= true|false

Default: true

Determines whether variable substitution should be indicated to the right of the wff. The
alternative is, again, to place it to the left of the wff. The following are equivalent to the default
setting:

subs right
subs right=true

Set subs right=false. The following are equivalent ways to place the annotations to the left:

subs right=false
not subs right
subs left

= true|false

Default: true

Determines whether line number references should be placed to the left of justifications. The
alternative is to place them to the right of justifications. The following are equivalent to the
default setting:

just refs left
just refs left=true

Set just refs left=false. The following are equivalent ways to place the references to the
right:

just refs left=false
not just refs left
just refs right

— 20 of 34 —

7 Options

7.2 Local Options

just format
Forest keylist register

line no format
Forest keylist register

wiff format
Forest keylist register

proof statement format
Forest keylist register

highlight format
Forest autowrapped toks register

merge delimiter
Forest toks register

grouped
not grouped
Forest boolean option

Note that this setting only affects the placement of line numbers specified using the cross-referencing
system explained in section 7.2. Hard-coded line numbers in justifications will be typeset as is.

= (key-value list)
Additional TikZ keys to apply to line justifications. Empty by default.
Example: just format={red, font=}

To replace a previously set value, rather than adding to it, use just format' rather than just
format.

= (key-value list)
Additional TikZ keys to apply to line numbers. Empty by default.
Example: 1line no format={align=right, text=gray}

To replace a previously set value, rather than adding to it, use line no format' rather than
line no format. To change the way the number itself is formatted — to eliminate the dot, for
example, or to put the number in brackets — redefine \linenumberstyle (see section 8).

= (key-value list)
Additional TikZ keys to apply to wffs. Empty by default.
Example: wff format={draw=orange}

To replace a previously set value, rather than adding to it, use wff format' rather than wff
format.

= (key-value list)
Additional TikZ keys to apply to the proof statement. Empty by default.
Example: proof statement format={text=gray, draw=gray}

To replace a previously set value, rather than adding to it, use proof statement format' rather
than proof statement format.

= (key-value list)

Default: draw=gray, rounded cormners
Additional TikZ keys to apply to highlighted wffs.
Example: highlight format={text=red}

To apply highlighting, use the highlight wff, highlight just, highlight line no and/or
highlight line keys (see section 7.2).

= (punctuation)

Default: \text{; } (;)

Punctuation to separate distinct justifications for a single proof line. Note that prooftrees will
issue a warning if it detects different justifications for a single proof line and will suggest using
move by to avoid the need for merging justifications. In general, justifications ought not be
merged because it is then less clear to which wff(s) each justification applies. Moreover, later
references to the proof line will be similarly ambiguous. That is, merge delimiter ought almost
never be necessary because it is almost always better to restructure the proof to avoid ambiguity.

7.2 Local Options

The following options affect the local structure or appearance of the tree and should typically be
passed as options to the relevant node(s) within the tree.

Indicate that a line is not an inference. When single branches is false, as it is with the default

— 21 of 8 —

7 Options

7.2 Local Options

checked
Forest style

checked
Forest style

close

Forest style

close
Forest style

subs
Forest style

just
Forest autowrapped toks option

settings, this key is applied automatically and need not be given in the specification of the tree.
When single branches is true, however, this key must be specified for any line which ought not
be treated as an inference.

Example: grouped

7.2.1 Annotations

Mark a complex wff as resolved, discharging the line.
Example: checked

= (name)

Existential elimination, discharge by substituting (name).
Example: checked=a

Close branch.

Example: close

(annotation)

(annotation prefix) : (references)

Close branch with annotation. In the simplest case, (annotation) contains no colon and is typeset
simply as it is. Any required references to other lines of the proof are assumed to be given
explicitly.

Example: close={12,14}

If (annotation) includes a colon, prooftrees assumes that it is of the form (annotation
prefix) : (references). In this case, the material prior to the colon should include material to be
typeset before the line numbers and the material following the colon should consist of one or
more references to other lines in the proof. In typical cases, no prefix will be required so that the
colon will be the first character. In case there is a prefix, prooftrees will insert a space prior to the
line numbers. (references) may consist of either forest names (e.g. given by name= (name label)
and then used as (name label)) or forest relative node names (e.g. (nodewalk)) or a mixture.

Example: close={:negated conclusion}

where name=negated conclusion was used to label an earlier proof line negated conclusion.
If multiple references are given, they should be separated by commas and either (references) or
the entire (annotation) must be enclosed in curly brackets, as is usual for TikZ and forest values
containing commas.

Example: close={:!c, 'uuu}
= (name)/(names)
Universal instantiation, instantiate with (name) or (names).

Example: subs={a,b}

(justification)

(justification prefix/suffix) : (references)

Justification for inference. This is typeset in text mode. Hence, mathematical expressions must
be enclosed suitably in dollar signs or equivalent. In the simplest case, (justification) contains
no colon and is typeset simply as it is. Any required references to other lines of the proof are
assumed to be given explicitly.

Example: just=3 \lorD

— 22 0f 34 —

7 Options

7.2 Local Options

move by
Forest style

If (justification) includes a colon, prooftrees assumes that it is of the form (justification
prefix/suffix) : (references). In this case, the material prior to the colon should include ma-
terial to be typeset before or after the line numbers and the material following the colon should
consist of one or more references to other lines in the proof. Whether the material prior to the
colon is interpreted as a (justification prefix) or a (justification suffix) depends on the value of
just refs left. (references) may consist of either forest names (e.g. given by name= (name
label) and then used as (name label)) or forest relative node names (e.g. (nodewalk)) or a mixture.
If multiple references are given, they should be separated by commas and (references) must be
enclosed in curly brackets. If just refs left is true, as it is by default, then the appropriate
line number(s) will be typeset before the (justification suffix).

Example: just=$\lnot\exists$\elim:{!uu, 'u}

If just refs left is false, then the appropriate line number(s) will be typeset after the
(justification prefix).

Example: just=From:bertha

7.2.2 Moving
= (positive integer)

Move the content of the current line (positive integer) lines later in the proof. If the current line
has a justification and the content is moved, the justification will be moved with the line. Later
lines in the same branch will be moved appropriately, along with their justifications.

Example: move by=3

Note that, in many cases, prooftrees will automatically move lines later in the proof. It does this
when it detects a condition in which it expects conflicting justifications may be required for a
line while initially parsing the tree. Essentially, prooftrees tries to detect cases in which a branch
is followed closely by asymmetry in the structure of the branches. This happens, for example,
when the first branch’s first wff is followed by a single wff, while the second branch’s first wff is
followed by another branch. Diagrammatically:

wff wff wff wff
wif o NC Wl N

In this case, prooftrees tries to adjust the tree by moving lines appropriately if required.

However, this detection is merely structural — prooftrees does not examine the content of
the wffs or justifications for this purpose. Nor does it look for slightly more distant structural
asymmetries, conflicting justifications in the absence of structural asymmetry or potential conflicts
with justifications for lines in other, more distant parallel branches. Although it is not that
difficult to detect the need to move lines in a greater proportion of cases, the problem lies in
providing general rules for deciding how to resolve such conflicts. (Indeed, some such conflicts
might be better left unresolved e.g. to fit a proof on a single Beamer slide.) In these cases, a
human must tell prooftrees if something should be moved, what should be moved and how far it
should be moved.

— 23 of 84 —

7 Options

7.2 Local Options

highlight wff

not hightlight wff
Forest boolean option

highlight just
not hightlight just
Forest boolean option

highlight line no

not highlight line no
Forest boolean option

highlight line
not highlight line

Forest boolean option

line no options
Forest autowrapped toks option

just options
Forest autowrapped toks option

wif options
Forest autowrapped toks option

line options
Forest autowrapped toks option

line no override
Forest style

no line no
Forest style

Because simple cases are automatically detected, it is best to typeset the proof before deciding
whether or where to use this option since prooftrees will assume that this option specifies movements
which are required in addition to those it automatically detects. Attempting to move a line ‘too
far’ is not advisable. prooftrees tries to simply ignore such instructions, but the results are likely
to be unpredictable.

Not moving a line far enough — or failing to move a line at all — may result in the content of
one justification being combined with that of another. This happens if just is specified more
than once for the same proof line with differing content. prooftrees does examine the content of
justifications for this purpose. When conflicting justifications are detected for the same proof line,
the justifications are merged and a warning issued suggesting the use of move by.

7.2.3 Format: wff, justification & line number
Highlight wff.

Example: highlight wff

Highlight justification.

Example: highlight just

Highlight line number.

Example: highlight line no

Highlight proof line.

Example: highlight line

= (key-value list)

Additional TikZ keys to apply to the line number for this line.
Example: 1line no options={blue}

= (key-value list)

Additional TikZ keys to apply to the justification for this line.
Example: just options={draw, font=\bfseries}

= (key-value list)

Additional TikZ keys to apply to the wff for this line.
Example: wff options={magenta, draw}

Note that this key is provided primarily for symmetry as it is faster to simply give the options
directly to forest to pass on to TikZ. Unless wff format is set to a non-default value, the following
are equivalent:

wff options={magenta, draw}
magenta, draw

= (key-value list)

Additional TikZ keys to apply to this proof line.
Example: 1ine options={draw, rounded corners}
= (text)

Substitute (text) for the programmatically-assigned line number. (text) will be wrapped by
\linenumberstyle, so should not be anything which would not make sense in that context.

Example: 1ine no override={n}

Do not typeset a line number for this line. Intended for use in trees where 1ine numbering is

— 2/ of 84 —

9 FExtras

activated, but some particular line should not have its number typeset. Note that the number for
the line is still assigned and the node which would otherwise contain that number is still typeset.
If the next line is automatically numbered, the line numbering will, therefore, ‘jump’, skipping
the omitted number.

Example: no line no

8 Macros

\linenumberstyle {(number)}
macro
This macro is responsible for formatting the line numbers. The default definition is

[
‘ \newcommand*\linenumberstyle[1]{#1.}

It may be redefined with \renewcommand* in the usual way. For example, if for some reason you
would like bold line numbers, try

[
‘ \renewcommand*\linenumberstyle [1]{\textbf{#1.}}

9 Extras
9.1 Steps

every wff A nodewalk long step which visits the proof statement and every wff exactly once in proof line
Forest long step number order. This is the default order used for tagging the tableau, but may be used for other
purposes. As with the next step, this one should be used in before annotating or similar.

wff from proof line no to {(start)}{(end)}

Forest long step
A long step which visits all wffs between proof lines numbered (start) and {(end)} inclusive.

(start) and {end) must be proof line numbers in the tableau.

This step cannot be used until quite late in the tableau’s processing, as it is valid only
once line numbers have been assigned. Hence use of this step must always be delayed. For
example, to colour the wffs in lines 3, 4 and 5 blue, you could add the following to the preamble:

[
‘before annotating={for nodewalk={wffs from proof line no to={3}{5}}{blue,typeset node}},
L

Note the use of typeset node to re-typeset the content. Without this option, the colour would
have no effect.

9.2 Fit

nodewalk to node = (name){(nodewa]k}}

Forest style
A simple wrapper around forest’s fit to, which is a TikZ key used to create a node fitted around

a nodewalk using the TikZ fit library. This does not depend on the code used for tableaux and
may be used in an ordinary forest environment. (But do not load prooftrees just for this!)

For example, adding the following to a tableau’s preamble would create a node named a around all
the wffs in lines 4 to 7 inclusive. Note that this does not include the line number or justification,
if used, but only the wffs in the ‘main’ part of the proof.

‘ nodewalk to node={a}{wffs from proof line no to={4}{71}},

nodewalk node = (key-value list)
nodewalk node+
+nodewalk node Default: inner sep=0pt

nodewalk node'
Forest wrapped style

— 25 of 84 —

10 Advanced Configuration

before making annotations
Forest keylist option

before annotating
Forest keylist option

before copying content
Forest keylist option

before tagging nodes
Forest keylist option

before collating tags
Forest keylist option

Style applied to any TikZ nodes created using nodewalk to node. The versions with + pre-
pend/append to the existing style, while the ' version replaces it. nodewalk node is aliased to
nodewalk node+.

Example: nodewalk node={draw=magenta,rounded corners},

This would cause the options inner sep=0pt,draw=magenta,rounded corners to be applied to
any nodes created by nodewalk to node.

Note that, despite any similarity in syntax, these are not forest options or registers, but just code
wrappers around a simple TikZ style.

10 Advanced Configuration

forest’s default Forest keylist option options may be used to customise tableaux if the provided
options prove insufficient. In versions 0.9 and earlier, great care must be taken to avoid conflicts
with prooftrees’s use of these lists. In later versions, internal versions are reserved for prooftrees’s
use, enabling forest’s to be used more freely by the user. Note that you should still avoid changing
the basic structure of the proof. For example, deleting extant justifications or line numbers (as
opposed to modifying their content or options), would end badly.

See section 13 for details of the typesetting process.
= (key-value list)

This Forest keylist option allows customisation after node positions are first computed by forest
but before annotations are created. This is sometimes useful.

= (key-value list)

This Forest keylist option allows customisation after annotations are created, but before they are
attached to their corresponding wffs. I do not know if this option is useful or not.

The remaining options in this section are applicable only if tagging is active.
= (key-value list)

Only really useful if tagging is active. This Forest keylist option allows the content of a node to
be altered before it is copied for tagging. Changes made after proof tree copy content will
affect only the visual representation.

Example: P \supset Q, before copying content={content+={*}}, before typesetting
nodes={blue},

This would include the * into the content of the node used for tagging, but not the colouration.
= (key-value list)

Provided by the ext.tagging library. Only really useful if tagging is active (see section 12). Allow
changes before tagged content for a node is finalised. This Forest keylist option is processed
before annotations are added to a node’s tagged content.

Example: P \supset Q, before tagging nodes={alt text’={P horseshoe Q},},
This would replace P \supset Q with P horseshoe Q in the content used for tagging®.
= (key-value list)

Provided by the ext.tagging library. Only really useful if tagging is active (see section 12). This
Forest keylist option is processed after annotations are added to a node’s tagged content, but
before that content is used for tagging.

3This is not the best way to handle the horseshoe, however. It would be better to define a dedicated macro
to produce the symbol such as \horseshoe and assign an appropriate ‘output intent’, regardless of whether you
choose to override the content in tagging.

— 26 of 3} —

11 Memoization

Example: P \supset Q, just=Ass, before collating tags={alt text’={P horseshoe Q},}

This would prevent Ass from being used in the tagged content. Note that it would also lose any
line number, so this should be added explicitly if required.

11 Memoization

Tableaux created by prooftrees cannot, in general, be externalised with TikZ’s external library.
Since pgf/TikZ, in general, and prooftrees, in particular, can be rather slow to compile, this is
a serious issue. If you only have a two or three small tableaux, the compilation time will be
negligible. But if you have large, complex proofs or many smaller ones, compilation time will
quickly become excessive.

Version 0.9 does not cure the disease, but it does offer an extremely effective remedy for the
condition. While it does not make prooftrees any faster, it supports the memoize package developed
by forest’s author, Saso Zivanovié¢ (2023). Memoization is faster, more secure, more robust and
easier to use than TikZ’s externalisation.

It is faster. It does not require separate compilations for each memoized object, so it is compar-
atively fast even when memoizing.

It is more secure. It requires only restricted shell-escape, which almost all TEX installations
enable by default, so it is considerably more secure and can be utilised even where shell-escape
is disabled.

It is more robust. It can successfully memoize code which defeats all ordinary mortals’ attempts
to externalize with the older TikZ library.

It is easier to use. It requires less configuration and less intervention. For example, it detects
problematic code and aborts memoization automatically in many cases in which TikZ’s
external would either cause a compilation error or silently produce nonsense output, forcing
the user to manually disable the process for relevant code.

It is compatible with tagging. The library used for tagging ensures that tagging data is not
lost when forest trees are externalised with memoize.

There is always a ‘but’, but this is a pretty small ‘but’ as ‘but’s go.

But installation requires slightly more work. To reap the full benefits, you want to use
either the perl or the python ‘extraction’ method?. There is a third method, which does
not require any special installation, but this lacks several of the advantages explained above
and is not recommended.

If you use TEX Live, you have perl already, but you may need to install a couple of libraries.
python is not a prerequisite for TEX Live but, if you happen to have it installed, you will
probably only need an additional library to use this method.

See Memoize (Zivanovié 2023) for further details.

Once you have the prerequisites setup, all you need do is load memoize before prooftrees.

[

‘ \usepackage [extraction method=perl]{memoize}), or python
‘ \usepackage{prooftrees}

L

After a single compilation, your document will have expanded to include extra pages. At this
point, it will look pretty weird. After the next compilation, your document will return to its
normal self, the only difference being the speed with which it does so as all your memoized
tableaux will simply be included, as opposed to recompiled. Only when you alter the code for a
tableau, delete the generated files, disable memoization or explicitly request it will the proof be
recompiled.

4A better lua-based solution is currently under development. Once this is available, no additional software will
be required, at least for users of TEX Live.

— 27 of 84 —

12 Tagging

tag
Forest boolean register

setup plug
Forest toks register

tag plug

Forest toks register

tag check with
Forest toks register

Memoization is compatible with both prooftrees’s cross-referencing system and IXTEX 2¢’s cross-
references, but the latter require an additional compilation. In general, if a document element
takes n compilations to stabilise, it will take n 4+ 1 compilations to complete the memoization
process. See Memoize (Zivanovié 2023) for details.

12 Tagging

The infrastructure for tagging is provided by the ext.tagging and ext.utils forest libraries, which are
part of forest-ext®. These libraries are required regardless of whether tagging is used.

Tagging is highly experimental and the implementation will certainly change, as well, possibly, as
the interface. Changes to the public interface will be avoided where reasonable. If documented
interfaces do change, compatibility options will be provided if possible.

By default, tagging should largely ‘just work’ for straightforward tableaux. If tagging is active,
an ‘alternative text’ (alt text) is automatically generated based on the tableau content®. The
default aim is to tag tableaux syntactically, as opposed to semantically, in accordance with typical
usage in logic”. If your document is not written in English, you will need to configure a few global
options to provide translations. See section 12.1.

See also section 10.

Most of the few options are global and fairly straightforward.

12.1 Global Tagging Options

= true|false

Automatically set according to current status of tagging. Alter at your peril! Whether
tagging is active or not. This register should not be set by the user®! However, it may be
safely read to conditionalise code.

tableaux/alt

alt

Default: setup plug=tableaux/alt,tag plug=alt
Note these keys are provided by ext.tagging.

The only choice with package-specific support is currently the tableaux/alt setup plug, which
uses the library’s default alt option for tag plug. It provides a customised configuration for tag
nodes which constructs an alt text for all wffs and the to prove statement, if present. It also
modifies the order in which tags are collated. Use of latex-lab’s plugs for tikz will yield chaotic
results at best, but more likely invalid structures or compilation errors. If you need something
other than the current tableaux/alt and the options provided by the ext.tagging library do not
suffice, file a feature request.

(text)

Default: discharged

Text replacement for check with for tagging.

5Rees 2026.

6Whether this is a useful way to tag them I do not know. Some input from users of tableaux with screen-reading
software is required. Contributions, suggestions or feedback seem exceedingly unlikely, but would be appreciated.

"This might seem at odds with the JATEX Project’s efforts to tag mathematical content which, as I understand
it, is a semantic project. But the tension here is, of course, merely apparent, since the intended semantic content
of tableaux is syntactic. In the IATEX Project’s sense, this package tries to provide semantic tagging. It just so
happens that the relevant semantic content is concerned with syntactic, as opposed to semantic, methods.

8Note that setting this false will not result in an untagged tableau. Nor will it allow the user to tag the tableau
manually. If you want to do either of those, see tagpdf (for the former) or ext.tagging (for the latter).

— 28 of 34 —

Typesetting Process 12.2 Local Tagging Options

tag close with = (text)
Forest toks register

Default: closed
Text replacement for close with for tagging.

tag subs with = (text)
Forest toks register

Default: substituted
Text replacement for subs with for tagging.

tag to prove = (text)
Forest toks register

Default: To prove:
Text to prepend to the proof statement when tagging.

For example, here’s a possible setup for Welsh?.

\forestset{/,
tag check with={cyflawnedig},
tag close with={caead},
tag sub with={enghreifftiwyd},
tag to prove={Profir: },

}

12.2 Local Tagging Options

alt text = (text)
Forest toks option
Provided by ext.tagging. alt text stores the content used to tag the proof statement and each

wff in the tableau. prooftrees creates this content automatically from either the proof statement
given to to prove or the content of the wff. Additional content is appended or prepended when
checked, close, subs and/or just are used. If applicable, a line number is also added.

The content used for tagging the node may be supplemented or entirely overridden by the user at
any stage, but direct use of the option must be delayed in order for the changes to be effective.

Example: P \equiv Q, just=Ass, before collating tags={alt text'={P iff Q (Premise)},},
checked,

This would use precisely the specified content when tagging i.e. the checked marker, justification
and any line number would be omitted.

Example: P \equiv Q, just=Ass, before tagging nodes={alt text'={P iff Q (Premise)},},
checked,

The would use the specified content, together with the line number and justification, but would
omit the checked marker.

See sections 10 and 13.

13 Typesetting Process

This section provides a high-level description of the process prooftree/tableau uses to construct
and typeset a proof. Further details can be found in the code documentation.

Most uses of prooftrees do not require knowledge — or, even, awareness of — the
details described in this section. Indeed, earlier versions of the documentation did not

91 do not know if there is an extant terminology for logic. If you know of one, I’d be grateful if you could file a
feature request letting me know.

— 29 of 3} —

13 Typesetting Process

include this section at all. The details may be of use to users who wish to modify tableaux in
ways unsupported by the features documented in previous sections.

1. Initialise tagging, if applicable. This is largely a matter of setting latex-lab’s plug for tikz
to noop, setting some options for ext.tagging and resetting the tagging keylist tag nodes.
This is necessary because a forest tree involves many uses of tikzpicture and the default
tagging can result in erroneous structures and/or compilation errors and produces at best
chaotic marked content.

2. Starts forest with a custom definition of stages. tag tree stage executes the code
actually responsible for tagging the proof.

Any keylist option described as ‘Does nothing by default. is explicitly intended for users to
customise the process.

Any key marked ‘forest’ is provided by forest and used unaltered.
Any key marked ‘ext.tagging’ is provided by forest-ext and used unaltered.

Any key marked ‘Internal’ is used by this package in constructing and/or tagging the
tableau. Like those used by ext.tagging and forest itself, you are both welcome to redefine
these and welcome to keep the itsy-bitsy teeny-weeny little pieces if stuff breaks.

Note that only those intended explicitly for user use by this package are marked as ‘Does
nothing by default.’, but several other such items are similarly provided by forest and
ext.tagging'®

See section 10, Zivanovié (2017) and forest-ext for details.
Here is a (long!) step-by-step description of prooftrees’s redefinition of stages.

Stage 1 Execute the standard forest parsing for the default preamble and preamble
with forest.

for root'={}
process keylist register=default preamble,
process keylist register=preamble,

1,

Stage 2 Process the forest keylist option given options. forest.
Stage 3 Process the keylist option before copying content. Does nothing by default.
Stage 4 Process the keylist option proof tree copy content. Internal.

Stage 5 Process the keylist option proof tree after copying content. Does nothing
by default.

Stage 6 Process the keylist option proof tree before typesetting nodes. Internal.
Stage 7 Process the forest keylist option before typesetting nodes. forest.

Stage 8 Process the keylist option proof tree ffurf. Internal.

Stage 9 Process the keylist option proof tree symud awto. Internal.

Stage 10 Execute forest’s typeset nodes stage. forest.

Stage 11 Process the keylist option proof tree before packing. Internal.

Stage 12 Process the forest keylist option before packing. forest.

Stage 13 Execute forest’s pack stage. forest.

Stage 14 Process the keylist option proof tree before computing xy. Internal.

10 Anything beginning before is probably OK, but you should check the other package’s documentation to be
sure.

— 30 of 34 —

References

Stage 15 Process the forest keylist option before computing xy. forest.
Stage 16 Execute forest’s compute xy stage. forest.

Stage 17 Process the keylist option before making annotations. Does nothing by de-
fault.

Stage 18 Process the keylist option proof tree creu nodiadau. Internal.
Stage 19 Process the keylist option before annotating. Does nothing by default.
Stage 20 Process the keylist option proof tree nodiadau. Internal.
Stage 21 Process the keylist option proof tree after annotations. Internal.
Stage 22 Process the ext.tagging keylist option before tagging nodes. ext.tagging.
Stage 23 Process the ext.tagging keylist option tag nodes. ext.tagging.
Stage 24 Process the ext.tagging keylist option before collating tags. ext.tagging.
Stage 25 Process the ext.tagging keylist option collate tags. ext.tagging.
Stage 26 Process the ext.tagging keylist option before tagging tree. ext.tagging.
Stage 27 Execute ext.tagging’s tag tree stage. ext.tagging.
Stage 28 Process the forest keylist option before drawing tree. forest.
Stage 29 Execute forest’s draw tree stage. forest.

3. Applies style proof tree. This style should NOT be used directly.

4. Executes the content of prooftree/tableau’s mandatory argument.

5. Creates a root node with name= (proof statement).

6. Integrates the contents of the prooftree/tableau.

Note that prooftrees sets forest’s action character to @ before defining the prooftree/tableau
environment.

14 Compatibility

Versions of prooftrees prior to 0.5 are incompatible with bussproofs, which also defines a prooftree
environment. Version 0.6 is compatible with bussproofs provided

either bussproofs is loaded before prooftrees
or prooftrees is loaded with option tableaux (see section 4).

In either case, prooftrees will not define a prooftree environment, but will instead define tableau.
This allows you to use tableau for prooftrees trees and prooftree for bussproofs trees.

References

Hodges, Wilfred (1991). Logic: An Introduction to Elementary Logic. Penguin.

Rees, Clea F. (2026). forest-ext. 0.1. 17th Jan. 2026. CTAN: forest-ext.

Tantau, Till (2015). The TikZ and PGF Packages. Manual for Version 3.0.1a. 3.0.1a. 29th Aug.
2015. URL: http://sourceforge.net/projects/pgf.

Zivanovi¢, Saso (2016). Forest: A PGF/TikZ-Based Package for Drawing Linguistic Trees. 2.0.2.
4th Mar. 2016. URL: http://spj.ff.uni-1j.si/zivanovic/.

— (2017). Forest: A PGF/TikZ-Based Package for Drawing Linguistic Trees. 2.1.5. 14th July
2017. CTAN: forest.

— (2023). Memoize. 1.0.0. 10th Oct. 2023. CTAN: memoize.

— 31 of 84 —

https://www.ctan.org/pkg/forest-ext
http://sourceforge.net/projects/pgf
http://spj.ff.uni-lj.si/zivanovic/
https://www.ctan.org/pkg/forest
https://www.ctan.org/pkg/memoize

Change History

Change History

Change History

v0.3
General: First CTAN release. 31
v0.4
General: Bug fix release: forest count
register 1ine no shift was broken; in
some cases, an edge was drawn where

no edge belonged. 31
v0.41
General: Update for compatibility with
forest 2.1. L L L. 31
v0.5

General: Significant re-implementation
leveraging the new argument processing
facilities in forest 2.1. This significantly
improves performance as the code is
executed much faster than the previous
pgfmath implementation. 31

v0.6

General: Add compatibility option for use
with bussproofs. Thanks to Peter Smith
for suggesting this. 15

v0.7

General: Fix bug reported at
tex.stackexchange.com/q/479263/39222.

Implement forest boolean register auto
move. The main point of this option is
to allow automatic moves to be
switched off if one teaches students to
first apply all available non-branching
rules for the tableau as a whole, as
opposed to all non-branching rules for
the sub-tree. The automatic algorithm

is consistent with the latter, but not
former, approach. The algorithm
favours compact trees, which are more
likely to fit on beamer slides. Switching
the algorithm off permits users to
specify exactly how things should or

should not be moved. Thanks to Peter
Smith for prompting this. 16
v0.8
General: Add previously unnoticed
dependency on amstext. 31

Attempt to fix straying closure symbols
evident in documentation and a TEX
SE question (https://tex.
stackexchange.com/q/619314/). 31
Documentation now loads enumitem,
since it depended on it already anyway
and specifies doc2 in options for ltxdoc
as the code is incompatible with the
current version. 31
v0.9
General: Use \NewDocumentEnvironment,
removing direct dependency on environ. 31
v0.9.1
General: Switch to docstrip. 31
v0.9.2
General: forest-ext is now required, since
two of its libraries provide a framework
for tagging forest trees. This applies
even if tagging is not used. 31
Experimental support for tagging based
on forest-ext. 31

— 32 of 84 —

https://tex.stackexchange.com/q/479263/39222
https://tex.stackexchange.com/q/619314/
https://tex.stackexchange.com/q/619314/

Index

Features are sorted by kind. Page references are given for both definitions and comments on use.
Underlined numbers refer to code line numbers; the remainder to pages.

E
ENVIRONMENTS
prooftree 15
tableau 15
F

just ... 7,10, 17, 22, 24, 29
justoptions 16, 24
line no options 16, 24
line options 16, 24
wif options, 16, 24

FOREST AUTOWRAPPED TOKS REGISTERS

highlight format 21
FOREST BOOLEAN OPTIONS
grouped 21
highlight just 16, 21, 24
highlight line 16, 21, 24
highlight lineno 16, 21, 24
highlight wif 16, 21, 24
line numbering 24
not grouped 21
not highlight line 24
not highlight lineno 24
not hightlight just 24
not hightlight wif 24
FOREST BOOLEAN REGISTERS
automove 17
checkright 16, 19
just refsleft 16, 20, 23
justifications 17
line numbering 17
not automove 17
not check right 19
not just refsleft 20
not justifications 17
not line numbering 17
not single branches 17
not subs right 20
single branches 17, 21, 22
subs right 16, 20
tag .. 28
FOREST BRACKET KEYS
action character 31
FOREST COUNT REGISTERS
linenoshift 6, 18
FOREST DIMENSION REGISTERS
closesep, . 16, 18
justsep ... 18
linenosep 18

line no width
proof tree inner proof midpoint 18

proof tree inner proof width 18
FOREST KEYLIST OPTIONS
before annotating 25, 26, 31
before collating tags 26, 31
before computing xy 31
before copying content 26, 30
before drawing tree 31
before making annotations 26, 31
before packing 30
before tagging nodes 26, 31
before tagging tree 31
before typesetting nodes 30
given options 30
proof tree after annotations 31
proof tree after copying content 30
proof tree before computing xy 30
proof tree before packing 30
proof tree before typesetting nodes 30
proof tree copy content 26
proof tree creu nodiadau 31
proof tree ffurf 30
proof tree nodiadau 31
proof tree symud awto 30
stages ... 30
FOREST KEYLIST REGISTERS
close format 16, 18, 20
close format' 20
close with format 16, 19
close with format' 19
default preamble 30
just format ... 16, 21
just format' L oL oL 21
line no format 16, 21
line no format' 21
preamble 30
proof statement format 16, 21
proof statement format' 21
wif format 16, 21, 24
wif format' L. 21
FOREST LONG STEPS
every wif L 25
wif from proof linenoto 25
FOREST STYLES
check left 19
checked 8,16, 19, 22, 29
close 16, 19, 22, 29
compute xy stage 31
draw tree stage 31

— 33 0f 84 —

Index

Index

fitto 25
just refsright 20
line no override 24
moveby 17, 21, 23, 24
nolineno 24
nodewalk tonode 25, 26
pack stage 30
proof tree 31
subs ... 16, 20, 22, 29
subsleft 20
tag treestage 30, 31
toprove 19
typeset nodes stage 30
zerostart 19
FOREST TAGGING KEYLISTS
collate tags 31
proof tree copy content 30
tagmnodes 31
FOREST TOKS OPTIONS
alt text ... 29
NAIME . . v v vttt e e e e e 31
FOREST TOKS REGISTERS
check with 16, 19, 28
close with 16, 19, 29
merge delimiter 21
setupplug 28
subs with 16, 20, 29
tag check with 28
tag close with 29
tagplug L i 28
tag subs with 29
tagtoprove 29
FOREST WRAPPED STYLES
+nodewalk node 25
nodewalk node 25
nodewalk node+ 25
nodewalk node' 25
M
MACROS
\linenumberstyle 24
\linenumberstyle 25
P
PACKAGE OPTIONS
tableaux 15
PACKAGES
external ... 27
forest-ext 1
forest 1, 15
MEMOIZE . . v v v it et et e e 1, 27
pgf . 27
prooftrees 1, 15

— 84 of 34 —

	Contents
	1 Raison d'être
	2 Assumptions & Limitations
	3 Typesetting a Tableau
	4 Loading the Package
	5 Invocation
	6 Tableau Anatomy
	7 Options
	7.1 Global Options
	7.1.1 Dimensions
	7.1.2 Line Numbers
	7.1.3 Proof Statement
	7.1.4 Format

	7.2 Local Options
	7.2.1 Annotations
	7.2.2 Moving
	7.2.3 Format: wff, justification & line number

	8 Macros
	9 Extras
	9.1 Steps
	9.2 Fit

	10 Advanced Configuration
	11 Memoization
	12 Tagging
	12.1 Global Tagging Options
	12.2 Local Tagging Options

	13 Typesetting Process
	14 Compatibility
	Change History

